Thesis Title
Total Page:16
File Type:pdf, Size:1020Kb
Process based modeling of the karstification processes in the region of Tulum, Mexico. thesis presented at the Faculty of Sciences Center for Hydrogeology and Geothermics (CHYN) University of Neuchatel,^ Switzerland for the degree of Doctor of sciences presented by Axayacatl Maqueda accepted on the recommendation of Prof. Philippe Renard Prof. Stephen A. Miller Prof. Franci Gabrovˇsek Prof. Rachid Ababou Dr. Fabien Cornaton Defended on September 30th, 2017 Faculté des Sciences Secrétariat-décanat de Faculté Rue Emile-Argand 11 2000 Neuchâtel – Suisse Tél : + 41 (0)32 718 21 00 E-mail : [email protected] IMPRIMATUR POUR THESE DE DOCTORAT La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse soutenue par Monsieur Axayacatl MAQUEDA Titre: “Process based modeling of the karstification processes in the region of Tulum” sur le rapport des membres du jury composé comme suit: Prof. ass. Philippe Renard, directeur de thèse, Université de Neuchâtel, Suisse Prof. Stephen A. Miller, Université de Neuchâtel, Suisse Prof. ass. Franci Gabrovsek, Karst Research Institute, Postojna, Slovénie Prof. Rachid Ababou, Institut de Mécanique des Fluides, Toulouse, France Dr Fabien Cornaton, DHI-WASY, Berlin, Allemagne Neuchâtel, le 22 septembre 2017 Le Doyen, Prof. R. Bshary Imprimatur pour thèse de doctorat www.unine.ch/sciences i Abstract Caves are important since they are preferential paths for groundwater flow. Knowledge of caves or karst is essential for proper management of water resources, but the exploration of caves is a major challenge. An alternative to study caves and their structure is to simulate the processes related to cave growth. The motivation of this thesis is to study large karst networks in the region of Tulum, Mexico. The objective of the study is to understand how and why the cave systems formed in this region. The first step was to do a review of the information available on the study area. During field work in the study area we observed the propagation of the sea tidal wave into the karst network. This observation lead to question what would be the effect of tidal induced water exchange between caves and surrounding limestone. A conceptual model and a numerical model were developed to quantify dissolution in these conditions. Results show that water exchange can lead to significant mineral dissolution, or cave growth. This dissolution process is additional to dissolution occurring at cave wall surface, therefore the superposition of both dissolution process may explain the fast paced cave growth rate needed to explain the large karst networks in the area. Additionally, a numerical model framework was developed to simulate the development of fractures into conduit networks. The simulation of development of synthetic networks can provide insight on the development of real caves. Keywords: speleogenesis, karst, calcite dissolution, coastal aquifers, mixing-zone, tides iii R´esum´e Les grottes sont importantes car elles constituent des voies pr´ef´erentielles pour l'´ecoulement des eaux souterraines. La connaissance des grottes ou du karst est essentielle pour une bonne gestion des ressources en eau, mais l'exploration des grottes est un d´efimajeur. Une alterna- tive pour ´etudierles grottes et leur structure est de simuler les processus li´es`ala croissance des grottes. La motivation de cette th`eseest d'´etudierde grands r´eseauxkarstiques dans la r´egionde Tulum, au Mexique. L'objectif de l'´etudeest de comprendre comment et pourquoi les syst`emes de grotte ont ´et´eform´es dans cette r´egion. La premi`ere´etape consistait `aexaminer les informations disponibles sur la zone d'´etude. Pendant le travail sur le terrain d'´etude,nous avons observ´ela propagation de la mar´eedans le r´eseaukarst. Cette observation conduit `ase demander quel serait l’effet de l'´echange d'eau induite par les mar´eesentre les grottes et le calcaire environnant. Un mod`eleconceptuel et un mod`elenum´eriqueont ´et´ed´evelopp´espour quantifier la dissolution dans ces conditions. Les r´esultats montrent que l'´echange d'eau peut conduire `aune dissolution min´eraleimpor- tante, ou `ala croissance des grottes. Ce processus de dissolution s'ajoute `ala dissolution qui se produit `ala surface de la paroi de la grotte, donc la superposition du processus de dissolution peut expliquer le taux de croissance rapide des grottes n´ecessairepour expliquer les grands r´eseauxkarstiques dans la r´egion. En plus, un cadre de mod`elenum´eriquea ´et´ed´evelopp´epour simuler le d´eveloppement de fractures dans des r´eseauxde conduites. La simulation du d´eveloppement de r´eseaux synth´etiquespeut donner une id´eedu d´eveloppement de grottes r´eelles. Mots-clefs: speleogenesis, karst , dissolution de la calcite, aquif`eresc^otiers,zone