Systematics and Evolution of the Genus Deuterocohnia Mez (Bromeliaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Systematics and Evolution of the Genus Deuterocohnia Mez (Bromeliaceae) Systematics and evolution of the genus Deuterocohnia Mez (Bromeliaceae) Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Vorgelegt im Fachbereich Naturwissenschaften der Universität Kassel von Dipl.-Biol. Nicole Schütz Kassel, 2011 Vom Fachbereich Naturwissenschaften der Universität Kassel als Dissertation angenommen. Dekan: Prof. Dr. Friedrich W. Herberg Gutachter: Prof. Dr. Kurt Weising und Prof. Dr. Georg Zizka Prüfungskommission: Prof. Dr. Pierre Ibisch, Prof. Dr. Rüdiger Wagner, Prof. Dr. Kurt Weising, Prof. Dr. Georg Zizka Datum der Disputation: 21.02. 2012 Content I Content 1 INTRODUCTION .....................................................................................................1 1.1 Biology and systematics of the Bromeliaceae Juss......................................................1 1.2 The genus Deuterocohnia Mez................................................................................... 5 1.3 Scope of the present study .......................................................................................... 9 2 MATERIAL AND METHODS................................................................................. 11 2.1 Sources of plant material............................................................................................ 11 2.1.1 Living plant material ....................................................................................................... 11 2.1.2 Herbarium specimens..................................................................................................... 12 2.2 Taxonomic treatment.................................................................................................12 2.2.1 Abbreviations and terminology..................................................................................... 12 2.2.2 Assessment of morphological and anatomical characters......................................... 13 2.2.3 Biogeographical and ecological data............................................................................. 14 2.3 Molecular methods.....................................................................................................15 2.3.1 Equipment........................................................................................................................ 15 2.3.2 Chemicals and solutions................................................................................................. 15 2.3.3 DNA isolation................................................................................................................. 17 2.3.4 Gel electrophoresis......................................................................................................... 18 2.3.5 PCR amplification and sequencing of chloroplast DNA fragments ....................... 18 2.3.5.1 Selection and amplification of target fragments......................................... 19 2.3.5.2 Sequencing procedure.................................................................................... 22 2.3.5.3 Data processing............................................................................................... 22 2.3.6 PCR amplification and sequence analysis of nuclear DNA fragments ................... 23 2.3.6.1 Selection and amplification of suitable ncDNA loci ................................. 24 2.3.6.2 DNA sequencing and cloning of PCR products........................................ 25 2.3.6.3 Data processing............................................................................................... 26 2.4 Phylogenetic analyses................................................................................................26 2.4.1 Samples included in the molecular phylogenetic analyses......................................... 26 2.4.2 Alignment......................................................................................................................... 31 2.4.3 Tree and network reconstruction ................................................................................. 31 2.4.3.1 Maximum Parsimony analysis....................................................................... 31 2.4.3.2 Distance analysis............................................................................................. 32 2.4.3.3 Maximum Likelihood analysis....................................................................... 33 2.4.3.4 Bayesian analysis.............................................................................................. 33 2.4.3.5 Networks.......................................................................................................... 34 II Content 3 RESULTS.................................................................................................................. 37 3.1 Taxonomic history.................................................................................................... 37 3.2 Morphology ..............................................................................................................42 3.2.1 Life form, duration and habit.........................................................................................42 3.2.2 Foliage ...............................................................................................................................46 3.2.3 Peduncle and inflorescence ............................................................................................49 3.2.4 Flowers ..............................................................................................................................53 3.2.5 Fruits and seeds................................................................................................................56 3.3 Anatomy ....................................................................................................................58 3.3.1 Leaf ....................................................................................................................................58 3.3.2 Peduncle............................................................................................................................59 3.4 Karyology ..................................................................................................................62 3.5 Distribution and ecology........................................................................................... 63 3.5.1 Distribution, habitat and ecology ..................................................................................63 3.5.2 Phenology and pollination..............................................................................................71 3.5.3 Seed dispersal and germination......................................................................................72 3.5.4 Conservation, use and common names........................................................................73 3.6 Molecular phylogenetic analyses .............................................................................. 75 3.6.1 Statistics of sequence data ..............................................................................................75 3.6.1.1 Intergenic spacer rpl32-trnL............................................................................75 3.6.1.2 Intergenic spacer rps16-trnK...........................................................................75 3.6.1.3 Intergenic spacer trnS-ycf3...............................................................................76 3.6.1.4 Nuclear low copy marker: PRK exon2-5 .....................................................77 3.6.1.5 Nuclear low copy marker: PHYC exon1......................................................78 3.6.2 Phylogenetic reconstructions.........................................................................................80 3.6.2.1 Individual chloroplast loci..............................................................................80 3.6.2.2 Combined chloroplast loci .............................................................................80 3.6.2.3 Individual nuclear loci.....................................................................................95 3.6.2.4 Combined nuclear loci ....................................................................................95 4 DISCUSSION ........................................................................................................... 99 4.1 Methodical aspects.................................................................................................... 99 4.1.1 Herbarium work...............................................................................................................99 4.1.2 Molecular analyses........................................................................................................ 100 4.2 Systematics of Deuterocohnia .................................................................................105 4.2.1 Synonymization of Deuterocohnia and Abromeitiella.................................................... 105 4.2.2 Species classification..................................................................................................... 108 4.2.3 Generic relationships and the monophyletic status of Deuterocohnia ..................... 115 4.2.4 Conclusion on the evolution....................................................................................... 120 Content III 5 TAXONOMIC TREATMENT............................................................................... 129 5.1 Generic description.................................................................................................
