Is There Hidden Sugar in Your Drink?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Disaccharidase Deficiencies
J Clin Pathol: first published as 10.1136/jcp.s3-5.1.22 on 1 January 1971. Downloaded from J. clin. Path., 24, Suppl. (Roy. Coll. Path.), 5, 22-28 Disaccharidase deficiencies G. NEALE From the Department ofMedicine, Royal Postgraduate Medical School, Du Cane Road, London Up to 12 years ago the absorption of disaccharides capable of hydrolysing maltose, which may explain was a problem in physiology which attracted little why maltase deficiency is not found as an isolated attention and which appeared to be unrelated to the defect of the enterocyte. Isomaltase and sucrase problems of clinical medicine. Indeed, most text- appear to be distinct but linked entities, and hence books stated incorrectly that the disaccharides were they are absent together in the hereditary condition hydrolysed to monosaccharides in the lumen of the of sucrase-isomaltase deficiency (Dahlquist and small intestine despite the evidence of half a century Telenius, 1969). Lactase activity consists of at least before, which had suggested that they were digested two separate enzymes, one of which is not in the by the mucosal surface (Reid, 1901). The renewal of brush border but within the cell (Zoppi, Hadom, interest in the subject of disaccharide absorption Gitzelmann, Kistler, and Prader, 1966). The signifi- occurred after the description of congenital lactase cance of intracellular lactase activity is uncertain. It deficiency by Holzel, Schwarz, and Sutcliffe (1959) cannot play any part in the normal digestion of and of sucrase-isomaltase deficiency by Weijers, lactose which is a function of the brush border of the van de Kamer, Mossel, and Dicke (1960). -
FOOD ALLERGEN LABELING All Food Labels Printed After Jan
FOOD ALLERGEN LABELING All food labels printed after Jan. 1, 2006 Must comply with the Food Allergen Labeling and Consumer Protection Act of 2004 (FALCPA) • Eight foods or food groups have been identified as causing 90% of all documented food allergies & represent the foods most likely to result in severe or life-threatening reactions. • These 8 are: peanuts, tree nuts (e.g., walnuts, hazel nuts, almonds), soybeans, wheat, eggs, milk, fish (e.g., bass, flounder, cod), & crustacean shellfish (e.g., crab, lobster, shrimp). Tree nuts, fish, and crustacean shellfish must be listed by individual name, not as group term such as “tree nuts”. • FALCPA requires that food manufacturers label food products that contain an ingredient that is one of the eight major allergens or that contains protein from a major food allergen in one of the following ways: 1. The ingredient statement lists by name all of the allergenic ingredients in the food, for instance: INGREDIENTS: WHOLE WHEAT FLOUR, WATER, PARTIALLY HYDROGENATED SOYBEAN OIL, MILK, EGGS, YEAST, SALT. or 2. The name of the food source is listed in parenthesis following the common or usual name of the major food allergen in the list of ingredients when the name of the food source of the major allergen isn’t a required part of the ingredient name. INGREDIENTS: ENRICHED FLOUR (WHEAT FLOUR, MALTED BARLEY, NIACIN, REDUCED IRON, THIAMIN MONONITRATE, RIBOFLAVIN, FOLIC ACID), SUGAR, PARTIALLY HYDROGENATED SOYBEAN OIL, AND/OR COTTONSEED OIL, HIGH FRUCTOSE CORN SYRUP, WHEY (MILK), ALBUMIN (EGGS), VANILLA, NATURAL AND ARTIFICIAL FLAVORING), SALT, LEAVENING (SODIUM ACID PYROPHOSPHATE, MONOCALCIUM PHOSPHATE), SOY LECITHIN, MONO-AND DIGLYCERIDES (EMULSIFIER). -
Ep 2 246 408 A2
(19) & (11) EP 2 246 408 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.11.2010 Bulletin 2010/44 C09K 8/60 (2006.01) (21) Application number: 10158819.2 (22) Date of filing: 13.11.2000 (84) Designated Contracting States: • Norman, Monica AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Houston, TX 77041 (US) MC NL PT • Symes, Kenneth C. Designated Extension States: Bradford, RO Yorkshire BD14 6LR (GB) • Mistry, Kishor K. (30) Priority: 12.11.1999 US 165393 P Keighley, East Moton, BD20 5UU (GB) (62) Document number(s) of the earlier application(s) in • Ballard, David A. accordance with Art. 76 EPC: Stonehaven, 00980356.0 / 1 232 329 Aberdeenshire AB39 3PQ (GB) (27) Previously filed application: (74) Representative: Hull, John Philip 13.11.2000 PCT/US03/01106 Beck Greener Fulwood House (71) Applicant: M-I L.L.C. 12 Fulwood Place Houston, TX 77072 (US) London WC1V 6HR (GB) (72) Inventors: Remarks: • Freeman, Michael A. This application was filed on 31-03-2010 as a Kingwood, TX 77345 (US) divisional application to the application mentioned • Jiang, Ping under INID code 62. 3400 Sandnes (NO) (54) Method and composition f or the triggered release of polymer-degrading agents for oil field use (57) Disclosed are methods and related composi- tions for altering the physical and chemical properties of a substrate used in hydrocarbon exploitation, such as in downhole drilling operations. In a preferred embodiment a method involves formulating a fluid, tailored to the spe- cific drilling conditions, that contains one or more inacti- vated enzymes. -
