VIPER: Virtual Intelligent Planetary Exploration Rover

Total Page:16

File Type:pdf, Size:1020Kb

VIPER: Virtual Intelligent Planetary Exploration Rover Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIRAS 2001, Canadian Space Agency, St-Hubert, Quebec, Canada, June 18-22, 2001. VIPER: Virtual Intelligent Planetary Exploration Rover Laurence Edwards Lorenzo Fl¨uckiger∗ Laurent Nguyen† Richard Washington‡ Autonomy and Robotics Area, NASA Ames Research Center, Moffett Field, CA 94035 { edwards | lorenzo | nguyen | richw } @artemis.arc.nasa.gov Keywords: Simulation, 3D visualization, plan ex- your vehicle works. This is the world of scientist- ecution, planetary rovers. directed planetary rover exploration. Planetary rovers are scientific tools for exploring Abstract an unknown world. One focus of the Autonomy and Simulation and visualization of rover be- Robotics Area (ARA) at the NASA Ames Research havior are critical capabilities for scientists Center is to design and develop the tools and tech- and rover operators to construct, test, and niques that allow scientists to control a rover effi- validate plans for commanding a remote ciently and effectively. This presents challenges both rover. The VIPER system links these capa- in the user interface and in the underlying rover con- bilities, using a high-fidelity virtual-reality trol methods. (VR) environment, a kinematically accu- One important element of the planetary rover con- rate simulator, and a flexible plan execu- trol is the ability to simulate and visualize possible tive to allow users to simulate and visualize execution outcomes of a plan under development. possible execution outcomes of a plan under We have developed the VIPER system, which links development. plan execution, rover simulation, and a high-fidelity, This work is part of a larger vision of a realistic virtual-reality (VR) environment. This sys- science-centered rover control environment, tem is one part of a larger architectural design under where a scientist may inspect and explore development that includes tools for science goal spec- the environment via VR tools, specify sci- ification and plan generation. ence goals, and visualize the expected and The ultimate vision for the overall architecture is actual behavior of the remote rover. that scientists at “mission control,” and potentially elsewhere in the world, will both specify and ob- The VIPER system is constructed from serve the rover’s operation as well as science prod- three generic systems, linked together via a ucts through the VR environment. The scientists can minimal amount of customization into the examine physical features of the environment (dis- integrated system. The complete system tance, volume, cross-sections) and specify science- points out the power of combining plan ex- level goals, for example to go to a rock and drill a ecution, simulation, and visualization for small sample. These goals are then interactively re- envisioning rover behavior; it also demon- fined at mission control with the help of a planning strates the utility of developing generic and scheduling system, adding constraints of rover technologies, which can be combined in motion, resources, and time to arrive at a final plan. novel and useful ways. Once the plan is ready, it is communicated to the rover. 1 Introduction On board the rover, the plan is executed by testing and monitoring conditions on time, resources, and Imagine trying to drive when your vehicle only does rover and environmental state. The same plan ex- approximately what you command, you only catch ecuted multiple times may produce many different occasional glimpse of your environment, 20 minutes behaviors, based on the initial conditions and the pass between your command and the vehicle’s re- variability of the rover’s interactions with the envi- sponse, and to top it off, you don’t really know how ronment. ∗NASA contractor with QSS. The VIPER system allows users to simulate and †Author’s current address is LightLogic, Inc., 8674 visualize possible execution outcomes of a plan un- Thornton Avenue, Newark, CA 94560. der development. We have developed a kinematically ‡NASA contractor with RIACS. accurate simulator of the rover that allows the sci- entists and rover engineers to understand more con- cretely the effects of plan actions. The plan execu- tion system commands the simulator, which in turn controls a model of the rover within the VR environ- ment. This provides an immediate connection be- tween the plan and the resulting execution behavior. Each of the technologies was developed as a generic system in a separate context from this system; the resulting system was then assembled quickly with rel- atively minor specializations. This paper offers two contributions. It highlights the power of combining plan execution, simulation, and visualization for the problem of rover control. It also demonstrates the advantages of using generic technologies for rapid development of useful systems. In the remainder of the paper, we will describe the overall system history and organization, followed by a more detailed description of each component. We Figure 1: VEVI interface controlling the Marsokhod will then present an example to illustrate the op- rover. eration of the system. Finally, we will discuss the ongoing work to extend the system. signed to be a flexible re-configurable VR user inter- 2 System Background and Overview face for robotic mechanisms. Application specific in- terfaces could be developed by implementing a com- The VIPER system is a science-oriented rover con- munications layer utilizing the provided I/O mod- trol system that comprises three technologies: plan ules and specifying the geometry and kinematics of execution, simulation, and visualization. In this sec- a particular mechanism in a configuration