Recommended publications
  • The Flora of Chad: a Checklist and Brief Analysis 1 Doi: 10.3897/Phytokeys.23.4752 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal PhytoKeys 23: 1–17 (2013) The Flora of Chad: a checklist and brief analysis 1 doi: 10.3897/phytokeys.23.4752 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research The Flora of Chad: a checklist and brief analysis Giuseppe Brundu1, Ignazio Camarda1 1 Department of Science for Nature and Environmental Resources (DIPNET), University of Sassari, Via Piandanna 4, 07100 Sassari, Italy Corresponding author: Giuseppe Brundu ([email protected]) Academic editor: Sandra Knapp | Received 23 January 2013 | Accepted 9 May 2013 | Published 13 May 2013 Citation: Brundu G, Camarda I (2013) The Flora of Chad: a checklist and brief analysis. PhytoKeys 23: 1–17. doi: 10.3897/phytokeys.23.4752 Abstract A checklist of the flora of Chad has been compiled by the authors, based on literature, on-line data-bases, herbarium collections and land surveys (1998-2011). It counts 2,460 records, i.e. 2,288 species (including 128 autonyms), 83 subspecies, 81 varieties, 8 forms, while all the previous available information reported 1,600 species. They belong to 151 Families, with 48.7% of the taxa belonging to the 6 largest families, i.e. Poaceae (14.6%), Fabaceae (13.6%), Cyperaceae (7.0%), Asteraceae (6.2 %), Malvaceae (3.9%) and Rubiaceae (3.4%). A total number or 2,173 species (88.3%) are native to Chad, including 55 (2.2%) endemic species, while 274 (11.0%) are alien to Chad, and 13 (0.5%) are considered cryptogenic, i.e. of uncertain status. It represents a considerable update on previous knowledge on the alien flora of Chad that counted for 131 taxa (5.3%).
    [Show full text]
  • I Scope and Importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker System & Cronquist
    Syllabus: 2020-2021 Unit – I Scope and importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker system & Cronquist. Flora, revision and Monographs. Botanical nomenclature (ICBN), Taxonomic hierarchy, typification, principles of priority, publication, Keys and their types, Preparation and role of Herbarium. Importance of Botanical gardens. PLANT KINGDOM Amongst plants nearly 15,000 species belong to Mosses and Liverworts, 12,700 Ferns and their allies, 1,079 Gymnosperms and 295,383 Angiosperms (belonging to about 485 families and 13,372 genera), considered to be the most recent and vigorous group of plants that have occurred on earth. Angiosperms occupy the majority of the terrestrial space on earth, and are the major components of the world‘s vegetation. Brazil (First) and Colombia (second), both located in the tropics considered to be countries with the most diverse angiosperms floras China (Third) even though the main part of her land is not located in the tropics, the number of angiosperms still occupies the third place in the world. In INDIA there are about 18042 species of flowering plants approximately 320 families, 40 genera and 30,000 species. IUCN Red list Categories: EX –Extinct; EW- Extinct in the Wild-Threatened; CR -Critically Endangered; VU- Vulnerable Angiosperm (Flowering Plants) SPECIES RICHNESS AROUND THE WORLD PLANT CLASSIFICATION Historia Plantarum - the earliest surviving treatise on plants in which Theophrastus listed the names of over 500 plant species. Artificial system of Classification Theophrastus attempted common groupings of folklore combined with growth form such as ( Tree Shrub; Undershrub); or Herb. Or (Annual and Biennials plants) or (Cyme and Raceme inflorescences) or (Archichlamydeae and Meta chlamydeae) or (Upper or Lower ovarian ).
