Systems Level Analysis of Histone H3 Post-Translational Modifications (Ptms) Reveals Features of PTM Crosstalk in Chromatin Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Systems Level Analysis of Histone H3 Post-Translational Modifications (Ptms) Reveals Features of PTM Crosstalk in Chromatin Regulation University of Southern Denmark Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation Schwämmle, Veit; Sidoli, Simone; Ruminowicz, Chrystian; Wu, Xudong; Lee, Chung-Fan; Helin, Kristian; Jensen, Ole Nørregaard Published in: Molecular and Cellular Proteomics DOI: 10.1074/mcp.M115.054460 Publication date: 2016 Document version: Final published version Citation for pulished version (APA): Schwämmle, V., Sidoli, S., Ruminowicz, C., Wu, X., Lee, C-F., Helin, K., & Jensen, O. N. (2016). Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Molecular and Cellular Proteomics, 15(8), 2715-2729. https://doi.org/10.1074/mcp.M115.054460 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 09. Oct. 2021 crossmark Research © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Systems Level Analysis of Histone H3 Post- translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation*□S Veit Schwa¨mmle‡ʈ**, Simone Sidoli‡§§**, Chrystian Ruminowicz‡, Xudong Wu§‡‡, Chung-Fan Lee§, Kristian Helin§¶, and Ole N. Jensen‡ Histones are abundant chromatin constituents carrying vealed correlations between PTM and enzyme levels. We numerous post-translational modifications (PTMs). Such conclude that middle-down proteomics is a powerful tool PTMs mediate a variety of biological functions, including to determine conserved or dynamic interdependencies recruitment of enzymatic readers, writers and erasers between histone marks, which paves the way for detailed that modulate DNA replication, transcription and repair. investigations of the histone code. Histone H3 PTM data Individual histone molecules contain multiple coexisting is publicly available in the CrossTalkDB repository at PTMs, some of which exhibit crosstalk, i.e. coordinated or http://crosstalkdb.bmb.sdu.dk. Molecular & Cellular mutually exclusive activities. Here, we present an inte- Proteomics 15: 10.1074/mcp.M115.054460, 2715–2729, grated experimental and computational systems level 2016. molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embry- onic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12؊/؊), Chromatin is a dynamic fiber mainly composed of DNA and -PRC1 (Ring1A/B؊/؊) and (Dnmt1/3a/3b؊/؊) we performed histone proteins. Although DNA stores the genomic informa comprehensive PTM analysis of histone H3 tails (50 aa) by tion of the organism, histones and their post-translational utilizing quantitative middle-down proteome analysis by modifications (PTMs) are responsible for maintaining the tandem mass spectrometry. We characterized combina- chromatin structure. Histone PTMs play a fundamental role in torial PTM features across the four mESC lines and then transcriptional regulation and epigenetics, as they contribute applied statistical data analysis to predict crosstalk be- in recruiting enzymes involved in chromatin remodeling and tween histone H3 PTMs. We detected an overrepresenta- gene activity, and can be inherited through the cell cycle tion of positive crosstalk (codependent marks) between thereby maintaining a memory of gene expression profiles (1). adjacent mono-methylated and acetylated marks, and Histone PTMs have been extensively studied, and a large negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated number of histone readers/writers/erasers have been charac- lysine residues in the H3 tails. We report novel features of terized (2). It has been known for about 20 years now that PTM interplay involving hitherto poorly characterized ar- combinations of histone modifications can affect histone- ginine methylation and lysine methylation sites, including enzyme interaction, where nearby or distant PTMs interde- H3R2me, H3R8me and H3K37me. Integration