PRMT5 Modulates the Metabolic Response to Fasting Signals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanism of CREB Recognition and Coactivation by the CREB-Regulated Transcriptional Coactivator CRTC2
Mechanism of CREB recognition and coactivation by the CREB-regulated transcriptional coactivator CRTC2 Qianyi Luoa, Kristin Visteb, Janny Concha Urday-Zaaa, Ganesan Senthil Kumara, Wen-Wei Tsaib, Afsaneh Talaia, Kelly E. Mayoa, Marc Montminyb,1, and Ishwar Radhakrishnana,1 aDepartment of Molecular Biosciences, Northwestern University, Evanston, IL 60208; and bClayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037 Contributed by Marc Montminy, November 2, 2012 (sent for review October 8, 2012) Basic leucine zipper (bZip) transcription factors regulate cellular program (10). Sequestered in the cytoplasm under feeding con- gene expression in response to a variety of extracellular signals ditions through phosphorylation by the Ser/Thr kinase SIK2, and nutrient cues. Although the bZip domain is widely known to CRTC2 is dephosphorylated in response to pancreatic glucagon play significant roles in DNA binding and dimerization, recent during fasting, when it translocates to the nucleus and stimulates studies point to an additional role for this motif in the recruitment gluconeogenic gene expression. of the transcriptional apparatus. For example, the cAMP response Recent studies support a conserved role for CRTCs through evolution. Deletion of TORC, the single CRTC homolog in Dro- element binding protein (CREB)-regulated transcriptional coacti- sophila, reduces fat stores and increases sensitivity to starvation vator (CRTC) family of transcriptional coactivators has been pro- (11). CRTCs also seem to be important in aging: RNAi-mediated posed to promote the expression of calcium and cAMP responsive depletion of CRTC1 in Caenorhabditis elegans extends lifespan, in genes, by binding to the CREB bZip in response to extracellular part through down-regulation of the CREB pathway (12). -
Epigenetic Regulation of Muscle Stem Cell Expansion
Epigenetic regulation of muscle stem cell expansion INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Naturwissenschaften - Doctor rerum naturalium - (Dr. rer. nat.) vorgelegt dem Fachbereich für Biologie und Chemie (FB 08) der Justus-Liebig-Universität Gießen eingereicht von Ting Zhang Gießen, 2015 Die vorliegende Arbeit wurde am Max-Planck-Institut für Herz- und Lungenforschung, W.G. Kerckhoff-Institut in Bad Nauheim angefertigt. Erstgutachter: Prof. Dr. Dr. Thomas Braun Abteilung Entwicklung und Umbau des Herzens Max-Planck-Institut für Herz- und Lungenforschung Ludwigstraße 43, 61231 Bad Nauheim Zweitgutachter: Prof. Dr. Lienhard Schmitz Biochemisches Institut Fachbereich Medizin Justus-Liebig-Universität Gießen Friedrichstrasse 24, 35392 Giessen Disputation am 10.Juni 2015 EIDESSTATTLICHE ERKLÄRUNG „Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis“ niedergelegt sind, eingehalten.“ Bad Nauheim, den ZUSAMMENFASSUNG ZUSAMMENFASSUNG Stammzellen der adulten Skelettmuskulatur, auch als -
Subcloning, Expression, and Enzymatic Study of PRMT5
Georgia State University ScholarWorks @ Georgia State University Biology Theses Department of Biology Summer 7-12-2010 Subcloning, Expression, and Enzymatic Study of PRMT5 Ran Guo Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_theses Part of the Biology Commons Recommended Citation Guo, Ran, "Subcloning, Expression, and Enzymatic Study of PRMT5." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/biology_theses/26 This Thesis is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SUBCLONING, EXPRESSION, AND ENZYMATIC STUDY OF PRMT5 by RAN GUO Under the Direction of Yujun George Zheng ABSTRACT Protein arginine methyltransferases (PRMTs) mediate the transfer of methyl groups to arginine residues in histone and non-histone proteins. PRMT5 is an important member of PRMTs which symmetrically dimethylates arginine 8 in histone H3 (H3R8) and arginine 3 in histone H4 (H4R3). PRMT5 was reported to inhibit some tumor suppressors in leukemia and lymphoma cells and regulate p53 gene, through affecting the promoter of p53. Through methylation of H4R3, PRMT5 can recruit DNA-methyltransferase 3A (DNMT3A) which regulates gene transcription. All the above suggest that PRMT5 has an important function of suppressing cell apoptosis and is a potential anticancer target. Currently, the enzymatic activities of PRMT5 are not clearly understood. In our study, we improved the protein expression methodology and greatly enhanced the yield and quality of the recombinant PRMT5. -