    [Show full text]
  • Network Scan Data
    Selbyana 15: 132-149 CHECKLIST OF VENEZUELAN BROMELIACEAE WITH NOTES ON SPECIES DISTRIBUTION BY STATE AND LEVELS OF ENDEMISM BRUCE K. HOLST Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA ABSTRACf. A checklist of the 24 genera and 364 native species ofBromeliaceae known from Venezuela is presented, including their occurrence by state and indications of which are endemic to the country. A comparison of the number of genera and species known from Mesoamerica (southern Mexico to Panama), Colombia, Venezuela, the Guianas (Guyana, Suriname, French Guiana), Ecuador, and Peru is presented, as well as a summary of the number of species and endemic species in each Venezuelan state. RESUMEN. Se presenta un listado de los 24 generos y 364 especies nativas de Bromeliaceae que se conocen de Venezuela, junto con sus distribuciones por estado y una indicaci6n cuales son endemicas a Venezuela. Se presenta tambien una comparaci6n del numero de los generos y especies de Mesoamerica (sur de Mexico a Panama), Colombia, Venezuela, las Guayanas (Guyana, Suriname, Guyana Francesa), Ecuador, y Peru, y un resumen del numero de especies y numero de especies endemicas de cada estado de Venezuela. INTRODUCTION Bromeliaceae (Smith 1971), and Revision of the Guayana Highland Bromeliaceae (Smith 1986). The checklist ofVenezuelan Bromeliaceae pre­ Several additional country records were reported sented below (Appendix 1) adds three genera in works by Smith and Read (1982), Luther (Brewcaria, Neoregelia, and Steyerbromelia) and (1984), Morillo (1986), and Oliva-Esteva and 71 species to the totals for the country since the Steyermark (1987). Author abbreviations used last summary of Venezuelan bromeliads in the in the checklist follow Brummit and Powell Flora de Venezuela series which contained 293 (1992).
    [Show full text]
  • Arthur Monrad Johnson Colletion of Botanical Drawings
    http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles.
    [Show full text]
  • Diversity and Levels of Endemism of the Bromeliaceae of Costa Rica – an Updated Checklist
    A peer-reviewed open-access journal PhytoKeys 29: 17–62Diversity (2013) and levels of endemism of the Bromeliaceae of Costa Rica... 17 doi: 10.3897/phytokeys.29.4937 CHECKLIST www.phytokeys.com Launched to accelerate biodiversity research Diversity and levels of endemism of the Bromeliaceae of Costa Rica – an updated checklist Daniel A. Cáceres González1,2, Katharina Schulte1,3,4, Marco Schmidt1,2,3, Georg Zizka1,2,3 1 Abteilung Botanik und molekulare Evolutionsforschung, Senckenberg Forschungsinstitut Frankfurt/Main, Germany 2 Institut Ökologie, Evolution & Diversität, Goethe-Universität Frankfurt/Main, Germany 3 Biodive rsität und Klima Forschungszentrum (BiK-F), Frankfurt/Main, Germany 4 Australian Tropical Herbarium & Center for Tropical Biodiversity and Climate Change, James Cook University, Cairns, Australia Corresponding author: Daniel A. Cáceres González ([email protected]) Academic editor: L. Versieux | Received 1 March 2013 | Accepted 28 October 2013 | Published 11 November 2013 Citation: González DAC, Schulte K, Schmidt M, Zizka G (2013) Diversity and levels of endemism of the Bromeliaceae of Costa Rica – an updated checklist. PhytoKeys 29: 17–61. doi: 10.3897/phytokeys.29.4937 This paper is dedicated to the late Harry Luther, a world leader in bromeliad research. Abstract An updated inventory of the Bromeliaceae for Costa Rica is presented including citations of representa- tive specimens for each species. The family comprises 18 genera and 198 species in Costa Rica, 32 spe- cies being endemic to the country. Additional 36 species are endemic to Costa Rica and Panama. Only 4 of the 8 bromeliad subfamilies occur in Costa Rica, with a strong predominance of Tillandsioideae (7 genera/150 spp.; 75.7% of all bromeliad species in Costa Rica).
