Lecture Notes 08: Electric Multipole Expansion

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes 08: Electric Multipole Expansion UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede LECTURE NOTES 8 POTENTIAL APPROXIMATION TECHNIQUES: THE ELECTRIC MULTIPOLE EXPANSION AND MOMENTS OF THE ELECTRIC CHARGE DISTRIBUTION There are often situations that arise where an “observer” is far away from a localized charge distribution ρ ()r and wants to know what the potential Vr( ) and / or the electric field intensity Er() are far from the localized charge distribution. If the localized charge distribution has a net electric charge Q , then far away from this net localized charge distribution, the potential Vr( ) to a good approximation will behave very much like that of a point charge, 1 Qnet 1 Qnet Vrfar () and Erfar()=−∇ Vr far () − 2 4πε o r 4πε o r when the field point – source charge separation distance, r d, the characteristic size of the charge distribution. However, as the “observer” moves in closer and closer to the localized charge distribution ρ ()r′ , he/she will discover that increasingly Vr( ) (and hence Er( ) ) may deviate more and more from pure point charge behavior, because ρ (r′) is an extended source charge distribution. Furthermore, ρ ()r′ may be such that Qnet ≡ 0 , but that does NOT necessarily imply that Vr()= 0 (and Er()=0)! Example: A pure, physical electric dipole is a spatially-extended, simple charge distribution where Qnet = 0 but Vr()≠ 0 and Er()=−∇ Vr () ≠0 , as shown in the figure below: +q r+ P (field point) r A pure physical electric dipole is d θ composed of two opposite electric r− charges separated by a distance d: −q ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 1 2005 - 2008. All rights reserved. UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede The Potential Vr() and Electric Field Er( ) of a Pure Physical Electric Dipole “Pure” → Qnet = 0 “Physical” → Spatially extended electric eipole d ≠ 0 , d > 0 {n.b. ∃ “point” electric dipoles with d = 0, e.g. neutral atoms & molecules…} First, let us be very careful / wise as to our choice of coordinate system. A wrong choice of coordinate system will unnecessarily complicate the mathematics and obscure the physics we are attempting to learn about the nature / behavior of this system. Examples of BAD choices of coordinate systems: zˆ′ q+ a.) q+ zˆ b.) zˆ Ο′ θ′ yˆ′ rdipole Ο Ο ϕ ' yˆ yˆ ϕ q− xˆ′ xˆ q− xˆ Dipole lying in x – y plane has Even more mathematically complicated!! ϕ -dependence, but (at least it) Origin is not conveniently chosen (arbitrary?) is centered at the origin. Angle the dipole axis makes with respect to zˆ & xˆ axes must be described by two angles - θ and ϕ . Smart / wise choice of coordinate system: Exploit intrinsic symmetry of problem. Physical electric dipole has axial symmetry – choose zˆ axis to be along line separating q+ and q−. Choose x-y plane to lie mid-way between q+ and q−: zˆ P (field point) r+ n.b. This problem +q r now has no Mathematical expressions obtained for θ ϕ -dependence Vr( ), Er( )()=−∇ Vr for this choice d r− yˆ Ο of coordinate system for the physical electric dipole can be explicitly and xˆ −q rigorously related to more complicated / tedious mathematical expressions for a.) and b.) above – via coordinate translations & rotations! 