Purification, Characterization and Gene Analysis of a New Α-Glucosidase from Shiraia Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11, 3,708,396 Mitsuhashi Et Al
United States Patent (19) 11, 3,708,396 Mitsuhashi et al. (45) Jan. 2, 1973 54 PROCESS FOR PRODUCING 3,492,203 1/1970 Mitsuhashi............................. 195/31 MALTTOL 3,565,765 2/1971 Heady et al.................. .......... 195/31 75) Inventors: Masakazu Mitsuhashi, Okayama-shi, 3,535,123 10/1970 Heady.................................... 195/31 Okayama; Mamoru Hirao, Akaiwa 2,004,135 6/1935 Rothrock.......................... 260/635 C gun, Okayama; Kaname Sugimoto, OTHER PUBLICATIONS Okayama-shi, Okayama, all of Japan Abdullah et al., Mechanism of Carbohydrase Action, Vol.43, 1966. 73) : Assignee: Hayashibara Company, Okayama, Hou, E. F., Chem. Abs., Vol. 69, 1968, 53049d. Japan Kjolberg et al., Biochem. J. p. 258-262, Vol. 86, 1963. 22 Filed: Jan. 8, 1969 Lee et al., Arch Biochem. Biophys, Vol. 1 16, p. (21) Appl. No.:789,912 162-167, 1966. Payur, J. H., Starch, Chem. and Tech., Vol. 1, p. 166, 30 Foreign Application Priority Data 1965. Jan. 23, 1968 Japan.................................. 43/3862 Primary Examiner-A. Louis Monacell July 1, 1968 Japan................................. 43148921 Assistant Examiner-Gary M. Nath July 1 1, 1968 Japan................................. 43148922 Attorney-Browdy and Neimark 52 U.S. Cl.............. 195/31 R, 260/635 C, 99/141 R 5 Int. Cl................................................ C13d 1100 57 ABSTRACT 58) Field of Search............. 195/31; 99/141; 127/37; A process for producing maltitol from a starch slurry 260/635 C which comprises hydrolyzing the starch slurry with beta-amylase and alpha-1,6-glucosidase to produce a 56 References Cited high maltose containing product and catalytically hydrogenating the maltose with Raney nickel after ad UNITED STATES PATENTS justing the pH of the maltose product with calcium 2,868,847 111959 Boyers................................. -
Disaccharidase Deficiencies
J Clin Pathol: first published as 10.1136/jcp.s3-5.1.22 on 1 January 1971. Downloaded from J. clin. Path., 24, Suppl. (Roy. Coll. Path.), 5, 22-28 Disaccharidase deficiencies G. NEALE From the Department ofMedicine, Royal Postgraduate Medical School, Du Cane Road, London Up to 12 years ago the absorption of disaccharides capable of hydrolysing maltose, which may explain was a problem in physiology which attracted little why maltase deficiency is not found as an isolated attention and which appeared to be unrelated to the defect of the enterocyte. Isomaltase and sucrase problems of clinical medicine. Indeed, most text- appear to be distinct but linked entities, and hence books stated incorrectly that the disaccharides were they are absent together in the hereditary condition hydrolysed to monosaccharides in the lumen of the of sucrase-isomaltase deficiency (Dahlquist and small intestine despite the evidence of half a century Telenius, 1969). Lactase activity consists of at least before, which had suggested that they were digested two separate enzymes, one of which is not in the by the mucosal surface (Reid, 1901). The renewal of brush border but within the cell (Zoppi, Hadom, interest in the subject of disaccharide absorption Gitzelmann, Kistler, and Prader, 1966). The signifi- occurred after the description of congenital lactase cance of intracellular lactase activity is uncertain. It deficiency by Holzel, Schwarz, and Sutcliffe (1959) cannot play any part in the normal digestion of and of sucrase-isomaltase deficiency by Weijers, lactose which is a function of the brush border of the van de Kamer, Mossel, and Dicke (1960). -
Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose. -
Is There Hidden Sugar in Your Drink?