Genome-Wide Regulatory Roles of the C2H2-Type Zinc Finger Protein
www.nature.com/scientificreports OPEN Genome-wide Regulatory Roles of the C2H2-type Zinc Finger Protein ZNF764 on the Glucocorticoid Received: 09 June 2016 Accepted: 23 December 2016 Receptor Published: 31 January 2017 Abeer Fadda1, Najeeb Syed2, Rafah Mackeh1, Anna Papadopoulou3, Shigeru Suzuki3,4, Puthen V. Jithesh2 & Tomoshige Kino1,3 The C2H2-type zinc finger protein ZNF764 acts as an enhancer for several steroid hormone receptors, and haploinsufficiency of this gene may be responsible for tissue resistance to multiple steroid hormones including glucocorticoids observed in a patient with 16p11.2 microdeletion. We examined genome-wide regulatory actions of ZNF764 on the glucocorticoid receptor (GR) in HeLa cells as a model system. ZNF764- and GR-binding sites demonstrated similar distribution in various genomic features. They positioned predominantly around 50–500 kbs from the transcription start sites of their nearby genes, and were closely localized with each other, overlapping in ~37% of them. ZNF764 demonstrated differential on/off effects on GR-binding and subsequent mRNA expression: some genes were highly dependent on the presence/absence of ZNF764, but others were not. Pathway analysis revealed that these 3 gene groups were involved in distinct cellular activities. ZNF764 physically interacted with GR at ligand-binding domain through its KRAB domain, and both its physical interaction to GR and zinc finger domain appear to be required for ZNF764 to regulate GR transcriptional activity. Thus, ZNF764 is a cofactor directing GR transcriptional activity toward specific biologic pathways by changing GR binding and transcriptional activity on the glucocorticoid-responsive genes. Steroid hormones exert diverse physiologic functions and play central roles in human physiology1,2. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Estrogen-Related Receptor Alpha: an Under-Appreciated Potential Target for the Treatment of Metabolic Diseases
International Journal of Molecular Sciences Review Estrogen-Related Receptor Alpha: An Under-Appreciated Potential Target for the Treatment of Metabolic Diseases Madhulika Tripathi, Paul Michael Yen and Brijesh Kumar Singh * Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (M.T.); [email protected] (P.M.Y.) * Correspondence: [email protected] Received: 7 February 2020; Accepted: 24 February 2020; Published: 28 February 2020 Abstract: The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor (NR) that significantly influences cellular metabolism. ESRRA is predominantly expressed in metabolically-active tissues and regulates the transcription of metabolic genes, including those involved in mitochondrial turnover and autophagy. Although ESRRA activity is well-characterized in several types of cancer, recent reports suggest that it also has an important role in metabolic diseases. This minireview focuses on the regulation of cellular metabolism and function by ESRRA and its potential as a target for the treatment of metabolic disorders. Keywords: estrogen-related receptor alpha; mitophagy; mitochondrial turnover; metabolic diseases; non-alcoholic fatty liver disease (NAFLD); adipogenesis; adaptive thermogenesis 1. Introduction When the estrogen-related receptor alpha (ESRRA) was first cloned, it was found to be a nuclear receptor (NR) that had DNA sequence homology to the estrogen receptor alpha (ESR1) [1]. There are several examples of estrogen-related receptor (ESRR) and estrogen-signaling cross-talk via mutual transcriptional regulation or reciprocal binding to each other’s response elements of common target genes in a context-specific manner [2,3]. -
UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
The Essential Role of the Crtc2-CREB Pathway in Β Cell Function And
The Essential Role of the Crtc2-CREB Pathway in β cell Function and Survival by Chandra Eberhard A thesis submitted to the School of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Masters of Science in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa September 28, 2012 © Chandra Eberhard, Ottawa, Canada, 2013 Abstract: Immunosuppressants that target the serine/threonine phosphatase calcineurin are commonly administered following organ transplantation. Their chronic use is associated with reduced insulin secretion and new onset diabetes in a subset of patients, suggestive of pancreatic β cell dysfunction. Calcineurin plays a critical role in the activation of CREB, a key transcription factor required for β cell function and survival. CREB activity in the islet is activated by glucose and cAMP, in large part due