    [Show full text]
  • Alcantarea (Bromeliaceae) Leaf Anatomical Characterization and Its Systematic Implications
    Nordic Journal of Botany 28: 385Á397, 2010 doi: 10.1111/j.1756-1051.2010.00727.x, # The Authors. Journal compilation # Nordic Journal of Botany 2010 Subject Editors: Guido Grimm and Thomas Denk. Accepted 26 April 2010 Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications Leonardo M. Versieux, Paula Maria Elbl, Maria das Grac¸as Lapa Wanderley and Nanuza Luiza de Menezes L. M. Versieux ([email protected]), Depto de Botaˆnica, Ecologia e Zoologia, Univ. Federal do Rio Grande do Norte, Natal, RN, 59072- 970, Brazil. Á P. M. Elbl and N. Luiza de Menezes, Depto de Botaˆnica, Inst. de Biocieˆncias, Univ. de Sa˜o Paulo, Rua do Mata˜o, trav. 14, n. 321, Sa˜o Paulo, SP, 05508-090, Brazil. Á M. das Grac¸as Lapa Wanderley, Inst. de Botaˆnica, Caixa Postal 3005, Sa˜o Paulo, SP, 01061- 970, Brazil. Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneissÁgranitic rock outcrops (‘inselbergs’). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members.
    [Show full text]
  • Bromeliads Bromeliads Are a Family of Plants (Bromeliaceae, the Pineapple Family) Native to Tropical North and South America
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 March 2012 Bromeliads Bromeliads are a family of plants (Bromeliaceae, the pineapple family) native to tropical North and South America. Europeans fi rst found out about bromeliads on Columbus’ second trip to the New World in 1493, where the pineapple (Ananas sp.) was being cultivated by the Carib tribe in the West Indies. The commercial pineapple (Ananas comosus) is native to southern Brazil and Paraguay. After the colonization of the New World it was rapidly transported to all areas of the tropics, and now is widely grown in tropical and sub- tropical areas. The only A collection of bromeliads placed on a tree at Costa Flores, Costa Rica. bromeliad to occur north of the tropics is Spanish “moss” (Tillandsia usneoides). It is neither Spanish nor a moss, but an epiphytic bromeliad. It doesn’t look much like a typical Commercial pineapple, Ananas comosus, bromeliad, though, with its long scaly stems and reduced in the fi eld. fl owers. Bromeliads are monocots, many of which, like their grass relatives, have a special form of photosynthesis that uses a variation of the more usual biochemical pathways to allow them to use water more effi ciently. Even though they come from the tropics, this helps those that are epiphytes contend with life in the treetops where there is limited water and a real danger of drying out. There are about 2500 species Many bromeliads are tropical and several thousand hybrids epiphytes. and cultivars. Many have brightly colored leaves, fl owers or fruit, and range in size from moss-like species of Tillandsia to the enormous Puya raimondii from the Andes which produces a fl owering stem up to 15 feet tall.
    [Show full text]
  • Taxonomic Revision of the Chilean Puya Species (Puyoideae
    Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Author(s): Georg Zizka, Julio V. Schneider, Katharina Schulte and Patricio Novoa Source: Brittonia , 1 December 2013, Vol. 65, No. 4 (1 December 2013), pp. 387-407 Published by: Springer on behalf of the New York Botanical Garden Press Stable URL: https://www.jstor.org/stable/24692658 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Brittonia This content downloaded from 146.244.165.8 on Sun, 13 Dec 2020 04:26:58 UTC All use subject to https://about.jstor.org/terms Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Georg Zizka1'2, Julio V. Schneider1'2, Katharina Schulte3, and Patricio Novoa4 1 Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung and Johann Wolfgang Goethe-Universität, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; e-mail: [email protected]; e-mail: [email protected] 2 Biodiversity and Climate Research Center (BIK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany 3 Australian Tropical Herbarium and Tropical Biodiversity and Climate Change Centre, James Cook University, PO Box 6811, Caims, QLD 4870, Australia; e-mail: [email protected] 4 Jardin Botânico Nacional, Camino El Olivar 305, El Salto, Vina del Mar, Chile Abstract.
    [Show full text]
  • Thesis Sci 2009 Bergh N G.Pdf
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation.