Congenital Sucrase-Isomaltase Deficiency
Congenital sucrase-isomaltase deficiency Description Congenital sucrase-isomaltase deficiency is a disorder that affects a person's ability to digest certain sugars. People with this condition cannot break down the sugars sucrose and maltose. Sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains) are called disaccharides because they are made of two simple sugars. Disaccharides are broken down into simple sugars during digestion. Sucrose is broken down into glucose and another simple sugar called fructose, and maltose is broken down into two glucose molecules. People with congenital sucrase- isomaltase deficiency cannot break down the sugars sucrose and maltose, and other compounds made from these sugar molecules (carbohydrates). Congenital sucrase-isomaltase deficiency usually becomes apparent after an infant is weaned and starts to consume fruits, juices, and grains. After ingestion of sucrose or maltose, an affected child will typically experience stomach cramps, bloating, excess gas production, and diarrhea. These digestive problems can lead to failure to gain weight and grow at the expected rate (failure to thrive) and malnutrition. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency The prevalence of congenital sucrase-isomaltase deficiency is estimated to be 1 in 5, 000 people of European descent. This condition is much more prevalent in the native populations of Greenland, Alaska, and Canada, where as many as 1 in 20 people may be affected. Causes Mutations in the SI gene cause congenital sucrase-isomaltase deficiency. The SI gene provides instructions for producing the enzyme sucrase-isomaltase. -
Characterization of Substrate Binding and Catalytic Mechanisms of An
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Characterization of substrate binding and catalytic mechanisms of an endoxylanase, amylosucrase, and porcine pancreatic alpha-amylase Bernard Yi Tao Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Chemical Engineering Commons Recommended Citation Tao, Bernard Yi, "Characterization of substrate binding and catalytic mechanisms of an endoxylanase, amylosucrase, and porcine pancreatic alpha-amylase " (1988). Retrospective Theses and Dissertations. 8807. https://lib.dr.iastate.edu/rtd/8807 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master, UMI films the original text directly fi'om the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Matthew Przybysz
Matthew Przybysz Bio Lab Report 11/18/12 OBJECTIVE: The objective of this lab was to determine if LACTAID really works to digest milk sugar, lactose. If lactaid is added to milk, glucose will be detected because lactaid contains lactase, which breaks down the lactose in milk. The dependent variable in this lab was the type of reaction (positive or negative) and the independent variable was the type of liquid, which included lactaid, glucose, milk, water, and lactaid and milk combined. INTRODUCTION: Lactaid is a product that you can purchase in a regular store and it contains lactase. Therefore people who are lactose intolerant can have milk products. Regular dairy products contain lactose. In order for lactose to be broken down, our bodies contain an enzyme called lactase. Enzymes are biomolecules that catalyze chemical reactions. An enzyme doesn’t supply activation energy to the reacting molecules, but instead lowers the energy requirement barrier so that the reaction can proceed at normal cell temperatures. (1) Almost all enzymes are proteins. Like all catalysts, enzymes work by lowering the activation energy for a reaction, thus dramatically increasing the rate of the reaction. (1, 2) A substrate is a specific reactant acted upon by an enzyme. The enzyme breaks the bond of the molecule substrate. In this lab experiment the substrate was lactose. Lactase broke apart the substrate lactose into two different sugar molecules called glucose and galactose. An enzyme substrate complex is a non-covalent complex composed of a substrate bound to the active site of the enzyme. The enzyme takes in substrates to the active zone of the enzyme.(2) The substrates then interact with each other and form new products, and they are released. -
Get Off the Blood Glucose Roller Coaster Avoid the Glucose Highs and Lows That Affect Your Thinking and Mood