of the H3 pendently recruit or release a given enzyme. This phenome- data with RNAseq data by coabundance clustering anal- non is described as PTM crosstalk (3, 4). Originally, crosstalk ysis of histone PTMs and histone modifying enzymes re- is the disturbance caused by the electric or magnetic fields of one telecommunication signal affecting a signal in an adjacent From the ‡Centre for Epigenetics and VILLUM Center for Bioana- circuit. Thus, it defines something that generates interference lytical Sciences, Department of Biochemistry and Molecular Biology, to a functional mechanism. In chromatin biology, crosstalk University of Southern Denmark, Campusvej 55, DK-5230 Odense M, can be used also in positive terms, as one single PTM might Denmark; §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Den- require the presence of a second distinct PTM within the mark; ¶The Danish Stem Cell Centre (Danstem), University of Copen- same protein in order to mediate a biological function. This hagen, DK-2200, Copenhagen, Denmark phenomenon is typically described as positive crosstalk (5). Received August 7, 2015, and in revised form, June 13, 2016 For instance, the combinatorial histone mark H3S10phK14ac Published, MCP Papers in Press, June 14, 2016, DOI within the p21 (CDKN1A) gene activates transcription, which 10.1074/mcp.M115.054460 Author contributions: V.S., S.S., K.H., and O.N.J. designed re- does not occur when only one of the two PTMs are present search; V.S., S.S., X.W., and C.L. performed research; V.S., S.S., and (6), implying that the two modifications need to be deposited C.R. analyzed data; V.S., S.S., and O.N.J. wrote the paper. in a coordinated manner. Also, the histone lysine demethylase Molecular & Cellular Proteomics 15.8 2715 Conserved Crosstalk Patterns of Post-translational Histone Modifications PHF8 has its highest binding efficiency to the nucleosome perturbed states where global changes of the PTM landscape when the three marks H3K4me3K9acK14ac are present (7). are induced. Such a study has not been carried out to date. On the other hand, negative crosstalk involves two PTMs that Mass spectrometry (MS) is extensively used to study his- are mutually exclusive, either in the same amino acid residue tone PTMs (17), as it is currently the most suitable technology or on two different residues. For instance, the protein HP1 to characterize proteins containing unknown modifications recognizes H3K9me2/me3 and it spreads this mark along (18). We recently optimized a middle-down proteomics work- chromatin to compact it, but it releases the binding in case flow to quantify coexisting histone H3 marks from mouse H3S10 is phosphorylated (8). Also, acetylation of H3K4 was stem cells (19) using high mass resolution MS equipped with found to inhibit the binding of the protein spChp1 to electron transfer dissociation (ETD) MS/MS capability. ETD H3K9me2/me3 in S. pombe (9). provides efficient fragmentation of histone N-terminal tails The Polycomb Repressive Complex (PRC) group proteins (20), which leads to precise mapping of PTMs within the are involved in histone modifications and PRC2, involved in protein sequence. We also developed bioinformatics tools to histone H3K27 methylation, was recently found to crosstalk process MS/MS data from hypermodified peptides. We sub- with the other major histone H3 methyltransferases G9a/GLP, sequently proposed a simple quantifier approach to estimate responsible for H3K9 methylation (10). Moreover, PRC1 rec- the crosstalk between two histone PTMs; by comparing the ognizes H3K27me3 with its subunit CBX and catalyze ubiq- observed and theoretical frequency of two PTMs to coexist on uitination of H2AK119 (11). The epigenetic machinery is also the same histone tail the tool can identify conserved interplays characterized by interconnection between numerous compo- between binary marks in different cell cultures (21). The inter- nents; for instance, the silencing of the inactive X