Utility Scale Wind Turbine Design Issues

Total Page:16

File Type:pdf, Size:1020Kb

Utility Scale Wind Turbine Design Issues Utility Scale Wind Turbine Design Issues Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 [email protected] Talk Topics Wind Turbine Components Wind Plant Components Wind Speed vs. Power Production Project Development Steps Agreements Needed To Develop Offshore Wind Energy Wind Turbine Components Composite Blades Gearbox, Generator and Power Electronics Rotor Hub height Diameter 70-90 m 65-80 m nacelle Rotor RPM ~10-20 Tubular Tower Automatic Pitch blade Control steel tower padmount transformer Inverted T-slab foundation foundation Nacelle for 1.65-MW Turbine What’s Inside? Technology Trends Larger Rotors » 80-100 m Higher Ratings » >2 MW on land » >4 MW offshore Taller Towers » 80-100 m Variable Speed Direct Drive » No gearbox Onboard Cranes Climate Packages Wind Plant Components Electrical Substation Wind Turbine Underground electric system and fiber optic communications Service Road Crane Pad 11.5 MW Madison Wind Power Plant Typical Wind Plant Layout On-Site (Residential) Wind Systems 10 kW Wind Turbine TYPICAL SMALL SYSTEM 10 kW (23 ft. Rotor Diameter) Rural Site, 1 Acre or More Connected to Facility Wiring 24 m (80 ft) GuyedTower Produces ~ 13,000 kWh per Year Excess Power Sold to Utility (PURPA) Safety Cummulative Switch Production Meter Either Net Metering or Very Low Power Processing AC Load Buy-Back Rate Unit (Inverter) Center Cost: ~ $45,000 - $60,000 Relationship of Wind Speed to Power Production Rated Speed GE 1.5xle - 1.5 MW 1600 1400 1200 Wind Speed Power Output 1000 kW 800 600 Turbine Output(kW) Turbine 400 200 0 0.0 5.0 10.0 15.0 20.0 25.0 Wind Speed (m /s) Cut-In Speed Cut-Out Speed 1 m/s = 2.24 mph 1 mph = .447 m/s Wind Plant Output & Maintenance Typical capacity factors are 30-40% at good wind sites Wind speeds are above cut-in >85% of the time Turbines are available to generate >97% of time Scheduled maintenance occurs 1-2 times per year ~1 skilled O&M job for every 10 turbines installed Project Development Steps Site Selection Resource Definition Project Design & Engineering Permitting Financing Construction Operations » 3-5 yr period from site selection to commissioning Land Acquisition Rule of thumb - about 50 acres to the MW Usually Lease Agreement Option on the land first (about $3 to $5 per acre?) Much land is currently optioned Lease cost (~ $3000 - $5000 per turbine per year) Can include royalty payment option Agreements Needed By Developer Land acquisition Permits (local zoning & building; state) Tax Payments Turbine Purchase & Warranty Interconnection Power Purchase Financing Maintenance Planning Uncertainties Permitting » visual (NIMBY) » bird & bat studies Transmission » access & capacity constraints » interconnection study queue backlog Schedule Delays » risk of missing incentive deadlines Weather Wind Forecasting Required for scheduling and dispatching of wind plant output in a growing number of energy markets Adds costs to wind plant operations ($0.08-.20/MWh) Reduces ancillary service costs to grid system operator Reduces/eliminates risks of imbalance charges California Independent System Operator Control Room Conclusions • Wind technologies continue to mature and achieve acceptance • Costs are competitive • Optimization of component sizes • New techniques reduce uncertainty in siting and production forecasting • Large majority of public favors wind energy, but wider deployment is triggering NIMBY opposition • Transmission constraints & inconsistent government policies will limit rate of growth .
