Branches of Biology Relevant to Phytogeography

Total Page:16

File Type:pdf, Size:1020Kb

Branches of Biology Relevant to Phytogeography Chapter V Chapter - V Phytogeography Phytogeography (from Greek φυτό, phyto = plant and γεωγραφία, "geography" meaning also distribution) or botanical geography is the branch of biogeography that is concerned with the geographic distribution of plant species and their influence on the earth's surface. Phytogeography is concerned with all aspects of plant distribution, from the controls on the distribution of individual species ranges (at both large and small scales, see species distribution) to the factors that govern the composition of entire communities and floras. Geobotany, by contrast, focuses on the geographic space's influence on plants. Overview The basic data elements of phytogeography are occurrence records (presence or absence of a species) with operational geographic units such as political units or geographical coordinates. These data are often used to construct phytogeographic provinces (floristic provinces) and elements. The questions and approaches in phytogeography are largely shared with zoogeography, except zoogeography is concerned with animal distribution rather than plant distribution. The term phytogeography itself suggests a broad meaning. How the term is actually applied by practicing scientists is apparent in the way periodicals use the term. The American Journal of Botany, a monthly primary research journal, frequently publishes a section titled "Systematics, Phytogeography, and Evolution." Topics covered in the American Journal of Botany's "Systematics and Phytogeography" section include phylogeography, distribution of genetic variation and, historical biogeography, and general plant species distribution patterns. Biodiversity patterns are not heavily covered. Ex: The basic data element of phytogeography are specimen records. These are collected individual plants like this one, a Cinnamon Fern, collected in the Smokey Mountains of North Carolina. Branches of biology relevant to phytogeography Phytogeography is part of a more general science known as biogeography. Phytogeographers are concerned with patterns and process in plant distribution. Most of the major questions and kinds of approaches taken to answer such questions are held in common between phyto- and zoogeographers. 1 | P a g e Chapter V Phytogeography is often divided into two main branches: ecological phytogeography and historical phytogeography. The former investigates the role of current day biotic and abiotic interactions in influencing plant distributions; the latter are concerned with historical reconstruction of the origin, dispersal, and extinction of taxa. Floristics is a study of the flora of some territory or area. Traditional phytogeography concerns itself largely with floristics and floristic classification, see floristic province. PHYTOGRAPHICAL REGIONS OF INDIA A phytogeographical region is defined as an area of uniform climatic conditions and having a distinctly recognisable type of vegetation. According to D. Chattarjee (1962), India can be divided into nine phytogeographical regions. 1. Western Himalayas This region comprises north and south Kashmir, part of Punjab and Kumaon region of Uttaranchal. Average annual rainfall in the region is 100-200 cm. The region is wet in outer southern ranges and slightly dry in the inner areas. At high altitudes, snowfall occurs during winters. The region is subdivided into three zones. 1. Submontane (lower, tropical and subtropical) zone: This zone includes outer Himalayas i.e. regions of Siwalik Hills and adjoining areas from 300 to 1500 m altitude. Average annual rainfall of the zone is around 100 cm. The vegetation consists of subtropical dry evergreen, subtropical pine and tropical moist deciduous forests. 2. Temperate (montane) zone: This zone extends in the western Himalayas between the altitudes 1500 and 3500 m. The climate is wet between the altitudes 1500 and 1800 m and is drier at higher altitude. The vegetation consists of wet forests, Himalayan moist and Himalayan dry temperate forests. 3. Alpine zone: This zone extends between 3500 m and 5000 m altitudes. The rainfall is very scanty and climate is very cool and dry. The vegetation consists of alpine forests. 1. Eastern Himalayas This region extends in the Himalyas from east of Nepal up to Arunachal. The climate is warmer and wetter than in western Himalayas. Tree line and snow line are higher by about 300 m than in the western Himalayas. The tropical temperature and rainfall conditions result in vegetation of the region having greater general species diversity, greater variety of oaks but lesser variety of conifers than in the western Himalayas. This region is also divided into three zones. 2 | P a g e Chapter V 1. Submontane (lower, tropical and subtropical) zone: This zone extends from the foothills up to the 1850 m altitude. The climate is nearly tropical and subtropical. The vegetation consists of subtropical broad-leaved forests, pine forests and wet temperate forests. 2. Temperate (montane) zone: The zone extends from 1850 m to 4000 m altitude, about 500 m higher than in the western Himalayas. The vegetation consists of typical temperate forests with oaks and Rhododendron at lower and conifers at higher altitudes. 