Yeast Expressing Saccharolytic Enzymes for Consolidated Bioprocessing Using Starch and Cellulose

Total Page:16

File Type:pdf, Size:1020Kb

Yeast Expressing Saccharolytic Enzymes for Consolidated Bioprocessing Using Starch and Cellulose (19) TZZ¥_¥ZZ_T (11) EP 3 168 300 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 17.05.2017 Bulletin 2017/20 C12N 9/42 (2006.01) C12P 7/06 (2006.01) (21) Application number: 16192843.7 (22) Date of filing: 03.06.2011 (84) Designated Contracting States: • WARNER, Anne, K. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Lebanon, NH 03766 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • MELLON, Mark PL PT RO RS SE SI SK SM TR Grantham, NH 03753 (US) • SKINNER, Ryan (30) Priority: 03.06.2010 US 351165 P White River Junction, VT 05001 (US) 06.12.2010 US 420142 P • SHIKHARE, Indraneel Lebanon, NH 03766 (US) (62) Document number(s) of the earlier application(s) in • DEN HAAN, Riaan accordance with Art. 76 EPC: 7550 Durbanville (ZA) 11790526.5 / 2 576 762 • GANDHI, Chhayal, V. Nashua, NH 03062-2858 (US) (71) Applicants: • BELCHER, Alan • Lallemand Hungary Liquidity Management LLC Nashua, NH 03063 (US) Budapest 1077 (HU) • RAJGARHIA, Vineet, B. • Stellenbosch University Lebanon, NH 03766 (US) 7600 Stellenbosch (ZA) • FROEHLICH, Allan, C. Lebanon, NH 03766 (US) (72) Inventors: • DELEAULT, Kristen, M. • BREVNOVA, Elena Canaan, NH 03741 (US) Lebanon, NH 03766 (US) • STONEHOUSE, Emily • MCBRIDE, John, E. Lebanon, NH 03766 (US) Lyme, NH 03768 (US) • TRIPATHI, Shital, A. • WISWALL, Erin Emeryville California 94608 (US) Danbury, NH 03230 (US) • GOSSELIN, Jennifer • WENGER, Kevin, S. Lebanon, NH 03766 (US) Hanover, NH 03755 (US) • CHIU, Yin-Ying • CAIAZZA, Nicky West Lebanon, NH 09784 (US) Rancho Santa Fe, CA 92067 (US) • XU, Haowen • HAU, Heidi, H. Lebanon, NH 03766 (US) Lebanon, NH 03766 (US) • ARGYROS, Aaron (74) Representative: Cornish, Kristina Victoria Joy White River Junction, VT 05001 (US) Kilburn & Strode LLP • AGBOGBO, Frank 20 Red Lion Street Lebanon, NH 03766 (US) London WC1R 4PJ (GB) • RICE, Charles, F. Hopkinton, NH 03229 (US) Remarks: • BARRETT, Trisha •Thecomplete document including Reference Tables Bradford, VT 05033 (US) and the Sequence Listing can be downloaded from • BARDSLEY, John, S. the EPO website Newport, NH 03773 (US) •This application was filed on 07-10-2016 as a • FOSTER, Abigail, S. divisional application to the application mentioned South Strafford, VT 05070 (US) under INID code 62. EP 3 168 300 A1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 3 168 300 A1 (54) YEAST EXPRESSING SACCHAROLYTIC ENZYMES FOR CONSOLIDATED BIOPROCESSING USING STARCH AND CELLULOSE (57) The present invention is directed to a yeast to produce ethanol from granular starch without liquefac- strain, or strains, secreting a full suite, or any subset of tion. The resulting strain, or strains, can be further used that full suite, of enzymes to hydrolyze corn starch, corn to reduce the amount of external enzyme needed to hy- fiber, lignocellulose, (including enzymes that hydrolyze drolyze a biomass feedstock during an Simultaneous linkages in cellulose, hemicellulose, and between lignin Saccharification and Fermentation (SSF) process, or to and carbohydrates) and to utilize pentose sugars (xylose increase the yield of ethanol during SSF at current sac- and arabinose). The invention is also directed to the set charolytic enzyme loadings. In addition, multiple en- of proteins that are well expressed in yeast for each cat- zymes of the present invention can be co-expressed in egory of enzymatic activity. The resulting strain, or strains cells of the invention to provide synergistic digestive ac- can be used to hydrolyze starch and cellulose simulta- tion on biomass feedstock. In some aspects, host cells neously. The resulting strain, or strains can be also met- expressing different heterologous saccharolytic en- abolicallyengineered toproduce less glyceroland uptake zymes can also be co-cultured togetherand used to pro- acetate. The resulting strain, or strains can also be used duce ethanol from biomass feedstock. 