de m´elange,mar´ees v Acknowledgements This research work was funded by the Swiss National Science Foundation grant 20001L- 1411298 (Project Xibalba). I would like to thank Philippe Renard, my thesis director, for all the support along the thesis. Thanks for all the freedom to find my research path and the encouragement to follow it. I want to thank Martin Hendrick for all the great discussions during the PhD. The final chapter of this thesis is inspired in your work on karst networks. Thanks for your friendship outside working hours and teaching me French along a few beers. It would have not been the same living in Neuch^atel without you. I would like to thank Fabien Cornaton for motivating me to change from surface to groundwater. Thanks for encouraging my curiosity. I would have never made a PhD if our paths have not crossed. Thanks to Amigos de Sian Ka'an for bringing attention to study the site. Thanks to the cave divers that bravely explore the cave network and helped us: Bil Phillips, Simon Richards, Leo, Xibalba Dive Center, Quintana Roo Speleological Survey. Thanks to the Geological Survey of Austria team working in Tulum. Special thanks to Arnulf Schiller, your calmness during fieldwork was truly inspiring. I would like thank the students that worked along us in Tulum: C´ecileVuilleumier, Gregory Kaeser, Thomas Hossler. Also, thanks to Prof. Pierre Perrochet for your helpful discussions on the work. Thank you Christopher, Jonas, Dan, Amandine, Daniel. I'll miss the ap´erosamong Biology and Hydrogeology, students from different groups can get along really well. Thanks to my family for supporting me in spite of distance. Claudia, thanks for believing in your husband working on a PhD. Thanks for your support and patience. The years spent working on this project are full of good memories thanks to you. Contents 1 Introduction1 2 Speleogenesis review3 2.1 Introduction.....................................3 2.2 Minerals in karst landscapes............................5 2.3 Calcite equilibrium chemistry...........................5 2.3.1 Solutes molar concentrations and Ion Activity..............9 2.3.2 Saturation Index.............................. 14 2.3.3 Hydrothermal karst and mixing corrosion................ 14 2.3.4 Calcite equilibrium discussion and summary............... 17 2.4 Calcite dissolution kinetics............................. 18 2.4.1 Dissolution rate in porous media..................... 21 2.4.2 Dissolution in fractures.......................... 24 2.5 Physical changes after mineral dissolution.................... 26 2.5.1 Physical changes due to dissolution in porous media.......... 27 2.5.2 Physical changes due to dissolution in fractures............. 38 2.6 Telogenetic and eogenetic karst.......................... 41 2.7 Vuggy porous media and macropores....................... 43 2.8 Review discussion.................................. 44 3 Study area 47 3.1 Introduction..................................... 47 3.2 Geographical setting and bathymetry....................... 48 3.3 Geological setting.................................. 49 viii Contents 3.3.1 Cretaceous to Upper Miocene geological history............. 49 3.3.2 Pleistocene to Holocene geological history................ 52 3.4 The Ox Bel Ha Karst system........................... 62 3.4.1 Position in the sedimentary sequence................... 62 3.4.2 When did speleogenesis occur?...................... 67 3.4.3 Ox Bel Ha system during sea level changes............... 68 3.5 Available data about geochemistry and groundwater flow........... 70 3.5.1 Mineral composition............................ 70 3.5.2 Groundwater chemistry.......................... 71 3.5.3 Groundwater flow velocity......................... 74 3.5.4 Aquifer Recharge.............................. 74 3.5.5 Preferential dissolution........................... 77 3.6 Data acquired from CHYN team field work................... 77 3.6.1 Tides.................................... 78 3.6.2 Geochemistry................................ 80 3.6.3 Drillings, tracer tests, flux imager..................... 83 3.6.4 Limestone physical properties....................... 89 3.7 Conclusion..................................... 90 4 Speleogenesis models 91 4.1 Introduction..................................... 91 4.2 Evolution of porous media hydraulic properties after mineral dissolution... 92 4.2.1 Governing equations............................ 93 4.2.2 Numerical implementation......................... 95 4.2.3 Analytical solution and model validation................. 97 4.3 Dissolution in fractures.............................. 98 4.3.1 Governing equations............................ 99 4.3.2 Numerical implementation......................... 101 4.3.3 Model validation.............................