Get Off the Blood Glucose Roller Coaster Avoid the glucose highs and lows that affect your thinking and mood. Extreme blood sugar highs and lows can lead to major problems. There are physical symptoms; you are more likely to get long term problems from diabetes as well. Often, there are signs that your blood sugar is off target. Among the first signs are changes in your thinking and mood. Learn to spot and act on the warning signs. This will help you get off the blood sugar roller coaster. The goal is to keep your blood sugar and your mood as stable as you can. Symptoms of low blood sugar (hypoglycemia) When blood sugar drops below the normal range (70-120 mg/dL), you can start to feel signs. You may sweat, get a fast heart beat, and feel jittery. Blood sugar will go lower if you don't take action. Eat or drink something that has sugar. If blood sugar goes lower, things can get worse very fast; you can have confusion, loss of consciousness, or coma. Alice is a patient of mine. She had a recent bout of low blood sugar in the middle of the night. She made it to the kitchen. She knew she needed a snack. She went to the refrigerator and she opened the door; Alice then stood there for 15 minutes. She was trying to decide which juice she should drink to raise her blood sugar. This is how low blood sugar, in its early stage, can affect thinking. Her trouble with being able to make a simple choice like this is common. -
Fructose, Glucose, and Sucrose in Nature
3/13/2017 Fructose, Glucose, and Sucrose In Nature Fructose, Glucose, and Sucrose In Nature By Rex Mahnensmith | Submitted On July 04, 2016 Fructose, glucose and sucrose are often referred to as fruit sugars, and indeed they are. These sugars exist in virtually all tree fruits, in virtually all vine fruits, and in virtually all berries. Fructose, glucose, and sucrose exist in most root vegetables, as well. Fructose and glucose are circular molecules, very similar to each other. Each has 6 carbon atoms, 6 oxygen atoms, and 12 hydrogen atoms. However, the compounds differ slightly in the arrangements of these atoms. Both exist as straight chain molecules and as circular molecules. Both are highly reactive and will react with each other easily, forming sucrose. Glucose and fructose are two products of photosynthesis, whereby plants inspire carbon dioxide from the atmosphere and react this carbon dioxide molecule with water, forming simple single sugars or "monosaccharides." The photosynthetic steps are complex yet precise, yielding glucose principally, then fructose, and ultimately sucrose, which is the result of fructose combining with glucose to form a double sugar or "disaccharide." In the experimental setting, under direct observation, glucose, fructose, and sucrose appear almost simultaneously through the photosynthetic process. The sugar compositions of glucose, fructose, and sucrose differ from plant to plant. http://ezinearticles.com/?Fructose,Glucose,andSucroseInNature&id=9460795 1/3 3/13/2017 Fructose, Glucose, and Sucrose In Nature For example, apples, figs, bananas, grapes, and pears are relatively rich with free fructose sugars when fructosetoglucose ratios within these fruits are analyzed. -
Production of Carbohydrases for Developing Soy Meal As
PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Qian Li May, 2017 PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED Qian Li Dissertation Approved: Accepted: Advisor Department Chair Dr. Lu-Kwang Ju Dr. Michael H. Cheung Committee Member Dean of the College Dr. Jie Zheng Dr. Donald P. Visco Jr. Committee Member Dean of the Graduate School Dr. Lingyun Liu Dr. Chand Midha Committee Member Date Dr. Ge Zhang Committee Member Dr. Pei-Yang Liu ii ABSTRACT Global demand for seafood is growing rapidly and more than 40% of the demand is met by aquaculture. Conventional aquaculture diet used fishmeal as the protein source. The limited production of fishmeal cannot meet the increase of aquaculture production. Therefore, it is desirable to partially or totally replace fishmeal with less-expensive protein sources, such as poultry by-product meal, feather meal blood meal, or meat and bone meal. However, these feeds are deficient in one or more of the essential amino acids, especially lysine, isoleucine and methionine. And, animal protein sources are increasingly less acceptable due to health concerns. One option is to utilize a sustainable, economic and safe plant protein sources, such as soybean. The soybean industry has been very prominent in many countries in the last 20 years. The worldwide soybean production has increased 106% since 1996 to 2010[1]. Soybean protein is becoming the best choice of sustainable, economic and safe protein sources. -
Metabolism of Sugars: a Window to the Regulation of Glucose and Lipid Homeostasis by Splanchnic Organs