2 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005 - 2008. All rights reserved. UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede Pure, Physical Electric Dipole: zˆ P (field point) +q r + r+′ r Source Charge Locations 1 11 2 d rdzrd++′′=+22ˆ, = 11 Ο θ r− yˆ rdzrd−−′′=−22ˆ, = d π −θ 1 d 2 xˆ r−′ −q Law of Cosines: c2 = a2 + b2 – 2ab cos θ q+ +q c P −q π −θ P b a b Ο c θ a Ο −q 2 2 22⎛⎞dd ⎛⎞ 22⎛⎞dd ⎛⎞ r + =+−⎜⎟rr2cos ⎜⎟ θ r − = ⎜⎟+−rr2cos ⎜⎟ ()π −θ ⎝⎠22 ⎝⎠ ⎝⎠22 ⎝⎠ 2 2 ⎛⎞d 2 ⎛⎞d 2 =+−⎜⎟ rdrcosθ =++⎜⎟ rdrcosθ ⎝⎠2 ⎝⎠2 2 2 2 ⎛⎞d 2 ⎛⎞d =+rrd⎜⎟ −cosθ =+rrd⎜⎟ +cosθ ⎝⎠2 ⎝⎠2 Use Principle of Linear Superposition for Total Potential: VrVrVrVTOT()=+≡+− q( ) q( ) dipole ( r) 11++qqq 1 Vr+q ()== = 44πε πε2222 4 πε oor + r+−() d2cos rdθ o r +−() d 2cos rd θ 11−−−qqq 1 Vr−q ()== = 44πε πε2222 4 πε oor − rd++()2cos rdθ o rd ++() 2cos rdθ ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 3 2005 - 2008. All rights reserved. UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede 11+qq ∴ VrVrVrdipole()=+=+− q () q () − 44πεoorr +− πε 11qq =− 44πε2222 πε oord+−()2 rd cosθ rd ++() 2 rd cosθ ⎡⎤ q 11 =−⎢⎥ 4πε ⎢⎥2222 o ⎣⎦rd+−()2 rd cosθθ rd ++() 2 rd cos This is an exact analytic mathematical expression for the potential associated with a pure ()Qnet = 0 physical electric dipole with charges +q and –q separated from each other by a distance d. Note further that, because of the judicious choice of coordinate system and the intrinsic (azimuthal) symmetry, Vrdipole ( ) has no ϕ -dependence. The exact analytic expression for potential associated with pure physical electric dipole: ⎧⎫ q ⎪⎪11 Vrdipole ()=−⎨⎬ 4πε 2222 o ⎩⎭⎪⎪rd+−()2 rd cosθ rd ++() 2 rd cosθ As mentioned earlier, often we are / will be interested only in knowing (approximately) Vrdipole () when rd . For example, many kinds of neutral molecules have permanent electric dipole moments p ≡ qd (Coulomb-meters) and (obviously) for such molecules, the dipole’s separation distance d is (typically) on the order of ~ few Ångstroms, i.e. d ~ Ο (5Å) {1 Å ≡ 10−10 m = 10 nm (1 nm = 10−9 m)}. So even if the field point P is e.g. rm==110μ −6 m away from such a molecular dipole, rmdnm=1~5μ , since dr 0.005 ! In such situations, when rd an approximate solution for Vrdipole ( ) which has the benefit of reduced mathematical complexity, will suffice to give a good / reasonable physical description of the intrinsic physics, accurate e.g. to 1% (or better) when compared directly to the exact analytical expression over the range of distance scales rd that are of interest to us. Thus for rd> , the exact expressions for the r+ and r− separation distances are: 2 2 2 2 r + =+rd()2cos − rdθ r − =+rd()2cos + rdθ 2 2 ⎛⎞d ⎛⎞d ⎛⎞d ⎛⎞d =+rr1⎜⎟ −⎜⎟ cosθ =+rr1⎜⎟ +⎜⎟ cosθ ⎝⎠2 ⎝⎠r ⎝⎠2 ⎝⎠r 2 2 1 ⎛⎞dd ⎛⎞ 1 ⎛⎞dd ⎛⎞ =+r 1⎜⎟ − ⎜⎟ cosθ =+r 1⎜⎟ + ⎜⎟ cosθ 4 ⎝⎠rr ⎝⎠ 4 ⎝⎠rr ⎝⎠ 4 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005 - 2008. All rights reserved. UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede Now if ()dr 1, then let us define: 2 2 1 ⎛⎞dd ⎛⎞ 1 ⎛⎞dd ⎛⎞ ε + ≡−⎜⎟ ⎜⎟cosθ and: ε − ≡+⎜⎟ ⎜⎟cosθ 4 ⎝⎠rr ⎝⎠ 4 ⎝⎠rr ⎝⎠ 11 11 Then: = and: = r + r 1+ ε + r − r 1+ ε − with: ε + 1 and: ε − 1 Now if ε + 1 and ε − 1, we can use the Binomial Expansion (a specific version of the more generalized Taylor Series Expansion) of the expression: −1 12 1 13iii23 135 =+()1εεεε±±±± =− 1 + − +− ... ... (Valid on the interval: −≤1ε ± ≤+ 1) 1+ ε ± 224246iii 234 Since ε ± is already <<1, then the higher-order terms ()()()εεε±±±, , ,...etc. are incredibly small (<<<<<1), so negligible error is incurred by neglecting these higher-order terms, 1 i.e. keeping only terms linear in ε ± in the binomial expansion of , we have: 1+ ε ± 1111 1111 =− ()1 2 ε + and: =− ()1 2 ε − r + r 1+ ε + r r − r 1+ ε − r dipole qq⎧⎫11⎧⎫ 111 1 Vr()=−⎨⎬ ⎨()11 −−−22εε+−() ⎬ 44πεoorr +− πε ⎩⎭rr Then: ⎩⎭ q ⎛⎞1 1 11q ⎛⎞1 = ⎜⎟{}1 −−2 ε + 1 +=22ε −−+⎜⎟{}()()εε − 4πε o ⎝⎠x 4πε o ⎝⎠r 2 2 1 ⎛⎞dd ⎛⎞ 1 ⎛⎞dd ⎛⎞ Now: ε + ≡−⎜⎟ ⎜⎟cosθ and: ε − ≡+⎜⎟ ⎜⎟cosθ 4 ⎝⎠rr ⎝⎠ 4 ⎝⎠rr ⎝⎠ ⎧⎫2 2 qd11⎡⎤⎛⎞ 1 dd⎛⎞1 d ⎛⎞⎛⎞⎛⎞⎛⎞⎪⎪⎢⎥⎜⎟⎛⎞⎜⎟ ⎛⎞⎛⎞ ⎛⎞ Vrdipole ()= ⎜⎟⎜⎟⎜⎟⎜⎟⎨⎬+−⎜⎟cosθ ⎜⎟⎜⎟− ⎜⎟cosθ 424πε ⎝⎠⎝⎠⎝⎠⎝⎠rr⎢⎥⎜⎟⎝⎠rr⎜⎟ ⎝⎠⎝⎠4 ⎝⎠r o ⎩⎭⎪⎪⎣⎦⎝⎠⎝⎠ qdd⎛⎞⎛⎞⎛⎞11⎧⎫ ⎛⎞ Then: =+⎜⎟⎜⎟⎜⎟⎨⎬cosθθ ⎜⎟ cos 42πε o ⎝⎠⎝⎠⎝⎠rr⎩⎭ ⎝⎠ r q ⎛⎞11⎛⎞⎧⎫⎛⎞dqd ⎛⎞⎛⎞1 = ⎜⎟⎜⎟⎨⎬2 ⎜⎟cosθθ= ⎜⎟⎜⎟ cos 4πε o ⎝⎠r ⎝⎠2 ⎩⎭⎝⎠rrr4πε o ⎝⎠⎝⎠ qd⎛⎞⎛⎞11 qdqd ⎛ ⎞ ⎛ ⎞ Thus: Vrdipole () ⎜⎟⎜⎟cosθ == ⎜22 ⎟ cosθθ ⎜ ⎟ cos 444πεooo⎝⎠⎝⎠rr πε ⎝ r ⎠ πε ⎝ r ⎠ ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5 2005 - 2008. All rights reserved. UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 8 Prof. Steven Errede The Magnitude of the Electric Dipole Moment: p ≡ qd= p Thus, we may also express the potential of a pure physical dipole as: qd⎛⎞11 p ⎛⎞ Vrdipole ()==⎜⎟22cosθ ⎜⎟ cosθ (valid for d << r) 44πεoo⎝⎠rr πε ⎝⎠ 1 1 Note that: Vr()∼ whereas Vr()∼ (valid for point charge q located at origin) dipole r 2 monopole r We define the vector electric dipole moment as: p ≡ qd where the charge-separation distance vector d points (by convention) from –q to +q: +q p ≡ qd SI Units of p = Coulomb-meters d d −q In our current situation here we see that ddz= ˆ : zˆ P (field point) +q θ r d d p ≡ qd Ο yˆ −q xˆ Thus here if: p ==qd qdzˆ but: zrˆ = cosθ ˆ then: p ==qd qdzˆ = qdcosθ rˆˆ = pcosθ r qd⎛⎞1 qd cosθθ ⎛⎞ 1 p cos ⎛⎞ 1 Then: Vrdipole () ⎜⎟222cosθ == ⎜⎟ ⎜⎟ 444πεooo⎝⎠rrr πε ⎝⎠ πε ⎝⎠ The potential Vrdipole ()associated with an electric dipole moment p ( p ==qd qdzˆ) from a pure, physical electric dipole oriented with ddz= ˆ , for rd is thus given by: pprcosθ 1iˆ 1 ⎛⎞ ⎛⎞ ˆ Vrdipole () ⎜⎟22= ⎜⎟ where: pri = pcosθ = qd cosθ 44πεoo⎝⎠rr πε ⎝⎠ 6 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005 - 2008.