file. VEVI tion we describe the background of the individual was used in a number of projects and tests of mobile technologies, then describe the organization of the robots. The robots controlled with VEVI include VIPER system. the 8-legged “Dante II” walking robot [Bares and Wettergreen, 1999] and the 6-wheeled “Marsokhod” Virtual Reality Interfaces Our design for a robot [Christian et al., 1997]. Figure 1 shows the rover-control architecture is built around the premise Marsokhod rover being controlled in the VEVI in- that a scientist should be able to specify science goals terface. VEVI was used in two modes: 1) robot and to control rover activities with little or no assis- telemetry was used to directly drive the state of the tance from rover engineers and technologists. This VR environment, and 2) robot operations were first goal of a science-oriented system stems from a line planned offline by simulation in VEVI and then ex- of robotic tele-operation research begun in the early ecuted. The second mode was found to be more ef- ’90s at NASA Ames exploring the use of Virtual Re- fective due to sensor noise and inaccuracy. ality (VR) user interfaces for the control of robotic In addition to the difficulties cited above, control mechanisms. The visualization technology also de- of robots operating on other planets adds significant rives from this line of work. communication delays. In this situation the ability The development of VR user interfaces for robotic to plan the offline in the highest fidelity becomes crit- control was motivated by the difficulty of operating ical. Scientists involved in the mission are typically complex high degree of freedom mechanisms in un- not highly trained operators, and tools must be pro- known, remote, hazardous environments. In the ab- vided that allow them to plan science activities and sence of a robust fully autonomous capability, the analyze data in an intuitive and simple manner. To ability of human operators to understand quickly and achieve this, NASA Ames developed a VR user in- accurately a mechanism’s relationship to its environ- terface called “MarsMap” [Stoker et al., 1998] and ment becomes pivotal. It was hypothesized that high a high-fidelity 3D-from-stereo terrain reconstruction fidelity, interactive, 3D (i.e., VR) representations of capability, the “stereo-pipeline.” MarsMap was de- a robot and its environment would effectively lever- veloped for the Mars Pathfinder mission and pro- age the human visual system to maximize the band- vided planetary scientists with a suite of simple in- width of human-machine communication, and pro- tuitive tools to plan image acquisition sequences and vide operators with immediate visceral situational interrogate stereo-pipeline generated terrain models. understanding. The MarsMap environment was highly interactive The first operational system resulting from this re- and immersive, providing enhanced situational un- search thrust was the Virtual Environment Vehicle derstanding. Interface (VEVI) [Piguet et al., 1995].VEVIwasde- The Viz system used in this work is a succes- Page 2 CRL Plan Body Joints Wheels Visualization Server Constraints Terrain (VIZ) Kinematic Simulator (VirtualRobot) Conditional Executive Real Rover Figure 2: Overview of VIPER plan execution, simulation and visualization. sor to MarsMap, initially deployed during the Mars ever, attempt to reproduce all of the capabilities of Polar Lander mission [Nguyen et al., 2001].Viz the RA; in particular, multiple concurrent activities, implements an architecture that allows a flexibility model-based state reconfiguration, and run-time re- and customizability similar in spirit to VEVI and source selection for state variables are not currently presents the user with a highly interactive immer- included in our executive. sive environment as in MarsMap. VIPER
Recommended publications
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • NASA Program & Budget Update
    NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature.
    [Show full text]
  • Gao-21-306, Nasa
    United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability.
    [Show full text]
  • Download Announcement
    Moog Moog Inc. ▪ East Aurora, New York ▪ 14052 ▪ 716-652-2000 Announcement Moog to Exhibit Mission Critical Space Technology at the 36th Annual Space Symposium East Aurora, NY (August 14, 2021) – Moog Inc. (NYSE: MOG.A and MOG.B) will highlight its Space technology capabilities at the 36th annual Space Symposium in Colorado Springs, CO August 23-26. Moog with be at booth #1030 in the North Exhibit Hall at The Broadmoor. Visit us at Space Symposium to discover more about the following featured technologies: The Small Launch Orbital Maneuvering Vehicle (SL-OMV) is a propulsive tug for secondary payload deployment focused on Venture Class Launch Vehicles. It is payload configurable for cubesats through ESPA-Class spacecraft. It can be used to disperse cubesat constellations or deliver ESPA- Class spacecraft to their ideal orbit. The SL-OMV has its own avionics, power, green propulsion, and communications systems that are configurable for short duration missions. Additionally, Moog’s next generation, radiation-hardened Integrated Avionics Unit (IAU) will be on display. NASA recently selected our IAU and Spacecraft Energization and Power Interfacing Assembly to be the main computer and power source for the VIPER rover, which will land on the Moon’s South Pole to scout possible landing sites for NASA’s Artemis Program. Furthermore, Moog and industry Partner Unibap have teamed to produce next-generation Payload Graphics Processing Units (GPU) for LEO, MEO and GEO missions. We will have live demonstrations daily at 1 p.m. in booth #1030. Many of our solutions on display support human exploration, including NASA’s Artemis missions.