Recommended publications
  • CHAPTER 7 Design and Development of Small Wind Turbines
    CHAPTER 7 Design and development of small wind turbines Lawrence Staudt Center for Renewable Energy, Dundalk Institute of Technology, Ireland. For the purposes of this chapter, “small” wind turbines will be defi ned as those with a power rating of 50 kW or less (approximately 15 m rotor diameter). Small electricity-generating wind turbines have been in existence since the early 1900s, having been particularly popular for providing power for dwellings not yet con- nected to national electricity grids. These turbines largely disappeared as rural electrifi cation took place, and have primarily been used for remote power until recently. The oil crisis of the 1970s led to a resurgence in small wind technology, including the new concept of grid-connected small wind technology. There are few small wind turbine manufacturers with a track record spanning more than a decade. This can be attributed to diffi cult market conditions and nascent technol- ogy. However, the technology is becoming more mature, energy prices are rising and public awareness of renewable energy is increasing. There are now many small wind turbine companies around the world who are addressing the growing market for both grid-connected and remote power applications. The design fea- tures of small wind turbines, while similar to large wind turbines, often differ in signifi cant ways. 1 Small wind technology Technological approaches taken for the various components of a small wind turbine will be examined: the rotor, the drivetrain, the electrical systems and the tower. Of course wind turbines must be designed as a system, and so rotor design affects drivetrain design which affects control system design, etc.
    [Show full text]
  • Implementation and Validation of an Advanced Wind Energy Controller in Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake Model
    energies Article Implementation and Validation of an Advanced Wind Energy Controller in Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake Model Sebastian Perez-Becker *, David Marten, Christian Navid Nayeri and Christian Oliver Paschereit Chair of Fluid Dynamics, Hermann Föttinger Institute, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany; [email protected] (D.M.); [email protected] (C.N.N.); [email protected] (C.O.P.) * Correspondence: [email protected] Abstract: Accurate and reproducible aeroelastic load calculations are indispensable for designing modern multi-MW wind turbines. They are also essential for assessing the load reduction capabilities of advanced wind turbine control strategies. In this paper, we contribute to this topic by introducing the TUB Controller, an advanced open-source wind turbine controller capable of performing full load calculations. It is compatible with the aeroelastic software QBlade, which features a lifting line free vortex wake aerodynamic model. The paper describes in detail the controller and includes a validation study against an established open-source controller from the literature. Both controllers show comparable performance with our chosen metrics. Furthermore, we analyze the advanced load reduction capabilities of the individual pitch control strategy included in the TUB Controller. Turbulent wind simulations with the DTU 10 MW Reference Wind Turbine featuring the individual pitch control strategy show a decrease in the out-of-plane and torsional blade root bending moment fatigue loads of 14% and 9.4% respectively compared to a baseline controller. Citation: Perez-Becker, S.; Marten, D.; Nayeri, C.N.; Paschereit, C.O.
    [Show full text]
  • Renewable Energy Systems Usa
    Renewable Energy Systems Usa Which Lamar impugns so motherly that Chevalier sleighs her guernseys? Behaviorist Hagen pagings histhat demagnetization! misfeature shrivel protectively and minimised alarmedly. Zirconic and diatonic Griffin never blahs Citizenship information on material in the financing and energy comes next time of backup capacity, for reward center. Energy Systems Engineering Rutgers University School of. Optimization algorithms are ways of computing maximum or minimum of mathematical functions. Please just a valid email. Renewable Energy Degrees FULL LIST & Green Energy Job. Payment options all while installing monitoring and maintaining your solar energy systems. Units can be provided by renewable systems could prevent automated spam filtering or system. Graduates with a Masters in Renewable Energy and Sustainable Systems Engineering and. Learn laugh about renewable resources such the solar, wind, geothermal, and hydroelectricity. Creating good decisions. The renewable systems can now to satisfy these can decrease. In recent years there that been high investment in solar PV, due to favourable subsidies and incentives. Renewable Energy Research developing the renewable carbon-free technologies required to mesh a sustainable future energy system where solar cell. Solar energy systems is renewable power system, and the grid rural electrification in cold water pumped uphill by. Apex Clean Energy develops constructs and operates utility-scale wire and medicine power facilities for the. International Renewable Energy Agency IRENA. The limitation of fossil fuels has challenged scientists and engineers to vocabulary for alternative energy resources that can represent future energy demand. Our solar panels are thus for capturing peak power without our winters, in shade, and, of cellar, full sun.
    [Show full text]
  • Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN and ACCESS STATEMENT
    Energiekontor UK Ltd Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT Contents Section Page 1. Introduction 2 2. Site Selection 3 3. Design Influences 7 4. Design Evolution, Amount, Layout and Scale 9 5. Development Description, Appearance and Design 14 6. Access 16 Figures Page 2.1 Site Location 3 2.2 Landscape character areas 4 2.3 1945 RAF Fulbeck site plan 5 2.4 Site selection criteria 6 4.1 First Iteration 10 4.2 Second Iteration 11 4.3 Third Iteration 12 4.4 Fourth Iteration 13 5.1 First Iteration looking SW from the southern edge of Stragglethorpe 14 5.2 Fourth Iteration looking SW from the southern edge of 14 Stragglethorpe 5.3 First Iteration looking east from Sutton Road south of Rectory Lane 15 5.4 Fourth Iteration looking east from Sutton Road south of Rectory Lane 15 6.1 Details of temporary access for turbine deliveries 16 EnergieKontor UK Ltd 1 May 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT 1 Introduction The Application 1.8 The Fulbeck Airfield Wind Farm planning application is Context 1.6 The Environmental Impact Assessment (EIA) process also submitted in full and in addition to this Design and Access exploits opportunities for positive design, rather than merely Statement is accompanied by the following documents 1.1 This Design and Access Statement has been prepared by seeking to avoid adverse environmental effects. The Design which should be read together: Energiekontor UK Ltd (“EK”) to accompany a planning and Access Statement is seen as having an important role application for the construction, 25 year operation and in contributing to the design process through the clear Environmental Statement Vol 1; subsequent decommissioning of a wind farm consisting of documentation of design evolution.
    [Show full text]
  • The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence
    sustainability Article The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence Tugce Demirdelen 1 , Pırıl Tekin 2,* , Inayet Ozge Aksu 3 and Firat Ekinci 4 1 Department of Electrical and Electronics Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 2 Department of Industrial Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 3 Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey 4 Department of Energy Systems Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey * Correspondence: [email protected]; Tel.: +90-322-455-0000 (ext. 2411) Received: 17 July 2019; Accepted: 29 August 2019; Published: 3 September 2019 Abstract: In order to produce more efficient, sustainable-clean energy, accurate prediction of wind turbine design parameters provide to work the system efficiency at the maximum level. For this purpose, this paper appears with the aim of obtaining the optimum prediction of the turbine parameter efficiently. Firstly, the motivation to achieve an accurate wind turbine design is presented with the analysis of three different models based on artificial neural networks comparatively given for maximum energy production. It is followed by the implementation of wind turbine model and hybrid models developed by using both neural network and optimization models. In this study, the ANN-FA hybrid structure model is firstly used and also ANN coefficients are trained by FA to give a new approach in literature for wind turbine parameters’ estimation. The main contribution of this paper is that seven important wind turbine parameters are predicted.
    [Show full text]
  • Suzlon Group: Fact Sheet
    Suzlon Group: Fact Sheet Suzlon Group Suzlon Group, consisting of Suzlon Energy Limited (SEL) and its global subsidiaries, is India’s largest renewable energy solutions provider with presence in 18 countries across six continents. Suzlon has a strong presence across the entire wind value chain with a comprehensive range of services to build and maintain the projects, which include design, supply, installation, commissioning of the project and dedicated life cycle asset management services. Suzlon Group is a market leader in India with over 11.9 GW of installed capacity and global installation of ~ 17.9 GW spread across 17 countries in Asia, Australia, Europe, Africa and Americas. Suzlon’s Global wind installations help in reducing ~38 million tonnes of CO2 emissions every year. The company has an installed manufacturing capacity of 4,200 MW wind turbine generators spread across three Nacelle units in India and one unit in China (Joint venture). Suzlon boasts of a wide range within its 2.1 MW suite of products with varying rotor blade and tower heights suitable for all wind regimes. o The S111-120m (120 meter hub height), lattice-tubular tower prototype turbine commissioned in Gujarat in March 2016 achieved ~42% plant load factor (PLF). It received Type Certification in June, 2016. o The S111-140m (140 meter hub height), is the tallest lattice-tubular tower in the country. The prototype set up in August 2017 at Kutch, Gujarat, has received its Type Certification. It is expected to deliver 44% plant load factor (PLF) than earlier products on the same site location and wind conditions.