2 EP 3 168 300 A1 Description BACKGROUND OF THE INVENTION 5 [0001] Biomass is biological material from living, or recently living organisms, such as wood, waste, (hydrogen) gas, and alcohol fuels. Biomass is carbon, hydrogen and oxygen based. Nitrogen and small quantities of other atoms, including alkali, alkaline earth and heavy metals can be found as well. Metals are often found in functional molecules such as the porphyrins which include chlorophyll which contains magnesium. Plants in particular combine water and carbon dioxide to sugar building blocks. The required energy is produced from light via photosynthesis based on chlorophyll. On average, 10 between 0.1 and 1 % of the available light is stored as chemical energy in plants. The sugar building blocks are the starting point for all of the major fractions found in terrestrial plants, lignin, hemicellulose and cellulose. Biomass is wide ly recognized as a promising source of raw material for production of renewable fuels and chemicals. The primary obstacle impeding the more widespread production of energy from biomass feedstocks is the general absence of low-cost tech- nology for overcoming the recalcitrance of these materials to conversion into useful fuels. Biomass contains carbohydrate 15 fractions (e.g., starch, cellulose, and hemicellulose) that can be converted into ethanol. In order to convert these fractions, the starch, cellulose, and, hemicellulose must ultimately be converted or hydrolyzed into monosaccharides; it is the hydrolysis that has historically proven to be problematic. [0002] Biologically mediated processes are promising for energy conversion, in particular for the conversion of biomass into fuels. Biomass processing schemes involving enzymatic or microbial hydrolysis commonly involve four biologically 20 mediated transformations: (1) the production of saccharolytic enzymes (amylases, cellulases and hemicellulases); (2) the hydrolysis of carbohydrate components present in pretreated biomass to sugars; (3) the fermentation of hexose sugars (e.g., glucose, mannose, and galactose); and (4) the fermentation of pentose sugars (e.g., xylose and arabinose). These four transformations occur in a single step in a process configuration called consolidated bioprocessing (CBP), which is distinguished from other less highly integrated configurations in that it does not involve a dedicated process 25 step for cellulase and/or hemicellulase production. [0003] CBP offers the potential for lower cost and higher efficiency than processes featuring dedicated saccharolytic enzyme production. The benefits result in part from avoided capital costs, substrate and other raw materials, and utilities associated with saccharolytic enzyme production. In addition, several factors support the realization of higher rates of hydrolysis, and hence reduced reactor volume and capital investment using CBP, including enzyme-microbe synergy 30 and the use of thermophilic organisms and/or complexed saccharolytic systems. Moreover, cellulose-adherent cellulolytic microorganisms are likely to compete successfully for products of cellulose hydrolysis with non-adhered microbes, e.g., contaminants, which could increase the stability of industrial processes based on microbial cellulose utilization. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring saccharolytic microorganisms to improve product-related properties, such as yield and titer; and engineering non-sac- 35 charolytic organisms that exhibit high product yields and titers to express a heterologous saccharolytic enzyme system enabling starch, cellulose, and, hemicellulose utilization. [0004] The breakdown of starch down into sugar requires amylolytic enzymes. Amylase is an example of an amylolytic enzyme that is present in human saliva, where it begins the chemical process of digestion. The pancreas also makes amylase (alpha amylase) to hydrolyze dietary starch into disaccharides and trisaccharides which are converted by other 40 enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylases. Amylases are glycoside hydrolases and act on α-1,4-glycosidic bonds. [0005] Several amylolytic enzymes are implicated in starch hydrolysis. Alpha-amylases (EC 3.2.1.1) (alternate names: 1,4-α-D-glucan glucanohydrolase; glycogenase) are calcium metalloenzymes, i.e., completely unable to function in the absence of calcium. By acting at random locations along the starch chain, alpha-amylase breaks down long-chain 45 carbohydrates, ultimately yielding maltotriose and maltose from amylose, or maltose, glucose and "limit dextrin" from amylopectin. Because it can act anywhere on the substrate, alpha-amylase tends to be faster-acting than beta-amylase. Another form of amylase, beta-amylase (EC 3.2.1.2) (alternate names: 1,4-α-D-glucan maltohydrolase; glycogenase; saccharogen amylase) catalyzes the hydrolysis of the secondα -1,4 glycosidic bond, cleaving off two glucose units (maltose) at a time. The third amylase is gamma-amylase (EC 3.2.1.3) (alternate names: Glucan 1,4-α-glucosidase; 50 amyloglucosidase; Exo-1,4-α-glucosidase; glucoamylase; lysosomal α-glucosidase; 1,4-α-D-glucan glucohydrolase). In addition to cleaving the last α(1-4)glycosidic linkages at the nonreducing end of amylose and amylopectin, yielding glucose, gamma-amylase will cleave α(1-6) glycosidic linkages. [0006] A fourth enzyme, alpha-glucosidase, acts on maltose and other short maltooligosaccharides produced by alpha-, beta-, and gamma-amylases, converting them to glucose. 55 [0007] Three major types of enzymatic activities are required for native
Recommended publications
  • Isolation and Characterization of Achromobacter Sp. CX2 From
    Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase.
    [Show full text]
  • United States Patent (19) 11, 3,708,396 Mitsuhashi Et Al
    United States Patent (19) 11, 3,708,396 Mitsuhashi et al. (45) Jan. 2, 1973 54 PROCESS FOR PRODUCING 3,492,203 1/1970 Mitsuhashi............................. 195/31 MALTTOL 3,565,765 2/1971 Heady et al.................. .......... 195/31 75) Inventors: Masakazu Mitsuhashi, Okayama-shi, 3,535,123 10/1970 Heady.................................... 195/31 Okayama; Mamoru Hirao, Akaiwa 2,004,135 6/1935 Rothrock.......................... 260/635 C gun, Okayama; Kaname Sugimoto, OTHER PUBLICATIONS Okayama-shi, Okayama, all of Japan Abdullah et al., Mechanism of Carbohydrase Action, Vol.43, 1966. 73) : Assignee: Hayashibara Company, Okayama, Hou, E. F., Chem. Abs., Vol. 69, 1968, 53049d. Japan Kjolberg et al., Biochem. J. p. 258-262, Vol. 86, 1963. 22 Filed: Jan. 8, 1969 Lee et al., Arch Biochem. Biophys, Vol. 1 16, p. (21) Appl. No.:789,912 162-167, 1966. Payur, J. H., Starch, Chem. and Tech., Vol. 1, p. 166, 30 Foreign Application Priority Data 1965. Jan. 23, 1968 Japan.................................. 43/3862 Primary Examiner-A. Louis Monacell July 1, 1968 Japan................................. 43148921 Assistant Examiner-Gary M. Nath July 1 1, 1968 Japan................................. 43148922 Attorney-Browdy and Neimark 52 U.S. Cl.............. 195/31 R, 260/635 C, 99/141 R 5 Int. Cl................................................ C13d 1100 57 ABSTRACT 58) Field of Search............. 195/31; 99/141; 127/37; A process for producing maltitol from a starch slurry 260/635 C which comprises hydrolyzing the starch slurry with beta-amylase and alpha-1,6-glucosidase to produce a 56 References Cited high maltose containing product and catalytically hydrogenating the maltose with Raney nickel after ad UNITED STATES PATENTS justing the pH of the maltose product with calcium 2,868,847 111959 Boyers.................................