    [Show full text]
  • 09-Colaprete-VIPER Overview for PAC 08172020.Pdf
    A lunar water reconnaissance mission Anthony Colaprete, VIPER Project Science August 17, 2020 1 Volatile Investigating Polar Exploration Rover (VIPER) The past decade of observations have built a fascinating and complicated story about lunar water ‒ From “frosts” to buried ice blocks, there appears to be water everywhere, but its nature and distribution is very uncertain The next steps in exploration require surface assets, including surface mobility VIPER will conduct exploration science, modeled after terrestrial resource exploration processes and techniques VIPER Mission Preliminary Design Review August 26-27, 2020 Launch November 2023 https://www.nasa.gov/viper Understanding Lunar Water Moon now known to host all three forms of Solar System water: endogenic, sequestered external and in-situ* • Do not yet understand the concentration, evolution and interrelated dynamics of these varied sources of water Understanding the distribution, both laterally and with Colaprete et al. (2010) depth, addresses key exploration and science questions Pieters et al. (2009) • Surface measurements across critical scales are necessary to characterize the spatial distribution and state of the water “Prospecting” for lunar water at poles is the next step in understanding the resource potential and addressing key theories about water emplacement and retention *From Peters et al. Transformative Lunar Science (2018) Li and Milliken (2017) 3 Lunar Polar Volatile Exploration: Science and Exploration Critical Observations Needed Lunar Polar Exploration • Volatile
    [Show full text]
  • Case Study: Lunar Mobility • Overview of Past Lunar Rover Missions • Design Review of NASA Robotic Prospector (RP) Rover for Lunar Exploration
    Case Study: Lunar Mobility • Overview of past lunar rover missions • Design review of NASA Robotic Prospector (RP) rover for lunar exploration © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Slopes and Static Stability ENAE 788X - Planetary Surface Robotics MARYLAND 1 Lunar Motorcycle in KC-135 Testing U N I V E R S I T Y O F Slopes and Static Stability ENAE 788X - Planetary Surface Robotics MARYLAND 8 Lunar Motorcycle in Suspension Testing U N I V E R S I T Y O F Slopes and Static Stability ENAE 788X - Planetary Surface Robotics MARYLAND 9 National Aeronautics and Space Administration RP Rover Tiger Team Mission Overview The Lunar Resource Prospector (RP) rover was an earlier version of what became Volatiles Investigating Polar Exploration Rover (VIPER), which will be launched to the Moon in 2023. The technical details are not necessarily representative of the final VIPER design. Level-1 Mission Requirements 1.1 RP SHALL LAND AT A LUNAR POLAR REGION TO ENABLE PROSPECTING FOR VOLATILES • Full Success Criteria: Land at a polar location that maximizes the combined potential for obtaining a high volatile (hydrogen) concentration signature and mission duration within traverse capabilities • Minimum Success Criteria: Land at a polar location that maximizes the potential for obtaining a high volatile (hydrogen) concentration signature 1.2 RP SHALL BE CAPABLE OF OBTAINING KNOWLEDGE ABOUT THE LUNAR SURFACE AND SUBSURFACE VOLATILES AND MATERIALS • Full Success Criteria: Take both sub-surface measurements
    [Show full text]
  • Remote Science Work Support, Context, and Approach on NASA's
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1734.pdf Remote science work support, context, and approach on NASA’s VIPER mission. Z. Mirmalek1,2, D.S.S. Lim3, A. Colaprete3, 1Bay Area Environmental Research Institute, P.O. Box 25, Moffett Field, CA, 94035, [email protected], 2Harvard University, Cambridge, MA, 02138, 3NASA Ames Research Center, Moffett Field, CA 94035. Introduction: Returning humans to the Moon, It is common to imagine that an operational sending humans for the first time to Mars will configuration that allows earth-bound humans to necessarily include an accompaniment of robotic remotely control a lunar rover and collect data in near- vehicles. A mission work system will be needed that real time is akin to “joy stick driving.” However, this supports remote teams of humans and robots in co- short-hand analogy is not accurate, from operations operation (synchronous and asynchronous) with earth- and science work perspectives. The existence of bound systems, engineering and science teams. All of communication latency via the Deep Space Network these elements have individual development contexts means that in the colloquial sense driving via joy stick, and manners of operation; at the same time, all are in receiving instant real-time visual or haptic feedback, is varying degrees conjoined during mission development not possible. With respect to science, this descriptor stages and operations. As such, the assembly of excises the presence of scientific reasoning that is part elements (people, activities, disciplinary knowledge, of the traverse process. Scientific research fuels space and machines) that constitute a mission work system exploration; accordingly, the work of conducting can be developed independently and cooperatively.