Clinical Nutrition 40 (2021) 1691e1698 Contents lists available at ScienceDirect Clinical Nutrition journal homepage: http://www.elsevier.com/locate/clnu Narrative Review Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs Luc Tappy Faculty of Biology and Medicine, University of Lausanne, Switzerland, Ch. d’Au Bosson 7, CH-1053 Cugy, Switzerland article info summary Article history: Background &aims: Dietary sugars are absorbed in the hepatic portal circulation as glucose, fructose, or Received 14 September 2020 galactose. The gut and liver are required to process fructose and galactose into glucose, lactate, and fatty Accepted 16 December 2020 acids. A high sugar intake may favor the development of cardio-metabolic diseases by inducing Insulin resistance and increased concentrations of triglyceride-rich lipoproteins. Keywords: Methods: A narrative review of the literature regarding the metabolic effects of fructose-containing Fructose sugars. Gluconeogenesis Results: Sugars' metabolic effects differ from those of starch mainly due to the fructose component of de novo lipogenesis Intrahepatic fat concentration sucrose. Fructose is metabolized in a set of fructolytic cells, which comprise small bowel enterocytes, Enterocyte hepatocytes, and kidney proximal tubule cells. Compared to glucose, fructose is readily metabolized in an Hepatocyte insulin-independent way, even in subjects with diabetes mellitus, and produces minor increases in glycemia. It can be efficiently used for energy production, including during exercise. Unlike commonly thought, fructose when ingested in small amounts is mainly metabolized to glucose and organic acids in the gut, and this organ may thus shield the liver from potentially deleterious effects. Conclusions: The metabolic functions of splanchnic organs must be performed with homeostatic con- straints to avoid exaggerated blood glucose and lipid concentrations, and thus to prevent cellular damages leading to non-communicable diseases. -
Food Carbohydrate Chemistry Food Carbohydrate Chemistry
Food Carbohydrate Chemistry Food Food Carbohydrate Chemistry Carbohydrates are major components of foods. They account for more than 90 percent of the dry matter of fruits and vegetables and provide 70 to 80 percent Food Carbohydrate of human caloric intake worldwide so, from a quantitative perspective alone, they warrant the attention of food chemists. From the standpoint of food quality, carbohydrates are multifunctional. Sugars are the major source of sweetness, but in addition, carbohydrates provide flavor, color, and texture – desirable, Chemistry undesirable, and neutral – as well as having functional roles as thickeners, gelling agents, bodying agents, and stabilizers in foods. When it comes to nutrition, carbohydrates are often blamed for such health issues as obesity, diabetes, and dental caries. It should be realized that carbohydrates are, or should be, the principal source of energy in our diet and that good nutrition Ronald E. Wrolstad is based on the consumption of the appropriate carbohydrates, in the right amounts, and in balance with other nutrients. Food Carbohydrate Chemistry relates basic carbohydrate chemistry to the quality attributes and functional properties of foods. Structure and nomenclature Press of sugars and sugar derivatives are covered but limited to those compounds that exist naturally in foods or are used as food additives and food ingredients. Review and presentation of fundamental carbohydrate chemistry is minimal, with the assumption that readers have already taken general organic chemistry and general biochemistry. Chemical reactions focus on those that have an impact on food quality and occur under processing and storage conditions. How chemical and physical properties of sugars and polysaccharides affect the functional properties of foods is emphasized. -
Difference Between Reducing Sugar and Starch Key Difference - Reducing Sugar Vs Starch
Difference Between Reducing Sugar and Starch www.differencebetween.com Key Difference - Reducing Sugar vs Starch Redox is a chemical reaction which changes the oxidation number of a molecule, atom or ion. Oxidation and Reduction are the main two events occur during the Redox reaction. Loss of electrons or increase in oxidation state is known as oxidation while the gain of electrons or decrease in oxidation state is known as reduction. Reducing agent is a molecule which can donate an electron to another molecule and become decreased in oxidation state. Some sugars can act as reducing agents. They are known as reducing sugars. Reducing sugars have the aldehyde group to become oxidized and convert into the carboxylic acid group. Starch is a polymer made of amylose and amylopectin. It is the major carbohydrate reserve in plants. Starch does not possess a free hydrogen molecule which is attached to oxygen. Hence, starch is unable to be formed the open aldehyde and as a result unable to be oxidized and reduced other sugars. The key difference between Reducing sugar and Starch is that starch is not a reducing sugar due to the absence of hydrogen on the circled oxygen to allow for ring opening. What is Reducing Sugar? Sweet soluble carbohydrates are known as sugars. There are various types of sugars. They can be monosaccharides (simple sugars), disaccharides or polysaccharides. Monosaccharides include glucose, fructose, galactose etc. Disaccharides include sucrose, lactose etc. Polysaccharides include starch, cellulose, pectin etc. Most of the monosaccharides are having an aldehyde group or a ketone group. Hence, they can be oxidized and act as a reducing agent for another molecule.