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Insights Into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components
    Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components R. Jason Quinlana,1, Matt D. Sweeneya,1, Leila Lo Leggiob, Harm Ottenb, Jens-Christian N. Poulsenb, Katja Salomon Johansenc,2, Kristian B. R. M. Kroghc, Christian Isak Jørgensenc, Morten Tovborgc, Annika Anthonsenc, Theodora Tryfonad, Clive P. Walterc, Paul Dupreed, Feng Xua, Gideon J. Daviese, and Paul H. Waltone aNovozymes, Inc., Davis, CA 95618; bDepartment of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark; cNovozymes A/S, DK-2880 Bagsværd, Denmark; dDepartment of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QW, United Kingdom; and eDepartment of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom Edited* by Diter von Wettstein, Washington State University, Pullman, WA, and approved August 2, 2011 (received for review April 13, 2011) The enzymatic degradation of recalcitrant plant biomass is one lysis. From this work, it was suggested that GH61s act directly on of the key industrial challenges of the 21st century. Accordingly, cellulose rendering it more accessible to traditional cellulase there is a continuing drive to discover new routes to promote action (11). Moreover, recent genomic sequencing of the brown polysaccharide degradation. Perhaps the most promising approach rot fungi Postia placenta showed a number of GH61 genes in this involves the application of “cellulase-enhancing factors,” such as organism (13–15), indicating the widespread nature of this those from the glycoside hydrolase (CAZy) GH61 family. Here we family of enzymes in cellulose degradation. As such, GH61s show that GH61 enzymes are a unique family of copper-depen- likely hold major potential for industrial decomposition of dent oxidases.
    [Show full text]
  • GRAS Notice 000099: Pullulan
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☒ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☐ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. January 31, 2018 National List Manager USDA/AMS/NOP, Standards Division 1400 Independence Ave. SW Room 2648-So., Ag Stop 0268 Washington, DC 20250-0268 RE: Petition to add Pullulan to the National List at §205.605(a) as an allowed nonsynthetic ingredient in tablets and capsules for dietary supplements labeled “made with organic (specified ingredients or food group(s)).” Dear National List Manager: The Organic Trade Association1 is
    [Show full text]
  • Catalytic Properties, Functional Attributes and Industrial Applications of B-Glucosidases
    3 Biotech (2016) 6:3 DOI 10.1007/s13205-015-0328-z ORIGINAL ARTICLE Catalytic properties, functional attributes and industrial applications of b-glucosidases 1 2 3 Gopal Singh • A. K. Verma • Vinod Kumar Received: 20 April 2015 / Accepted: 19 June 2015 / Published online: 31 December 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract b-Glucosidases are diverse group of enzymes with biochemical characterization of such enzymes is with great functional importance to biological systems. presented for the better understanding and efficient use of These are grouped in multiple glycoside hydrolase families diverse b-glucosidases. based on their catalytic and sequence characteristics. Most studies carried out on b-glucosidases are focused on their Keywords b-Glucosidases Á Glycoside hydrolase Á industrial applications rather than their endogenous func- Cellulosome Á Glucosides Á Cellulase tion in the target organisms. b-Glucosidases performed many functions in bacteria as they are components of large complexes called cellulosomes and are responsible for the Introduction hydrolysis of short chain oligosaccharides and cellobiose. In plants, b-glucosidases are involved in processes like b-Glucosidases (b-D-glucopyrranoside glucohydrolase) formation of required intermediates for cell wall lignifi- [E.C.3.2.1.21] are the enzymes which hydrolyze the gly- cation, degradation of endosperm’s cell wall during ger- cosidic bond of a carbohydrate moiety to release nonre- mination and in plant defense against biotic stresses. ducing terminal glycosyl residues, glycoside and Mammalian b-glucosidases are thought to play roles in oligosaccharides (Bhatia et al. 2002; Morant et al.