    [Show full text]
  • Qblade Guidelines V0.6
    QBlade Guidelines v0.6 David Marten Juliane Wendler January 18, 2013 Contact: david.marten(at)tu-berlin.de Contents 1 Introduction 5 1.1 Blade design and simulation in the wind turbine industry . 5 1.2 The software project . 7 2 Software implementation 9 2.1 Code limitations . 9 2.2 Code structure . 9 2.3 Plotting results / Graph controls . 11 3 TUTORIAL: How to create simulations in QBlade 13 4 XFOIL and XFLR/QFLR 29 5 The QBlade 360◦ extrapolation module 30 5.0.1 Basics . 30 5.0.2 Montgomery extrapolation . 31 5.0.3 Viterna-Corrigan post stall model . 32 6 The QBlade HAWT module 33 6.1 Basics . 33 6.1.1 The Blade Element Momentum Method . 33 6.1.2 Iteration procedure . 33 6.2 The blade design and optimization submodule . 34 6.2.1 Blade optimization . 36 6.2.2 Blade scaling . 37 6.2.3 Advanced design . 38 6.3 The rotor simulation submodule . 39 6.4 The multi parameter simulation submodule . 40 6.5 The turbine definition and simulation submodule . 41 6.6 Simulation settings . 43 6.6.1 Simulation Parameters . 43 6.6.2 Corrections . 47 6.7 Simulation results . 52 6.7.1 Data storage and visualization . 52 6.7.2 Variable listings . 53 3 Contents 7 The QBlade VAWT Module 56 7.1 Basics . 56 7.1.1 Method of operation . 56 7.1.2 The Double-Multiple Streamtube Model . 57 7.1.3 Velocities . 59 7.1.4 Iteration procedure . 59 7.1.5 Limitations . 60 7.2 The blade design and optimization submodule .
    [Show full text]
  • Résumé Non Technique ÉTUDE DE DANGERS
    Pièce numéro 5 bis Résumé Non Technique ÉTUDE DE DANGERS Ferme éolienne de la Besse SAS Communes de Cherves-Châtelars et Lésignac-Durand (16) Août 2018 Volkswind France SAS SAS au capital de 250 000 € R.C.S Paris 439 906 934 Centre Régional de Limoges Aéroport de Limoges Bellegarde 87100 LIMOGES Tél : 05.55.48.38.97 / Fax : 05.55.08.24.41 www.volkswind.fr Résumé Non Technique de l’Étude de Dangers Ferme éolienne de la Besse SAS - Août 2018 1 TABLE DES MATIERES TABLE DES MATIERES ....................................................................................................................................... 2 TABLE DES CARTES ........................................................................................................................................... 3 A. PRÉSENTATION DU PROJET ...................................................................................................................... 4 A.1 Le parc éolien ........................................................................................................................................... 4 A.2 L’éolienne ................................................................................................................................................. 5 A.3 L’environnement .................................................................................................................................... 13 B. Détermination des Enjeux ...................................................................................................................... 14 C.
    [Show full text]
  • U.S. Offshore Wind Manufacturing and Supply Chain Development
    U.S. Offshore Wind Manufacturing and Supply Chain Development Prepared for: U.S. Department of Energy Navigant Consulting, Inc. 77 Bedford Street Suite 400 Burlington, MA 01803-5154 781.270.8314 www.navigant.com February 22, 2013 U.S. Offshore Wind Manufacturing and Supply Chain Development Document Number DE-EE0005364 Prepared for: U.S. Department of Energy Michael Hahn Cash Fitzpatrick Gary Norton Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium member organizations Key Contributors American Wind Energy Association Jeff Anthony and Chris Long Great Lakes Wind Collaborative John Hummer and Victoria Pebbles Green Giraffe Energy Bankers Marie DeGraaf, Jérôme Guillet, and Niels Jongste National Renewable Energy Laboratory David Keyser and Eric Lantz Ocean & Coastal Consultants (a COWI company) Brent D. Cooper, P.E., Joe Marrone, P.E., and Stanley M. White, P.E., D.PE, D.CE Tetra Tech EC, Inc. Michael D. Ernst, Esq. Notice and Disclaimer This report was prepared by Navigant Consulting, Inc. for the use of the U.S. Department of Energy – who supported this effort under Award Number DE-EE0005364. The work presented in this report represents our best efforts and judgments based on the information available at the time this report was prepared. Navigant Consulting, Inc. is not responsible for the reader’s use of, or reliance upon, the report, nor any decisions based on the report. NAVIGANT CONSULTING, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.