chromo- play was calculated by predicting the frequency of two PTMs some in female organisms is mediated by interacting DNA given their individual relative abundance as calculated from methylation, noncoding RNA and histone PTMs (12). Similarly, peptide ion intensities. Using our in-house developed data DNA methylation is required in embryonic stem cells (ESCs) repository, CrossTalkDB (21), we can now analyze large data for the deposition of H3K9me3 and it antagonizes deposition sets of extensively modified proteins and reveal PTM interde- of H3K27me3 (13). Because of this, a number of engineered pendencies and crosstalk. cell lines were developed with mESC genomes knocked out Here, we report the application of an improved analytical for crucial components of these complexes in order to inves-
Recommended publications
  • Epigenetic Regulation of Muscle Stem Cell Expansion
    Epigenetic regulation of muscle stem cell expansion INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Naturwissenschaften - Doctor rerum naturalium - (Dr. rer. nat.) vorgelegt dem Fachbereich für Biologie und Chemie (FB 08) der Justus-Liebig-Universität Gießen eingereicht von Ting Zhang Gießen, 2015 Die vorliegende Arbeit wurde am Max-Planck-Institut für Herz- und Lungenforschung, W.G. Kerckhoff-Institut in Bad Nauheim angefertigt. Erstgutachter: Prof. Dr. Dr. Thomas Braun Abteilung Entwicklung und Umbau des Herzens Max-Planck-Institut für Herz- und Lungenforschung Ludwigstraße 43, 61231 Bad Nauheim Zweitgutachter: Prof. Dr. Lienhard Schmitz Biochemisches Institut Fachbereich Medizin Justus-Liebig-Universität Gießen Friedrichstrasse 24, 35392 Giessen Disputation am 10.Juni 2015 EIDESSTATTLICHE ERKLÄRUNG „Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten.“ Bad Nauheim, den ZUSAMMENFASSUNG ZUSAMMENFASSUNG Stammzellen der adulten Skelettmuskulatur, auch als
    [Show full text]
  • Subcloning, Expression, and Enzymatic Study of PRMT5
    Georgia State University ScholarWorks @ Georgia State University Biology Theses Department of Biology Summer 7-12-2010 Subcloning, Expression, and Enzymatic Study of PRMT5 Ran Guo Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_theses Part of the Biology Commons Recommended Citation Guo, Ran, "Subcloning, Expression, and Enzymatic Study of PRMT5." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/biology_theses/26 This Thesis is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SUBCLONING, EXPRESSION, AND ENZYMATIC STUDY OF PRMT5 by RAN GUO Under the Direction of Yujun George Zheng ABSTRACT Protein arginine methyltransferases (PRMTs) mediate the transfer of methyl groups to arginine residues in histone and non-histone proteins. PRMT5 is an important member of PRMTs which symmetrically dimethylates arginine 8 in histone H3 (H3R8) and arginine 3 in histone H4 (H4R3). PRMT5 was reported to inhibit some tumor suppressors in leukemia and lymphoma cells and regulate p53 gene, through affecting the promoter of p53. Through methylation of H4R3, PRMT5 can recruit DNA-methyltransferase 3A (DNMT3A) which regulates gene transcription. All the above suggest that PRMT5 has an important function of suppressing cell apoptosis and is a potential anticancer target. Currently, the enzymatic activities of PRMT5 are not clearly understood. In our study, we improved the protein expression methodology and greatly enhanced the yield and quality of the recombinant PRMT5.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
    UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii
    [Show full text]
  • Searching for Inhibitors of the Protein Arginine Methyl Transferases: Synthesis and Characterisation of Peptidomimetic Ligands