Recommended publications
  • Mass Spectrometry: Quadrupole Mass Filter
    Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory.
    [Show full text]
  • Ph501 Electrodynamics Problem Set 8 Kirk T
    Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald (2001) [email protected] http://physics.princeton.edu/~mcdonald/examples/ Princeton University 2001 Ph501 Set 8, Problem 1 1 1. Wire with a Linearly Rising Current A neutral wire along the z-axis carries current I that varies with time t according to ⎧ ⎪ ⎨ 0(t ≤ 0), I t ( )=⎪ (1) ⎩ αt (t>0),αis a constant. Deduce the time-dependence of the electric and magnetic fields, E and B,observedat apoint(r, θ =0,z = 0) in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that ct r and ct = r + , where c is the speed of light and r. The related, but more intricate case of a solenoid with a linearly rising current is considered in http://physics.princeton.edu/~mcdonald/examples/solenoid.pdf Princeton University 2001 Ph501 Set 8, Problem 2 2 2. Harmonic Multipole Expansion A common alternative to the multipole expansion of electromagnetic radiation given in the Notes assumes from the beginning that the motion of the charges is oscillatory with angular frequency ω. However, we still use the essence of the Hertz method wherein the current density is related to the time derivative of a polarization:1 J = p˙ . (2) The radiation fields will be deduced from the retarded vector potential, 1 [J] d 1 [p˙ ] d , A = c r Vol = c r Vol (3) which is a solution of the (Lorenz gauge) wave equation 1 ∂2A 4π ∇2A − = − J. (4) c2 ∂t2 c Suppose that the Hertz polarization vector p has oscillatory time dependence, −iωt p(x,t)=pω(x)e .
    [Show full text]
  • Ph501 Electrodynamics Problem Set 1
    Princeton University Ph501 Electrodynamics Problem Set 1 Kirk T. McDonald (1998) [email protected] http://physics.princeton.edu/~mcdonald/examples/ References: R. Becker, Electromagnetic Fields and Interactions (Dover Publications, New York, 1982). D.J. Griffiths, Introductions to Electrodynamics, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 1999). J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999). The classic is, of course: J.C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954). For greater detail: L.D. Landau and E.M. Lifshitz, Classical Theory of Fields, 4th ed. (Butterworth- Heineman, Oxford, 1975); Electrodynamics of Continuous Media, 2nd ed. (Butterworth- Heineman, Oxford, 1984). N.N. Lebedev, I.P. Skalskaya and Y.S. Ulfand, Worked Problems in Applied Mathematics (Dover, New York, 1979). W.R. Smythe, Static and Dynamic Electricity, 3rd ed. (McGraw-Hill, New York, 1968). J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941). Excellent introductions: R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics,Vol.2 (Addison-Wesely, Reading, MA, 1964). E.M. Purcell, Electricity and Magnetism, 2nd ed. (McGraw-Hill, New York, 1984). History: B.J. Hunt, The Maxwellians (Cornell U Press, Ithaca, 1991). E. Whittaker, A History of the Theories of Aether and Electricity (Dover, New York, 1989). Online E&M Courses: http://www.ece.rutgers.edu/~orfanidi/ewa/ http://farside.ph.utexas.edu/teaching/jk1/jk1.html Princeton University 1998 Ph501 Set 1, Problem 1 1 1. (a) Show that the mean value of the potential over a spherical surface is equal to the potential at the center, provided that no charge is contained within the sphere.
    [Show full text]
  • Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility
    OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring.