    [Show full text]
  • 1 the Synergistic Actions of Hydrolytic Genes in Coexpression Networks Reveal the Potential
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906529; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 The synergistic actions of hydrolytic genes in coexpression networks reveal the potential 2 of Trichoderma harzianum for cellulose degradation 3 4 Déborah Aires Almeida1,2, Maria Augusta Crivelente Horta1,2,#, Jaire Alves Ferreira Filho1,2, 5 Natália Faraj Murad1 and Anete Pereira de Souza1,3,* 6 7 1Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas 8 (UNICAMP), Campinas, SP, Brazil 9 2Graduate Program in Genetics and Molecular Biology, Institute of Biology, UNICAMP, 10 Campinas, SP, Brazil 11 3Department of Plant Biology, Institute of Biology, UNICAMP, Campinas, SP, Brazil 12 13 # Present Address: Holzforshung München, TUM School of Life Sciences Weihenstephan, 14 Technische Universität München, Freising, Germany 15 16 *Corresponding author 17 Profa Anete Pereira de Souza 18 Dept. de Biologia Vegetal, Universidade Estadual de Campinas, CEP 13083-875, Campinas, 19 São Paulo, Brazil 20 Tel.: +55-19-3521-1132 21 E-mail:[email protected] 22 23 Abstract 24 Background: Bioprospecting key genes and proteins related to plant biomass degradation is 25 an attractive approach for the identification of target genes for biotechnological purposes, bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906529; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Action of Multiple Rice -Glucosidases on Abscisic Acid Glucose Ester
    International Journal of Molecular Sciences Article Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester Manatchanok Kongdin 1, Bancha Mahong 2, Sang-Kyu Lee 2, Su-Hyeon Shim 2, Jong-Seong Jeon 2,* and James R. Ketudat Cairns 1,* 1 School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 2 Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (B.M.); [email protected] (S.-K.L.); [email protected] (S.-H.S.) * Correspondence: [email protected] (J.-S.J.); [email protected] (J.R.K.C.); Tel.: +82-31-2012025 (J.-S.J.); +66-44-224304 (J.R.K.C.); Fax: +66-44-224185 (J.R.K.C.) Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress.
    [Show full text]
  • Potential and Utilization of Thermophiles and Thermostable Enzymes in Biorefining Pernilla Turner, Gashaw Mamo and Eva Nordberg Karlsson*
    Microbial Cell Factories BioMed Central Review Open Access Potential and utilization of thermophiles and thermostable enzymes in biorefining Pernilla Turner, Gashaw Mamo and Eva Nordberg Karlsson* Address: Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden Email: Pernilla Turner - [email protected]; Gashaw Mamo - [email protected]; Eva Nordberg Karlsson* - [email protected] * Corresponding author Published: 15 March 2007 Received: 4 January 2007 Accepted: 15 March 2007 Microbial Cell Factories 2007, 6:9 doi:10.1186/1475-2859-6-9 This article is available from: http://www.microbialcellfactories.com/content/6/1/9 © 2007 Turner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials.
    [Show full text]
  • Long-Term Warming in a Mediterranean-Type Grassland Affects Soil Bacterial Functional Potential but Not Bacterial Taxonomic Composition
    www.nature.com/npjbiofilms ARTICLE OPEN Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition Ying Gao1,2, Junjun Ding2,3, Mengting Yuan4, Nona Chiariello5, Kathryn Docherty6, Chris Field 5, Qun Gao2, Baohua Gu 7, Jessica Gutknecht8,9, Bruce A. Hungate 10,11, Xavier Le Roux12, Audrey Niboyet13,14,QiQi2, Zhou Shi4, Jizhong Zhou2,4,15 and ✉ Yunfeng Yang2 Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas nifH gene encoding nitrogenase increased in the 1234567890():,; warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community.
    [Show full text]