    SEARCHING FOR INHIBITORS OF THE PROTEIN ARGININE METHYL TRANSFERASES: SYNTHESIS AND CHARACTERISATION OF PEPTIDOMIMETIC LIGANDS by ASTRID KNUHTSEN B. Sc., Aarhus University, 2009 M. Sc., Aarhus University, 2012 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Pharmaceutical Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2016 © Astrid Knuhtsen, 2016 UNIVERSITY OF COPENH AGEN FACULTY OF HEALTH A ND MEDICAL SCIENCES PhD Thesis Astrid Knuhtsen Searching for Inhibitors of the Protein Arginine Methyl Transferases: Synthesis and Characterisation of Peptidomimetic Ligands December 2015 This thesis has been submitted to the Graduate School of The Faculty of Health and Medical Sciences, University of Copenhagen ii Thesis submission: 18th of December 2015 PhD defense: 11th of March 2016 Astrid Knuhtsen Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark and Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall BC V6T 1Z3, Vancouver Canada Supervisors: Principal Supervisor: Associate Professor Jesper Langgaard Kristensen Department of Drug Design and Pharmacology, University of Copenhagen, Denmark Co-Supervisor: Associate Professor Daniel Sejer Pedersen Department of Drug Design and Pharmacology, University of Copenhagen, Denmark Co-Supervisor: Assistant Professor Adam Frankel Faculty of Pharmaceutical
    [Show full text]
  • Reversible Histone Glycation Is Associated with Disease-Related Changes in Chromatin Architecture
    ARTICLE https://doi.org/10.1038/s41467-019-09192-z OPEN Reversible histone glycation is associated with disease-related changes in chromatin architecture Qingfei Zheng 1, Nathaniel D. Omans1,2, Rachel Leicher3,4, Adewola Osunsade 1,4, Albert S. Agustinus 1, Efrat Finkin-Groner1, Hannah D’Ambrosio1, Bo Liu5, Sarat Chandarlapaty 5, Shixin Liu3 & Yael David1,4,6,7 Cellular proteins continuously undergo non-enzymatic covalent modifications (NECMs) that accumulate under normal physiological conditions and are stimulated by changes in the 1234567890():,; cellular microenvironment. Glycation, the hallmark of diabetes, is a prevalent NECM asso- ciated with an array of pathologies. Histone proteins are particularly susceptible to NECMs due to their long half-lives and nucleophilic disordered tails that undergo extensive regulatory modifications; however, histone NECMs remain poorly understood. Here we perform a detailed analysis of histone glycation in vitro and in vivo and find it has global ramifications on histone enzymatic PTMs, the assembly and stability of nucleosomes, and chromatin archi- tecture. Importantly, we identify a physiologic regulation mechanism, the enzyme DJ-1, which functions as a potent histone deglycase. Finally, we detect intense histone glycation and DJ-1 overexpression in breast cancer tumors. Collectively, our results suggest an additional mechanism for cellular metabolic damage through epigenetic perturbation, with implications in pathogenesis. 1 Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA. 3 Laboratory of Nanoscale Biophysics and Biochemistry, Rockefeller University, New York, NY 10065, USA. 4 Tri-institutional PhD Program in Chemical Biology, New York, NY 10065, USA.
    [Show full text]
  • Asymmetric Expression of Lincget Biases Cell Fate in Two-Cell Mouse Embryos
    UC Riverside UC Riverside Previously Published Works Title Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos. Permalink https://escholarship.org/uc/item/3100h0cm Journal Cell, 175(7) ISSN 0092-8674 Authors Wang, Jiaqiang Wang, Leyun Feng, Guihai et al. Publication Date 2018-12-01 DOI 10.1016/j.cell.2018.11.039 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos Graphical Abstract Authors Jiaqiang Wang, Leyun Wang, Guihai Feng, ..., Zhonghua Liu, Wei Li, Qi Zhou Correspondence [email protected] (W.L.), [email protected] (Q.Z.) In Brief An endogenous retrovirus-associated nuclear long noncoding RNA biases cell fate in mouse two-cell embryos. Highlights Data Resources d LincGET is asymmetrically expressed in the nucleus of two- GSE110419 to four-cell mouse embryos d LincGET overexpression biases blastomere fate toward inner cell mass (ICM) d LincGET physically binds to CARM1 d LincGET/CARM1 activates ICM-specific genes Wang et al., 2018, Cell 175, 1887–1901 December 13, 2018 ª 2018 Elsevier Inc. https://doi.org/10.1016/j.cell.2018.11.039 Article Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos Jiaqiang Wang,1,2,3,4,8 Leyun Wang,1,8 Guihai Feng,1,8 Yukai Wang,1,8 Yufei Li,1,2 Xin Li,5,6 Chao Liu,1,2 Guanyi Jiao,1,2 Cheng Huang,1,2 Junchao Shi,7 Tong Zhou,7 Qi Chen,7 Zhonghua Liu,4 Wei Li,1,2,3,* and Qi Zhou1,2,3,9,* 1State Key Laboratory of Stem Cell and Reproductive