    [Show full text]
  • An Alphabetical List of Bromeliad Binomials
    AN ALPHABETICAL LIST OF BROMELIAD BINOMIALS Compiled by HARRY E. LUTHER The Marie Selby Botanical Gardens Sarasota, Florida, USA ELEVENTH EDITION Published by the Bromeliad Society International June 2008 ii INTRODUCTION TO EDITION XI This list is presented as a spelling guide for validly published taxa accepted at the Bromeliad Identification Center. The list contains the following information: 1) Genus number (the left-hand number) based on the systematic sequence published in the Smith & Downs monograph: Bromeliaceae (Flora Neotropica, number 14, parts 1-3; 1974, 1977, 1979). Whole numbers are as published in the monograph. 2) Species number (the second number) according to its systematic position in the monograph. Note: Taxa not included in the monograph or that have been reclassified have been assigned numbers to reflect their systematic position within the Smith & Downs framework (e.g., taxon 14.1 is related to taxon 14). The utility of this method is that one may assume for example that Tillandsia comarapaensis (150.2) is related to T. didisticha (150) and therefore may have certain horticultural qualities in common with that species. 3) Genus and species names follow the respective numbers. 4) Subspecific taxa (subspecies, varieties, forms) names are indented below the species names. Note: Variety "a" (the type variety) is not listed unless it contains a form (see Aechmea caudata ). Similarly, the type form is not listed. 5) Author name follows the specific and subspecific names. These names are included for the convenience of specialist users of the list. This list does not contain publication data or synonymy, as it is not our intent for it to be a technical nomenclatural guide.
    [Show full text]
  • 2Do(). '!Phe . Famuy . Are Generally Con§Picu Mono
    Rev. Bio\. Trop., 46(3):493-513, 1998 Current. floristk and phytogeographk knowledge of Mexican Bromeliaceae Adolfo Espejo Serna yAna Rosa López-Ferrari1 I Herbario Metropolitano, Depart¡unento de Biología,C.B.S., Universidad Autónoma Metropolitana, Unidad Jztapalapa, Apartado Postal 55,535,09340 México, D. F.,Fax 7244688, e-m<'lil: [email protected] Rece.ived 6-XI-1997. Corrected 28-V-1998. Accepted 19-VI-1998. Abstract: A current floristicand phytogeographic knowledge of native Mexican Bromeliaceae is presented. There are 22 genera of Brorlleliaceae recorded from the country Iha! ¡nelude 326 species. The genus Ursulaea with 2 species is endemic to Mexico, wbíle Hechtiawith 48 oC its 50 specíesbas its principal centerof diversity in the country. 7illandsia (175 spp), Hechtia (48 spp) and Pitcairnia (46 spp) are tbe genera with tbe greatest number of species. We present a comparative análysisof Mexican Bromeliaceae with tbat of other American regions that buve recently published accounts Cor the Family, .particularlythe Mesomerican area,Venezu¡:la, Ecuador, and tbeGuianas.Our results ledus to the cOI1e1usiontbat alltbese floras sbould be considered as distinct. We obse,rve a progressive decre¡¡¡se ofthe Simpson index value related wit� tbe remoteness of the Mexican area. A general análysisof tlrpspeCies numbers of Mexican bromeliad genera shows adistinct preference oftbespeci es forconiferousand oakfo,rests'; folÍowed by t�opical caduci­ ' folious forests. There is also significan! r¡:presentation of tbe family ifi'o ther vegetation types such as doud forests and tropical perennifolious forests. Generally Mel\ican Bromeliacea¡: speeies hav¡: scárceand sparse populationsandin manyc ases they inbabit diffs,bluffs and scaIJÍs in restrlcted areas,Col1cerning tbe.
    [Show full text]
  • Species of Skipper Butterflies (Hesperiidae) Can Differ by Only One to Three Nucleotides
    138138 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 61(3), 2007, 138–153 DNA BARCODES OF CLOSELY RELATED (BUT MORPHOLOGICALLY AND ECOLOGICALLY DISTINCT) SPECIES OF SKIPPER BUTTERFLIES (HESPERIIDAE) CAN DIFFER BY ONLY ONE TO THREE NUCLEOTIDES JOHN M. BURNS Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, room E-515, Washington, DC 20013-7012, USA, email: [email protected] DANIEL H. JANZEN Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA, email: [email protected] MEHRDAD HAJIBABAEI Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1, email: [email protected] WINNIE HALLWACHS Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA, email: [email protected] AND PAUL D. N. HEBERT Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1, email: [email protected] ABSTRACT. Unlike most species of Lepidoptera whose DNA barcodes have been examined, closely related taxa in each of three pairs of hesperiids (Polyctor cleta and P. polyctor, Cobalus virbius and C. fidicula, Neoxeniades luda and N. pluviasilva Burns, new species) seem in- distinguishable by their barcodes; but that is when some of the cytochrome c oxidase I (COI) sequences are short and sample sizes are small. These skipper butterflies are unquestionably distinct species, as evidenced by genitalic and facies differences and by ecologic segregation, i.e., one species of each pair in dry forest, the other in adjacent rain forest in Area de Conservación Guanacaste in northwestern Costa Rica. This national park is the source of the specimens used in this study, all of which were reared.
    [Show full text]