    [Show full text]
  • Multipole Expansion, S.C. Magnets
    !*(9:7*=/ 2. Charged particles in magnetic fields 2.2 Magnets (synchrotron magnet) 2.3 Multipole expansion 2.4 Superconducting magents Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 1 ,_,=+&,3*98 (42'.3*)=+:3(9.43a=8>3(-749743=2&,3*9 Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 2 942'.3*)=+:3(9.43=2&,3*9a=8>3(-749743=2&,3*9 Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 3 ,_-=+:19.541* *=5&38.43= Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 4 >*3*7&1=2:19.541* *=5&38.43 Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 5 >*3*7&1=2:19.541* *=5&38.43a=9>1.3)7.(&1= (447).3&9*=7*57*8*39&9.43=@ Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 6 >*3*7&1=2:19.541* *=5&38.43a=9>1.3)7.(&1= (447).3&9*=7*57*8*39&9.43=@@ Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 7 >*3*7&1=2:19.541* *=5&38.43a=9>1.3)7.(&1= (447).3&9*=7*57*8*39&9.43=@@@ Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 8 >*3*7&1=2:19.541* *=5&38.43a=9>1.3)7.(&1= (447).3&9*=7*57*8*39&9.43=@B Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 9 >*3*7&1=2:19.541* *=5&38.43a=9&79*8.&3=(447).3&9*= 7*57*8*39&9.43=@ Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 12 >*3*7&1=2:19.541* *=5&38.43a=9&79*8.&3=(447).3&9*= 7*57*8*39&9.43=@@ Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 13 C.*1)=).897.':9.43=4+=9-*=+.789=+*<=2:19.541*8 Matthias Liepe, P4456/7656, Spring 2010, Cornell University
    [Show full text]
  • Multipole Expansion for Radiation;Vector Spherical Harmonics
    Multipole Expansion for Radiation;Vector Spherical Harmonics Physics 214 2013, Electricity and Magnetism Michael Dine Department of Physics University of California, Santa Cruz February 2013 Physics 214 2013, Electricity and Magnetism Multipole Expansion for Radiation;Vector Spherical Harmonics We seek a more systematic treatment of the multipole expansion for radiation. The strategy will be to consider three regions: 1 Radiation zone: r λ d. This is the region we have already considered for the dipole radiation. But we will see that there is a deeper connection between the usual multipole moments and the radiation at large distances (which in all cases falls as 1=r). 2 Intermediate zone (static zone): λ r d: Note that time derivatives are of order 1/λ (c = 1), while derivatives with respect to r are of order 1=r, so in this region time derivatives are negligible, and the fields appear static. Here we can do a conventional multipole expansion. 3 Near zone: d r. Here is is more difficult to find simple approximations for the fields. Physics 214 2013, Electricity and Magnetism Multipole Expansion for Radiation;Vector Spherical Harmonics Our goal is to match the solutions in the intermediate and radiation zones. We will see that in the intermediate zone, because of the static nature of the field, there is a multipole expansion identical to that of electrostatics (where moments are evaluated at each instant). This solution will match onto eikr−i!t outgoing spherical waves, all falling as r , but with a sequence of terms suppressed by powers of d/λ. So we have two kinds of expansion going on, a different one in each region.
    [Show full text]
  • Today in Physics 217: Magnetic Multipoles
    Today in Physics 217: magnetic multipoles Multipole expansion of the magnetic vector potential z Magnetic dipoles θ B Magnetic field from a w magnetic dipole m Torque on a magnetic y dipole in uniform B θ Force and energy and x magnetic dipoles 13 November 2002 Physics 217, Fall 2002 1 Multipole expansion of the magnetic vector potential Consider an arbitrary loop that carries a current I. Its vector potential at point r is r Id r =−rr′ Ar()= . θ c ∫ r Just as we did for V, we can expand 1 r I r’ in a power series and use the series as an approximation scheme: d ∞ n 11 r′ = ∑ Pn ()cosθ r rrn=0 (see lecture notes for 21 October 2002 for derivation). 13 November 2002 Physics 217, Fall 2002 2 Multipole expansion of the magnetic vector potential (continued) Put this series into the expression for A: I 11 Ar()=+ drd′cosθ Monopole, dipole, cr ∫∫r2 1322 1 +−rd′ cos θ quadrupole, r3 ∫ 22 1533 3 +−rd′ cosθθ cos octupole r4 ∫ 22 +… Of special note in this expression: 13 November 2002 Physics 217, Fall 2002 3 Multipole expansion of the magnetic vector potential (continued) The monopole term is zero, since ∫ d = 0. This isn’t surprising, since “no magnetic monopoles” is built into the Biot-Savart law, from which we obtained A. For points far away from the loop compared to its size, we obtain a good approximation for A by using just the first (or first two) nonvanishing terms. (For points closer by, one would need more terms for the same accuracy.) This is, of course, the same useful behaviour we saw in the multipole expansion of V.