    [Show full text]
  • NASA PSD Update
    Lori S. Glaze, Ph.D. NASA Planetary Science Division Director 2023–2032 Planetary Science and Astrobiology Decadal Survey Venus Panel October 20, 2020 1 Lunar Discovery and Exploration 3 Artemis and PSD • Initial Commercial Lunar Payload Service (CLPS) flights will study the lunar surface and resources at the lunar poles, starting from 2021 • VIPER: Golf-cart-sized rover will investigate volatiles in lunar polar soil • Astrobotic CLPS delivery by end of 2023 • Artemis III (2024): Crew will travel to the Moon and use Human Landing System to touch down on the lunar surface • Science Definition Team (chaired by Renee Weber, MSFC, and HLS Science Lead) will define detailed science objectives • Working with ESSIO on many lunar projects, e.g., ANGSA, instrument and technology development, international collaborations 4 Mars Program 5 Mars Sample Return • New Mars Sample Return (MSR) Program, Director: Jeff Gramling • Michael Meyer is serving as Lead/Chief Scientist for MEP and MSR • NASA/ESA MOU signed on October 5th • SMD-commissioned Independent Review for MSR will provide findings in late October • Working towards two launches in 2026 (NASA lander and ESA orbiter) – on track to enter Phase A this fall • NASA/ESA MSR Sample Planning Group - Phase 2 will address science and curation planning questions • Perseverance/MSR Caching Strategy Workshop is being planned for January 2020 Future Mars activities • Mars Architecture Strategy Working Group (MASWG) established by PSD in October 2019 to: • Determine science exploration of Mars beyond MSR
    [Show full text]
  • Committee on Commerce, Science, and Transportation United States
    Hold for Release Until Presented by Witness National Aeronautics and Space Administration September 30, 2020 Committee on Commerce, Science, and Transportation United States Senate Statement by: James F. Bridenstine Administrator 116th Congress UNTIL PRESENTED BY WITNESS Sept. 30, 2020 Statement of James Bridenstine Administrator National Aeronautics and Space Administration before the Committee on Commerce, Science, and Transportation U.S. Senate Overview Chairman Wicker and Members of the Committee, I am pleased to have this opportunity to discuss NASA's Fiscal Year 2021 budget request. We are proposing a budget of $25 billion, an increase of 12 percent over our request for FY 2020. This budget both reinforces our innovative human space exploration program and maintains strong support for NASA science, aeronautics, and technology research. This investment, coupled with the unmatched talent of NASA’s workforce, will enable America’s continued leadership in space, propelling the United States toward a new era of technical achievement and scientific discovery. Regarding the COVID-19 pandemic, I would like to assure you that keeping the NASA workforce safe has been our highest priority during this challenging period. Since mid-March, more than 90 percent of our workforce has been in a telework status, and our employees have continued to perform NASA’s important missions with distinction. Only a limited number of employees performing mission-essential work for the protection and safe operation of critical Agency infrastructure and a few select missions (e.g., Commercial Crew Program Demo-2 launch and Mars Perseverance launch preparations) were authorized to be on site. The amazing productivity of our workforce during the pandemic has proven that more work could be done remotely in the future.