    [Show full text]
  • Description of an 8 MW Reference Wind Turbine
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Recent citations Description of an 8 MW reference wind turbine - Cyclic flexural test and loading protocol for steel wind turbine tower columns To cite this article: Cian Desmond et al 2016 J. Phys.: Conf. Ser. 753 092013 Chung-Che Chou et al - Techno-economic system analysis of an offshore energy hub with an outlook on electrofuel applications Christian Thommessen et al View the article online for updates and enhancements. - Evaluating wind turbine power coefficient—An undergraduate experiment Edward W. K. Chan et al This content was downloaded from IP address 170.106.40.139 on 26/09/2021 at 05:57 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 Description of an 8 MW reference wind turbine Cian Desmond1, Jimmy Murphy1, Lindert Blonk2 and Wouter Haans2 1 MaREI, University College Cork, Ireland 2 DNV-GL, Turbine Engineering, Netherlands. E-mail: [email protected] Abstract. An 8 MW wind turbine is described in terms of mass distribution, dimensions, power curve, thrust curve, maximum design load and tower configuration. This turbine has been described as part of the EU FP7 project LEANWIND in order to facilitate research into logistics and naval architecture efficiencies for future offshore wind installations. The design of this 8 MW reference wind turbine has been checked and validated by the design consultancy DNV-GL. This turbine description is intended to bridge the gap between the NREL 5 MW and DTU 10 MW reference turbines and thus contribute to the standardisation of research and development activities in the offshore wind energy industry.
    [Show full text]
  • Airborne Wind Energy
    Airborne Wind Energy Technology Review and Feasibility in Germany Seminar Paper for Sustainable Energy Systems Faculty of Mechanical Engineering Technical University of Munich Supervisors Johne, Philipp Hetterich, Barbara Chair of Energy Systems Authors Drexler, Christoph Hofmann, Alexander Kiss, Balínt Handed in Munich, 05. July 2017 Abstract As a new generation of wind energy systems, AWESs (Airborne Wind Energy Systems) have the potential to grow competitive to their conventional ancestors within the upcoming decade. An overview of the state of the art of AWESs has been presented. For the feasibility ana- lysis of AWESs in Germany, a detailed wind analysis of a three dimensional grid of 80 data points above Germany has been conducted. Long-term NWM (Numerical Weather Model) data over 38 years provided by the NCEP (National Centers for Environmental Prediction) has been analysed to determine the wind probability distributions at elevated altitudes. Besides other data, these distributions and available performance curves have been used to calcu- late the evaluation criteria AEEY (Annual Electrical Energy Yield) and CF (Capacity Factor). Together with the additional criteria LCOE (Levelised Costs of Electricity), MP (Material Per- formance), and REP (Rated Electrical Power) a quantitative cost utility analysis according to Zangemeister has been conducted. This analysis has shown that AWESs look promising and could become an attractive alternative to traditional wind energy systems. 2 Table of Contents 1 Introduction ......................................................................................................
    [Show full text]
  • Craiginmoddie Wind Farm
    Craiginmoddie Wind Farm Environmental Impact Assessment Report Chapter 3: Project Description and Construction Methods December 2020 Energiekontor UK Ltd Craiginmoddie Wind Farm Environmental Impact Assessment Report – Volume I Chapter 3: Project Description and Construction Methods CONTENTS 3 PROJECT DESCRIPTION AND CONSTRUCTION METHODS Introduction ..................................................................................................................................... 1 Consultation ..................................................................................................................................... 1 The Site and Its Surroundings ......................................................................................................... 1 Description of Proposed Development ....................................................................................... 1 Associated Development .............................................................................................................. 3 Construction Methodology and Programme ............................................................................. 5 Construction Works ......................................................................................................................... 5 Wind Farm Operation ................................................................................................................... 16 TABLES Table 3.1: Proposed Wind Turbine Coordinates Table 3.2: Indicative programme of construction activities FIGURES Figure
    [Show full text]