to activation of Crtc2, a critical coactivator for CREB. Previous studies have demonstrated that Crtc2 activation is dependent on dephosphorylation regulated by calcineurin. In this study, we sought to evaluate the impact of calcineurin-inhibiting immunosuppressants on Crtc2-CREB activation in the primary β cell. In addition, we further characterized the role and regulation of Crtc2 in the β cell. We demonstrate that Crtc2 is required for glucose dependent up-regulation of CREB target genes. The phosphatase calcineurin and kinase regulation by LKB1 contribute to the phosphorylation status of Crtc2 in the β cell. CsA and FK506 block glucose-dependent dephosphorylation and nuclear translocation of Crtc2. Overexpression of a constitutively active mutant of Crtc2 that cannot be phosphorylated at Ser171 and Ser275 enables CREB activity under conditions of calcineurin inhibition. -
Reversible Histone Glycation Is Associated with Disease-Related Changes in Chromatin Architecture
ARTICLE https://doi.org/10.1038/s41467-019-09192-z OPEN Reversible histone glycation is associated with disease-related changes in chromatin architecture Qingfei Zheng 1, Nathaniel D. Omans1,2, Rachel Leicher3,4, Adewola Osunsade 1,4, Albert S. Agustinus 1, Efrat Finkin-Groner1, Hannah D’Ambrosio1, Bo Liu5, Sarat Chandarlapaty 5, Shixin Liu3 & Yael David1,4,6,7 Cellular proteins continuously undergo non-enzymatic covalent modifications (NECMs) that accumulate under normal physiological conditions and are stimulated by changes in the 1234567890():,; cellular microenvironment. Glycation, the hallmark of diabetes, is a prevalent NECM asso- ciated with an array of pathologies. Histone proteins are particularly susceptible to NECMs due to their long half-lives and nucleophilic disordered tails that undergo extensive regulatory modifications; however, histone NECMs remain poorly understood. Here we perform a detailed analysis of histone glycation in vitro and in vivo and find it has global ramifications on histone enzymatic PTMs, the assembly and stability of nucleosomes, and chromatin archi- tecture. Importantly, we identify a physiologic regulation mechanism, the enzyme DJ-1, which functions as a potent histone deglycase. Finally, we detect intense histone glycation and DJ-1 overexpression in breast cancer tumors. Collectively, our results suggest an additional mechanism for cellular metabolic damage through epigenetic perturbation, with implications in pathogenesis. 1 Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA. 3 Laboratory of Nanoscale Biophysics and Biochemistry, Rockefeller University, New York, NY 10065, USA. 4 Tri-institutional PhD Program in Chemical Biology, New York, NY 10065, USA. -
Transcriptomic and Proteomic Profiling Provides Insight Into
BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes. -
Adiponectin Suppresses Gluconeogenic Gene Expression in Mouse Hepatocytes Independent of LKB1-AMPK Signaling
Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling Russell A. Miller, … , Benoit Viollet, Morris J. Birnbaum J Clin Invest. 2011;121(6):2518-2528. https://doi.org/10.1172/JCI45942. Research Article Metabolism The adipocyte-derived hormone adiponectin signals from the fat storage depot to regulate metabolism in peripheral tissues. Inversely correlated with body fat levels, adiponectin reduction in obese individuals may play a causal role in the symptoms of metabolic syndrome. Adiponectin lowers serum glucose through suppression of hepatic glucose production, an effect attributed to activation of AMPK. Here, we investigated the signaling pathways that mediate the effects of adiponectin by studying mice with inducible hepatic deletion of LKB1, an upstream regulator of AMPK. We found that loss of LKB1 in the liver partially impaired the ability of adiponectin to lower serum glucose, though other actions of the hormone were preserved, including reduction of gluconeogenic gene expression and hepatic glucose production as assessed by euglycemic hyperinsulinemic clamp. Furthermore, in primary mouse hepatocytes, the absence of LKB1, AMPK, or the transcriptional coactivator CRTC2 did not prevent adiponectin from inhibiting glucose output or reducing gluconeogenic gene expression. These results reveal that whereas some of the hormone’s actions in vivo may be LKB1 dependent, substantial LKB1-, AMPK-, and CRTC2-independent signaling pathways also mediate effects of adiponectin. Find the latest version: https://jci.me/45942/pdf Research article Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling Russell A. Miller,1 Qingwei Chu,1 John Le Lay,1 Philipp E. Scherer,2 Rexford S.