    [Show full text]
  • GAO-21-330, Accessible Version NASA LUNAR PROGRAMS
    Report to Congressional Committees May 2021 NASA LUNAR PROGRAMS Significant Work Remains, Underscoring Challenges to Achieving Moon Landing in 2024 Accessible Version GAO-21-330 May 2021 GAO Highlights NASA LUNAR PROGRAMS Highlights of GAO-21-330, a report to Significant Work Remains, Underscoring Challenges congressional committees to Achieving Moon Landing in 2024 Why GAO Did This Study What GAO Found In March 2019, the White House The National Aeronautics and Space Administration (NASA) has initiated eight directed NASA to accelerate its plans lunar programs since 2017 to help NASA achieve its goal of returning humans to for a lunar landing by 4 years, to 2024. the Moon. NASA plans to conduct this mission, known as Artemis III, in 2024. Accomplishing this goal will require NASA has made progress by completing some early lunar program development extensive coordination across lunar activities including initial contract awards, but an ambitious schedule decreases programs and contractors to ensure the likelihood of NASA achieving its goal. For example, NASA’s planned pace to systems operate together seamlessly develop a Human Landing System, shown below, is months faster than other and safely. In December 2019, GAO spaceflight programs, and a lander is inherently more complex because it found that NASA had begun making supports human spaceflight. decisions related to requirements, cost, and schedule for individual lunar Notional Human Landing System programs but was behind in taking these steps for the Artemis III mission. The House Committee on Appropriations included a provision in 2018 for GAO to review NASA’s proposed lunar-focused programs. This is the second such report.
    [Show full text]
  • The Lunar Infrared Laser Spectrometer for Ice Prospecting and Cave Exploration
    51st Lunar and Planetary Science Conference (2020) 2053.pdf THE LUNAR INFRARED LASER SPECTROMETER FOR ICE PROSPECTING AND CAVE EXPLORATION. E.Z. Noe Dobrea1, T. Roush2, A. Colaprete3, and D. Landis3 1Planetary Science Institute (1700 East Fort Lowell ste 106 – Tucson – AZ – 85719 – [email protected]; 2NASA Ames Research Center; 3Draper Laboratory Introduction: We report here on the development these observations at a broad range of distances allows of The Lunar Infrared Laser Spectrometer (LILS), an it to peer, from a sunlit vantage point, into the many active spectrometer capable of acquiring near-infrared smaller PSRs that a lander or rover may encounter near (NIR ~ 800-2500 nm) spectra of targets in dark environ- the poles. Such a strategy would inform rover opera- ments at distances ranging from decimeters to hectome- tions, improve operations efficiency and science return, ters. and reduce risk to the mission. This is of particular rel- LILS is a new class of rover- or lander-mounted ac- evance to “micro-PSRs”, or PSRs of the scale of meters tive imaging spectrometer that combines a supercontin- to decameters, which are abundant near the poles, and uum laser (SCL) with a NIR spectrometer to acquire where ice is also expected to be stable [2]. spectra of shadowed areas on the lunar surface or within lava tubes. It is designed specifically to measure the composition, lateral distribution, abundance, and parti- cle size of surface volatiles, hydrated species, and pri- mary mafic igneous minerals. The SCL, a laser that emits polychromatic light in the 0.45 – 2.40 µm region of the spectrum, is used to illuminate the target material from an arbitrary distance within the field of view of the spectrometer.
    [Show full text]
  • Pilot Evaluation of Model Based Design Tooling for Guidance, Navigation, and Control Flight Software Development
    https://ntrs.nasa.gov/search.jsp?R=20200000985 2020-03-28T19:05:55+00:00Z Pilot Evaluation of Model Based Design Tooling for Guidance, Navigation, and Control Flight Software Development Brian R. Jamison, Mike R. Hannan, 9 -12 James T. Kaidy, Juan I. Orphee, Nick S. Olson Guidance, Navigation, & Control December NASA Marshall Space Flight Center 2019 What & Why Model Based Design (MBD) • MBD systematically uses models throughout the development process for requirements, design, analysis, simulation, verification and validation, and documentation • An MBD approach seeks to incorporate models into an automated, concurrent design process intended to minimize potential for human error • Improvements offered by an MBD approach include efficiency improvements by automating aspects of requirements testing and documentation • An advantage of MathWorks MBD tooling is the model visualization Simulink naturally incorporates into the design process 2 NASA LADEE MBD Experience • “Compared with using Model-Based Design, hand-coding the flight software would have taken longer and made collaboration more difficult. Managers and hardware system engineers understand Simulink models, making it easy to achieve consensus because everyone knows what’s going on in the software.” - Dr. Karen Gundy-Burlet, NASA Ames Research Center 3 NASA LADEE MBD Experience • “Compared with using Model-Based Design, hand-coding the flight software would have taken longer and made collaboration more difficult. Managers and hardware system engineers understand Simulink models,
    [Show full text]