    [Show full text]
  • Multipole Expansions in Radiation Theory of Quantum Systems
    Multipole expansions in quantum radiation theory M. Ya. Agre National University of “Kyiv-Mohyla Academy”, 04655 Kyiv, Ukraine E-mail: [email protected] With the help of mathematical technique of irreducible tensors the multipole expansion for the probability amplitude of spontaneous radiation of a quantum system is derived. It is shown that the found series represents the total radiation amplitude in the form of the sum of radiation amplitudes of electric and magnetic 2l-pole (l = 1, 2, 3,…) photons. All information about the radiating system is contained in the coefficients of the series which are the irreducible tensors being determined by the current density of transition. The expansion can be used for solving different problems that arise in studying electromagnetic field-quantum system interaction both in long-wave approximation and outside its framework. PACS number(s): 31.15.ag, 32.70.-n, 32.90.+a I. INTRODUCTION aligned (i.e., spin-polarized) atoms in long-wave 1 approximation . The known multipole expansion for Multipole expansions in classical electrodynamics the probability amplitude of a quantum transition are the seriess for potentials or field strengths, where accompanied by radiation of photon with definite the coefficients are the irreducible tensors dependent polarization and direction of motion is based on on the charge or current distributions of the system that representation of function e expik r, where e is is the source of the field. In every term of the multipole the vector of right(left)-hand circular polarization and k series the irreducible tensors have been convolved in is the wave vector (i.e., the momentum of the photon in scalars (for the scalar potential) or vectors (for the the units of ), in the form of the series in the vector potential or field strength) with the irreducible spherical vectors or the fields of electric and magnetic tensors specifying the corresponding fields (called the multipoles (see, e.g., [1]).
    [Show full text]
  • Conventional Magnets for Accelerators Lecture 1
    Conventional Magnets for Accelerators Lecture 1 Ben Shepherd Magnetics and Radiation Sources Group ASTeC Daresbury Laboratory [email protected] Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 1 Course Philosophy An overview of magnet technology in particle accelerators, for room temperature, static (dc) electromagnets, and basic concepts on the use of permanent magnets (PMs). Not covered: superconducting magnet technology. Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 2 Contents – lectures 1 and 2 • DC Magnets: design and construction • Introduction • Nomenclature • Dipole, quadrupole and sextupole magnets • ‘Higher order’ magnets • Magnetostatics in free space (no ferromagnetic materials or currents) • Maxwell's 2 magnetostatic equations • Solutions in two dimensions with scalar potential (no currents) • Cylindrical harmonic in two dimensions (trigonometric formulation) • Field lines and potential for dipole, quadrupole, sextupole • Significance of vector potential in 2D Ben Shepherd, ASTeC Cockcroft Institute: Conventional Magnets, Autumn 2016 3 Contents – lectures 1 and 2 • Introducing ferromagnetic poles • Ideal pole shapes for dipole, quad and sextupole • Field harmonics-symmetry constraints and significance • 'Forbidden' harmonics resulting from assembly asymmetries • The introduction of currents • Ampere-turns in dipole, quad and sextupole • Coil economic optimisation-capital/running costs • Summary of the use of permanent magnets (PMs) • Remnant fields and coercivity
    [Show full text]
  • Problem 1. Practice with Delta-Fcns a Delta-Function Is a Infinitely Narrow Spike with Unit Integral