Is There Hidden Sugar in Your Drink? Anjali Shankar 9th Grade Moravian Academy Upper School June 5th, 2020 Motivation - I have a big passion for the medical field, showed by last year’s project. - Food labels and nutrition have caught my eye and are important when eating. How do glucose levels Research in different drinks change after adding Question an invertase enzyme? Given that the invertase enzyme breaks down sucrose, glucose levels will rise after adding the enzyme because the sucrose will convert to Hypothesis glucose and fructose. Coca Cola will have the most glucose because it has the most calories of each drink. Glucose - Chemical compound in the body - C6H12O6 - Comes from food and drink - Generally rich in sugars/carbohydrates - Used for many purposes: - Used to make energy (ATP) in cellular respiration - Stores energy - Used to build carbohydrates Chemical Reaction - A chemical reaction transfers a set of compounds into another - Reactants: Enter into a chemical reaction - Products: Compounds produced by the reaction - Catalyst: Speeds up the rate of a chemical reaction - Enzyme: Biological catalysts; usually proteins The formula for this experiment is: Invertase Sucrose + Water Glucose + Fructose Invertase C12H22O11 + H20 C6H12O6 + C6H12O6 In the Body - The most common sugar is eaten as sucrose. - Also known as table sugar - It is broken down in the body into glucose and fructose through a chemical reaction during digestion. - Fructose: Contains the same elements as glucose, but has a different chemical construction - Often used to make more glucose - The reaction is catalyzed by an enzyme named sucrase. - Modeled by invertase in experiment - The pancreas monitors blood sugar, or amount of glucose in the body. -
Ep 2 246 408 A2
(19) & (11) EP 2 246 408 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.11.2010 Bulletin 2010/44 C09K 8/60 (2006.01) (21) Application number: 10158819.2 (22) Date of filing: 13.11.2000 (84) Designated Contracting States: • Norman, Monica AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Houston, TX 77041 (US) MC NL PT • Symes, Kenneth C. Designated Extension States: Bradford, RO Yorkshire BD14 6LR (GB) • Mistry, Kishor K. (30) Priority: 12.11.1999 US 165393 P Keighley, East Moton, BD20 5UU (GB) (62) Document number(s) of the earlier application(s) in • Ballard, David A. accordance with Art. 76 EPC: Stonehaven, 00980356.0 / 1 232 329 Aberdeenshire AB39 3PQ (GB) (27) Previously filed application: (74) Representative: Hull, John Philip 13.11.2000 PCT/US03/01106 Beck Greener Fulwood House (71) Applicant: M-I L.L.C. 12 Fulwood Place Houston, TX 77072 (US) London WC1V 6HR (GB) (72) Inventors: Remarks: • Freeman, Michael A. This application was filed on 31-03-2010 as a Kingwood, TX 77345 (US) divisional application to the application mentioned • Jiang, Ping under INID code 62. 3400 Sandnes (NO) (54) Method and composition f or the triggered release of polymer-degrading agents for oil field use (57) Disclosed are methods and related composi- tions for altering the physical and chemical properties of a substrate used in hydrocarbon exploitation, such as in downhole drilling operations. In a preferred embodiment a method involves formulating a fluid, tailored to the spe- cific drilling conditions, that contains one or more inacti- vated enzymes. -
Congenital Sucrase-Isomaltase Deficiency
Congenital sucrase-isomaltase deficiency Description Congenital sucrase-isomaltase deficiency is a disorder that affects a person's ability to digest certain sugars. People with this condition cannot break down the sugars sucrose and maltose. Sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains) are called disaccharides because they are made of two simple sugars. Disaccharides are broken down into simple sugars during digestion. Sucrose is broken down into glucose and another simple sugar called fructose, and maltose is broken down into two glucose molecules. People with congenital sucrase- isomaltase deficiency cannot break down the sugars sucrose and maltose, and other compounds made from these sugar molecules (carbohydrates). Congenital sucrase-isomaltase deficiency usually becomes apparent after an infant is weaned and starts to consume fruits, juices, and grains. After ingestion of sucrose or maltose, an affected child will typically experience stomach cramps, bloating, excess gas production, and diarrhea. These digestive problems can lead to failure to gain weight and grow at the expected rate (failure to thrive) and malnutrition. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency The prevalence of congenital sucrase-isomaltase deficiency is estimated to be 1 in 5, 000 people of European descent. This condition is much more prevalent in the native populations of Greenland, Alaska, and Canada, where as many as 1 in 20 people may be affected. Causes Mutations in the SI gene cause congenital sucrase-isomaltase deficiency. The SI gene provides instructions for producing the enzyme sucrase-isomaltase. -
Characterization of Substrate Binding and Catalytic Mechanisms of An
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Characterization of substrate binding and catalytic mechanisms of an endoxylanase, amylosucrase, and porcine pancreatic alpha-amylase Bernard Yi Tao Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Chemical Engineering Commons Recommended Citation Tao, Bernard Yi, "Characterization of substrate binding and catalytic mechanisms of an endoxylanase, amylosucrase, and porcine pancreatic alpha-amylase " (1988). Retrospective Theses and Dissertations. 8807. https://lib.dr.iastate.edu/rtd/8807 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master, UMI films the original text directly fi'om the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Production of Carbohydrases for Developing Soy Meal As
PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Qian Li May, 2017 PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED Qian Li Dissertation Approved: Accepted: Advisor Department Chair Dr. Lu-Kwang Ju Dr. Michael H. Cheung Committee Member Dean of the College Dr. Jie Zheng Dr. Donald P. Visco Jr. Committee Member Dean of the Graduate School Dr. Lingyun Liu Dr. Chand Midha Committee Member Date Dr. Ge Zhang Committee Member Dr. Pei-Yang Liu ii ABSTRACT Global demand for seafood is growing rapidly and more than 40% of the demand is met by aquaculture. Conventional aquaculture diet used fishmeal as the protein source. The limited production of fishmeal cannot meet the increase of aquaculture production. Therefore, it is desirable to partially or totally replace fishmeal with less-expensive protein sources, such as poultry by-product meal, feather meal blood meal, or meat and bone meal. However, these feeds are deficient in one or more of the essential amino acids, especially lysine, isoleucine and methionine. And, animal protein sources are increasingly less acceptable due to health concerns. One option is to utilize a sustainable, economic and safe plant protein sources, such as soybean. The soybean industry has been very prominent in many countries in the last 20 years. The worldwide soybean production has increased 106% since 1996 to 2010[1]. Soybean protein is becoming the best choice of sustainable, economic and safe protein sources. -
Catalytic Properties, Functional Attributes and Industrial Applications of B-Glucosidases
3 Biotech (2016) 6:3 DOI 10.1007/s13205-015-0328-z ORIGINAL ARTICLE Catalytic properties, functional attributes and industrial applications of b-glucosidases 1 2 3 Gopal Singh • A. K. Verma • Vinod Kumar Received: 20 April 2015 / Accepted: 19 June 2015 / Published online: 31 December 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract b-Glucosidases are diverse group of enzymes with biochemical characterization of such enzymes is with great functional importance to biological systems. presented for the better understanding and efficient use of These are grouped in multiple glycoside hydrolase families diverse b-glucosidases. based on their catalytic and sequence characteristics. Most studies carried out on b-glucosidases are focused on their Keywords b-Glucosidases Á Glycoside hydrolase Á industrial applications rather than their endogenous func- Cellulosome Á Glucosides Á Cellulase tion in the target organisms. b-Glucosidases performed many functions in bacteria as they are components of large complexes called cellulosomes and are responsible for the Introduction hydrolysis of short chain oligosaccharides and cellobiose. In plants, b-glucosidases are involved in processes like b-Glucosidases (b-D-glucopyrranoside glucohydrolase) formation of required intermediates for cell wall lignifi- [E.C.3.2.1.21] are the enzymes which hydrolyze the gly- cation, degradation of endosperm’s cell wall during ger- cosidic bond of a carbohydrate moiety to release nonre- mination and in plant defense against biotic stresses. ducing terminal glycosyl residues, glycoside and Mammalian b-glucosidases are thought to play roles in oligosaccharides (Bhatia et al. 2002; Morant et al. -
1 the Synergistic Actions of Hydrolytic Genes in Coexpression Networks Reveal the Potential
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906529; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 The synergistic actions of hydrolytic genes in coexpression networks reveal the potential 2 of Trichoderma harzianum for cellulose degradation 3 4 Déborah Aires Almeida1,2, Maria Augusta Crivelente Horta1,2,#, Jaire Alves Ferreira Filho1,2, 5 Natália Faraj Murad1 and Anete Pereira de Souza1,3,* 6 7 1Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas 8 (UNICAMP), Campinas, SP, Brazil 9 2Graduate Program in Genetics and Molecular Biology, Institute of Biology, UNICAMP, 10 Campinas, SP, Brazil 11 3Department of Plant Biology, Institute of Biology, UNICAMP, Campinas, SP, Brazil 12 13 # Present Address: Holzforshung München, TUM School of Life Sciences Weihenstephan, 14 Technische Universität München, Freising, Germany 15 16 *Corresponding author 17 Profa Anete Pereira de Souza 18 Dept. de Biologia Vegetal, Universidade Estadual de Campinas, CEP 13083-875, Campinas, 19 São Paulo, Brazil 20 Tel.: +55-19-3521-1132 21 E-mail:[email protected] 22 23 Abstract 24 Background: Bioprospecting key genes and proteins related to plant biomass degradation is 25 an attractive approach for the identification of target genes for biotechnological purposes, bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906529; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
(12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol. -
Action of Multiple Rice -Glucosidases on Abscisic Acid Glucose Ester
International Journal of Molecular Sciences Article Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester Manatchanok Kongdin 1, Bancha Mahong 2, Sang-Kyu Lee 2, Su-Hyeon Shim 2, Jong-Seong Jeon 2,* and James R. Ketudat Cairns 1,* 1 School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 2 Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (B.M.); [email protected] (S.-K.L.); [email protected] (S.-H.S.) * Correspondence: [email protected] (J.-S.J.); [email protected] (J.R.K.C.); Tel.: +82-31-2012025 (J.-S.J.); +66-44-224304 (J.R.K.C.); Fax: +66-44-224185 (J.R.K.C.) Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress.