Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press The Budding Yeast Nucleus Angela Taddei1,2, Heiko Schober3, and Susan M. Gasser3 1UMR 218, Centre National de la Recherche Scientifique, 26 rue d’Ulm, 75231 Paris Cedex 05, France 2Institut Curie-Section de Recherche, 26 rue d’Ulm, 75231 Paris Cedex 05, France 3Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland Correspondence:
[email protected] The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organ- ization. The unequal distribution of silent information regulatory factors and histone modify- ing enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events sup- press unwanted recombination. These findings highlight the contribution budding yeast gen- etics and cytology have made to dissecting the functional role of nuclear structure. ith 16 chromosomes and a closed mitosis, or sites of DNA repair by homologous recombi- Wthe budding yeast nucleus provides an nation (Lamond and Spector 2003).