    [Show full text]
  • PRMT5 Modulates the Metabolic Response to Fasting Signals
    PRMT5 modulates the metabolic response to fasting signals Wen-Wei Tsaia, Sherry Niessenb, Naomi Goebela, John R. Yates IIIb, Ernesto Guccionec,d, and Marc Montminya,1 aThe Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, CA 92037; bDepartment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; cInstitute of Molecular and Cell Biology, Proteos, Singapore 138673; dDepartment of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074 Contributed by Marc Montminy, March 11, 2013 (sent for review February 20, 2013) Under fasting conditions, increases in circulating glucagon maintain sites. The results provide a mechanism to explain how latent cy- glucose balance by promoting hepatic gluconeogenesis. Triggering toplasmic regulators such as CRTC2 may contribute to signaling of the cAMP pathway stimulates gluconeogenic gene expression in the nucleus through their association with chromatin mod- through the PKA-mediated phosphorylation of the cAMP response ifying enzymes. element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 Results (CRTC2). CREB and CRTC2 activities are increased in insulin resis- In mass spectroscopy studies using epitope-tagged CRTC2 to tance, in which they promote hyperglycemia because of constitu- identify relevant interacting proteins, we recovered the protein tive induction of the gluconeogenic program. The extent to which arginine methyltransferase 5 (PRMT5) (Fig. S1 A and B). We CREB and CRTC2 are coordinately up-regulated in response to glu- confirmed the CRTC2:PRMT5 interaction in coimmunopreci- cagon, however, remains unclear. Here we show that, following its pitation studies with epitope-tagged proteins (Fig.
    [Show full text]
  • H3r8me2(Asym) Polyclonal Antibody - Classic
    H3R8me2(asym) polyclonal antibody - Classic Cat. No. C15410286 Specificity: Human, mouse, C. elegans, rat, chicken, Type: Polyclonal Xenopus, Drosophila, plant Source: Rabbit Purity: Affinity purified Lot #: 001 Storage: Store at -20°C; for long storage, store at -80°C. Avoid multiple freeze-thaw cycles. Size: 50 µg Precautions: This product is for research use only. Not for Concentration: 0.84 µg/µl use in diagnostic or therapeutic procedures. Applications Suggested dilution Results ChIP 2-5 µg/million cells Figure 1 Immunohistochemistry 1:100 IF 1:200 Figure 2 Western blot 1:500 Figure 3 Target description Chromatin is the arrangement of DNA and proteins in which chromosomes are formed. Correspondingly, chromatin is formed from nucleosomes, which are comprised of a set of four histone proteins (H2A, H2B, H3, H4) wrapped with DNA. Chromatin is a very dynamic structure in which numerous post-translational modifications work together to activate or repress the availability of DNA to be copied, transcribed, or repaired. These marks decide which DNA will be open and commonly active (euchromatin) or tightly wound to prevent access and activation (heterochromatin). Common histone modifications include methylation of lysine and arginine, acetylation of lysine, phosphorylation of threonine and serine, and sumoylation, biotinylation, and ubiquitylation of lysine. In particular, dimethylation of H3 Arg8 (H3 R8Me2) is known as a mark of transcriptional repression. The protein arginine methyltransferases PRMT5 and PRMT2 can both methylate Arg8, with PRMT2 specifically methylating in an asymmetric manner. In addition, asymmetric dimethylation of Arg8 inhibits H3K9 methylation by G9a, but symmetric Arg8Me2 does not. 1 Results Figure 1.