    Problem 1. Practice with delta-fcns A delta-function is a infinitely narrow spike with unit integral. R dx δ(x) = 1. (a) (Optional). A theta function (or step function) is 8 1 x > x <> o θ(x − xo) = 0 x < xo (1) :> 1 2 x = xo Not worrying about the case when x = xo, show that d θ(x − x ) = δ(x − x ) (2) dx o o (b) (Optional) Show that 1 δ(ax) = δ(x) (3) jaj (c) (Optional) Using the identity of part (b), show that X 1 δ(g(x)) = δ(x − x ) where g(x ) = 0 and g0 (x ) 6= 0 (4) jg0(x )j m m m m m m (d) Show that Z 1 1 dx δ(cos(x)) e−x = (5) 0 2 sinh(π=2) The delta function δ(x) should be thought of as sequence of functions δ(x) { known as a Dirac sequence { which becomes infinitely narrow and have integral one. For example, an infinitely narrow sequence of normalized Gaussians 1 x2 − 2 δ(x) = lim δ(x) = lim p e 2 : (6) !0 !0 2π2 The important properties are Z 1 = dx δ(x) (7) and the convolution property Z f(x) = lim dxof(xo)δ(x − xo) (8) !0 I will notate any Dirac sequence with δ(x). Delta functions are perhaps best thought about in Fourier space. In particular think about Eq. (??) in Fourier space. At finite epsilon this reads f(k) ' f(k)δ(k) : (9) 1 So the Fourier transform of a Dirac sequence δ(k) should be essentially one, except at large k where the function f(k) is presumably small.
    [Show full text]
  • On Modeling Magnetic Fields on a Sphere with Dipoles and Quadrupoles by DAVID G
    On Modeling Magnetic Fields on a Sphere with DipolesA and Quadrupoles<*Nfc/ JL GEOLOGICAL SURVEY PROFESSIONAL PAPER 1118 On Modeling Magnetic Fields on a Sphere with Dipoles and Quadrupoles By DAVID G. KNAPP GEOLOGICAL SURVEY PROFESSIONAL PAPER 1118 A study of the global geomagnetic field with special emphasis on quadrupoles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Knapp, David Goodwin, 1907- On modeling magnetic fields on a sphere with dipoles and quadrupoles. (Geological Survey Professional Paper 1118) Bibliography: p. 35 1. Magnetism, Terrestrial Mathematical models. 2. Quadrupoles. I. Title. II. Series: United States Geological Survey Professional Paper 1118. QC827.K58 538'.?'ol84 79-4046 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03262-7 CONTENTS Page Page /VOStrHCt ™™-™™™™"™-™™™"™«™™-«—"—————————————— j_ Relations with spherical harmonic analysis—Continued Introduction——————————-—--——-———........—..——....... i Other remarks concerning eccentric dipoles ———— 14 Characteristics of the field of a dipole —————————————— 1 Application to extant models -—————————-——- Multipoles ——————————-—--——--—-——--——-——...._. 2 14 E ccentric-dipole behavior ———————————————• The general quadrupole ——————-———._....................—.— 2 20 Results of calculations --—--—------——-——-—- 21 Some characteristics
    [Show full text]
  • 1 Chapter 3 Dipole and Quadrupole Moments 3.1
    1 CHAPTER 3 DIPOLE AND QUADRUPOLE MOMENTS 3.1 Introduction + + p + 111 E τττ − −−− − FIGURE III.1 Consider a body which is on the whole electrically neutral, but in which there is a separation of charge such that there is more positive charge at one end and more negative charge at the other. Such a body is an electric dipole. Provided that the body as a whole is electrically neutral, it will experience no force if it is placed in a uniform external electric field, but it will (unless very fortuitously oriented) experience a torque. The magnitude of the torque depends on its orientation with respect to the field, and there will be two (opposite) directions in which the torque is a maximum . The maximum torque that the dipole experiences when placed in an external electric field is its dipole moment . This is a vector quantity, and the torque is a maximum when the dipole moment is at right angles to the electric field. At a general angle, the torque τττ, the dipole moment p and the electric field E are related by τ = p ××× E. 3.1.1 The SI units of dipole moment can be expressed as N m (V/m) −1. However, work out the dimensions of p and you will find that its dimensions are Q L. Therefore it is simpler to express the dipole monent in SI units as coulomb metre, or C m. Other units that may be encountered for expressing dipole moment are cgs esu, debye, and atomic unit. I have also heard the dipole moment of thunderclouds expressed in kilometre coulombs.
    [Show full text]