    [Show full text]
  • Symmetric-Di-Methyl-Histone H3 (Arg8) Rabbit
    Symmetric -Di-methyl-Histone H3 (Arg8) rabbit pAb ( H3R8me2(sy) pAb) www.ptm-biolab.com.cn Cat#: PTM-672 [email protected] Species: Rabbit 0571-2883 3567 Size: 100 μl Form: supplied in liquid form Recommend Species Swissprot Molecular Application Immunogen dilution Reactivity ID Weight H3R8me2(sy) WB, Dot, ELISA 1:2000 for WB H, M, R, Mk P68431 17 KDa -KLH **Species reactivity is determined by WB. Kept at -20oC after reconstituted. *** Anti-rabbit secondary antibodies must be used to detect this antibody. Source/Purification: This product is produced by immunizing rabbits with a synthetic di-methyl(sy) peptide corresponding to residues surrounding Arg8 of human histone H3. Antibodies are purified by protein A-conjugated agarose followed by di-methylated(sy) histone H3 (Arg8) peptide affinity chromatography. Recommended Applications: ELISA, Dot blot, Western blot. Recommended antibody dilution: WB: 1:2000 NOTE: For WB, incubate membrane with diluted antibody in 5% nonfat milk, 1 x TBS, 0.1% Tween- 20 for two hours at room temperature with gentle shaking. Prepare working dilution immediately before use. Use at an assay dependent concentration. Optimal dilutions/concentrations should be determined by the end user. Not yet tested in other applications Scientific Description: Proteins post-translational Modification (PTM) is an important reversible event controlling protein activity. The amino-terminal tails of core histones undergo multiple modifications in multiple sites, termed as “histone code” or “epigenetic code”. Lysine methylation or arginine methylation in core histones is a major determinant for the formation of active and inactive regions of the genome and therefore plays vital roles in multiple cellular events.
    [Show full text]
  • H3r8me2(Asym) | Histone H3 (Asym-Dimethylated Arg8) Product Information
    Product no AS16 3177 H3R8me2(asym) | Histone H3 (asym-dimethylated Arg8) Product information Immunogen KLH-conjugated synthetic peptide Host Rabbit Clonality Polyclonal Purity Affinity purified serum Format Liquid Quantity 50 µg Storage Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes. Additional information This antibody preparation is provided in 20 mM Potassium Phosphate pH 7.2, 150 mM NaCl, 0,01% sodium azide and 30% glycerol. Application information Recommended dilution 2 ug (ChIP), 1: 100 (IF), 1: 100 (IHC), 1:500 (WB) Expected | apparent 15 kDa MW Confirmed reactivity Caenorhabditis elegans, Human Predicted reactivity Chicken, Drosophila melanogaster, Mouse, Plant, Rat, Xenopus sp. Not reactive in No confirmed exceptions from predicted reactivity are currently known. application example Chromatin Immunoprecipitation using anti-H3R8me2(asym) antibodies. Chromatin from one million formaldehyde cross-linked Hela cells was used with 2 µg of H3R8me2(asym) and 20ul of magnetic beads per immunoprecipitation. A no antibody (No Ab) control was also used. Immunoprecipitated DNA was quantified using quantitative real-time PCR, and normalized to the input chromatin. Immunofluorescence using anti-H3R8me2(asym) antibodies. Tissue: HeLa cells. Fixation: 0.5% PFA. Primary antibody: used at a 1:100 dilution for 1 h at RT. Secondary antibody: FITC secondary antibody at 1:10 000 for 45 min at RT. Localization: H3R8me2(asym) is nuclear and chromosomal. Staining: H3R8me2(asym) is expressed in green and the nuclei and alpha-tubulin are counterstained with DAPI (blue) and Dylight® 594 (red).
    [Show full text]
  • Anti-Symmetric Di-Methyl-Histone H3 (Arg2) Mouse Mab
    Anti-Symmetric Di-Methyl-Histone H3 (Arg2) Mouse mAb Catalog # PTM-693 General Information Images Host species Mouse Dot Blot Clonality Monoclonal Blocking buffer: 5% NFDM/TBST Primary ab dilution: 1:1000 Clone number / Primary ab incubation condition: 2 hours at room temperature Synonym H3R2me2 (sy) Secondary ab: Goat Anti-Mouse IgG H&L Immunogen UniProt MW (kDa) Applications (HRP) species Immunogen peptide quantity: 1 ng, 4 ng, 16 ng Human P68431 17 WB Exposure time: 60 s The list of peptides is included in the table below: No. Peptide No. Peptide Product Usage Information Lane 1 H3R2me2 (sy) Lane 2 H3R2me1 Application Dilution Recommended species Lane 3 H3R2me2 (asy) Lane 4 H3K4ac Human, Mouse, Rat, Lane 5 H3K4cr Lane 6 H3K4hib WB 1:500-1:2000 Lane 7 H3K4me1 Lane 8 H3K4me2 Chlorocebus aethiops Lane 9 H3K4me3 Lane 10 H3R8me1 Lane 11 H3R8me2 Lane 12 H3R8me2 (asy) Properties Lane 13 H3R2un Storage Store at -20 °C. Avoid freeze / thaw cycles. WB Blocking buffer: 5% NFDM/TBST Stability Stable for 12 months from date of receipt / reconstitution Primary ab dilution: 1:2000 Constituents PBS, Glycerol, BSA Primary ab incubation condition: 2 hours at room temperature Purity Antibodies are purified by protein G-conjugated agarose Secondary ab: Goat Anti-Mouse IgG H&L followed by di-methylated(sy) histone H3 (Arg2) peptide (HRP) Lysate: MCF-7, BRL, COS-7 affinity chromatography. Protein loading quantity: 20 μg Isotype IgG Exposure time: 60 s Predicted MW: 17 kDa Target Information Observed MW: 17 kDa Function Histone post-translational modifications (PTMs) are key mechanisms of epigenetics that modulate chromatin Research Use structures, termed as “histone code”.
    [Show full text]
  • Epigenetic Control of Reprogramming and Cellular Differentiation
    Comparative and Functional Genomics EPIGENETIC CONTROL OF REPROGRAMMING AND CELLULAR DIFFERENTIATION Guest Editors: Lucia Latella, Daniela Palacios, Sonia Forcales, and Pier Lorenzo Puri Epigenetic Control of Reprogramming and Cellular Differentiation Comparative and Functional Genomics Epigenetic Control of Reprogramming and Cellular Differentiation Guest Editors: Lucia Latella, Daniela Palacios, Sonia Forcales, and Pier Lorenzo Puri Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Comparative and Functional Genomics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Allan Bradley, UK S. Hagemann, Austria E. Pasyukova, Russia Kevin Brindle, UK H. Heng, USA G. Pesole, Italy J. Camonis, France E. Hovig, Norway G. Piaggio, Italy S. Liang Chen, Taiwan Yeon-Su Lee, Korea E. M. Reis, Brazil P. V. Chou da r y, USA Peter Little, Australia Brian Wigdahl, USA M. A. Collart, Switzerland Ali Masoudi-Nejad, Iran W. Zhang, USA Ian Dunham, UK Giuliana Napolitano, Italy Jinfa Zhang, USA Soraya E. Gutierrez, Chile Ferenc Olasz, Hungary M. Hadzopoulou-Cladaras, Greece John Parkinson, Canada Contents Epigenetic Control of Reprogramming and Cellular Differentiation, Lucia Latella, Daniela Palacios, Sonia Forcales, and Pier Lorenzo Puri Volume 2012, Article ID 538639, 2 pages A Systems Approach and Skeletal Myogenesis,
    [Show full text]