3. Alpine zone: This zone extends from 4000-5000 m altitude. The climate is very cool and dry. The vegetation consists of alpine forests. Indus plain This region comprises a part of Punjab, Delhi, Rajasthan, a part of Gujrat and Cutch. The climate has very dry and hot summers alternating with dry and cold winters. The annual rainfall is generally less than 70 cm and may be 10-15 cm in some areas. Most of the region is desert today though it had dense forests about 2000 years ago that were destroyed due to biotic factors particularly extensive cattle grazing. The vegetation today consists of tropical thorn forests and grasslands in some areas. Gangetic plain This region covers part of Delhi, Uttar Pradesh, Bihar, West Bengal and part of Orissa. Average annual rainfall ranges from 50 cm to 150 cm from east to west. The vegetation consists of tropical moist deciduous forests, dry deciduous forests, thorn forests and mangrove forests. Assam The region covers most of the Assam. The climate is characterized by very high temperature and rainfall. The vegetation consists of tropical evergreen and wet temperate forests in the lower plains while hilly tracts up to 1700 m altitude have subtropical pine forests. Central India This region comprises part of Orissa, Madhya Pradesh, Vindhyan region and Gujrat. The areas are mostly hilly with some places at 500-700 m altitude. The average annual rainfall is 100-170 cm. Biotic disturbances are very common in this region resulting in degradation of forests into thorny forests in the open area. The vegetation consists of tropical moist deciduous forests, chiefly Sal forests in areas of annual rainfall above 3 | P a g e Chapter V 150 cm and mixed deciduous forest in areas of 125-150 cm annual rainfall. Tropical thorn forests are found in the areas of annual rainfall below 125 cm. Western coast of Malabar This is a small region extending from Gujrat to Kanyakumari along Western Ghats. The climate is warm humid having annual rainfall over 400 cm. The climate is tropical on the coasts and temperate in the hills. The vegetation consists of tropical wet evergreen, moist evergreen and moist deciduous forests. Wet temperate forests (Sholas) are present in Nilgiri while mangrove forests are found in the saline swamps on the coasts. Deccan The region comprises southern Peninsular India from southern Madhya Pradesh up to Kanyakumari excluding the Western Ghats. The average annual rainfall in the region is about 100 cm. The vegetation consists of tropical dry evergreen, dry deciduous and swamp forests. Andman and Nicobar This region includes Andman and Nicobar Islands. The climate of the region is warm and humid with very high temperature and annual rainfall. The vegetation consists of littoral mangrove, evergreen, semi-evergreen and deciduous forests. Case study: PHYTOGEOGRAPHIC ANALYSIS OF TREE FLORA OF THE EASTERN GHATS Phytogeography is a branch of biogeography which deals with the geographical distribution of plants. The aim of this study was to analyze the geographic distribution of tree flora in the Eastern Ghats of south India, for their conservation significance. Of the total 272 tree species assessed, 36% of the species were found restricted to Asia, 19% were endemic to India and only one species (Hildegardia populifolia) was found endemic to Eastern Ghats. The present phytogeographical analysis revealed that 59% of the tree species inventoried 4 | P a g e Chapter V from Eastern Ghats of south India were common to Sri Lanka and supported their close geographic affinity. Species recovery programs are of urgent need for conservation of species with geographically limited distribution. Currently, the earth is experiencing tremendous changes in the natural environments. Destruction and degradation of natural habitats are widespread and profound and their implications for the sustainability of natural resources are of global significance [1]. Biodiversity loss is a global phenomenon but its impact is greatest in the tropics, where the majority of species are distributed [2]. Though, the tropical forests occupy only 7% of the total land surface area of earth, they hold more than 50% of total species of the world. However, now, they are getting disappeared at a rate of 0.8 to 2% per year [3]. Many conservationists have increased concern on biodiversity loss in tropical forests
Recommended publications
  • Evolution of the Brazilian Phytogeography Classification Systems: Implications for Biodiversity Conservation
    Ciência e Cultura 51(5/6): 331-348, 1999. Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. JOLY, C.A.1; AIDAR, M.P.M.2;KLINK, C.A.3; McGRATH, D.G.4,5; MOREIRA, A. G.6; MOUTINHO, P.5; NEPSTAD, D.C.5,7; OLIVEIRA, A. A.8; POTT, A.9; RODAL, M.J.N.10 & SAMPAIO, E.V.S.B.11 1 Depto. Botânica, IB, UNICAMP, CP 6109, 13083-970, Campinas, SP (mailto:[email protected]) 2 Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CP 4005, 01061-970, São Paulo, SP ([email protected])([email protected]) 3 Depto. de Ecologia, Universidade de Brasilia, C.P. 04631, 70919-970, Brasilia, DF. ([email protected]) 4 Núcleo de Altos Estudos Amazônicos, UFPa, Campus Guamá, 66075-970, Belém, PA. 5 Instituto de Pesquisa Ambiental da Amazônia, Trav. Enéias Pinheiro, 1426, Marco, 66095-100 Belém, PA. ([email protected])([email protected]) 6The Woods Hole Research Center &Instituto de Pesquisa Ambiental da Amazônia, SCLN 210, bloco C, sala 209, 70865-530, Brasilia, DF ([email protected]) 7The Woods Hole Research Center, Woods Hole, MA 02543, USA. 8Universidade de São Paulo, USP, Instituto de Biociências, Ecologia. Rua Matão 321, trav. 14.05008-900. São Paulo, SP. 9Centro de Pesquisa Agropecuária do Pantanal, EMBRAPA, R. 21 de Setembro, 1880 , 79.320-900, Corumbá, MS (mailto:[email protected]) 10Departamento de Energia Nuclear, UFPE, Av. Prof. Luís Freire 1000, 50740-540, Recife, PE ([email protected]) 11Departamento de Biologia, UFRPE, R.
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • Age-Class Differences in Shoot Photosynthesis and Water Relations of Fraser Fir (Abies Fraseri), Southern Appalachian Mountains, USA
    Pagination not final/Pagination non finale NOTE / NOTE Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA Keith Reinhardt, Daniel M. Johnson, and William K. Smith Abstract: Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its nat­ ural environment. We measured and compared photosynthetic gas exchange and water relations of ,understory gerrninant seedlings «3 cm height), older seedlings (>3 years old and -0.15-1 m tall), and saplings (>10 years old and -1-2 m tall) on a leaf-level basis. No significant differences in gas exchange were found among the age classes, although midday xy­ lem water potentials were significantly different among the age classes. Differences in maximum photosynthesis (Amax) were <13%, ranging between 2.4 and 2.7 J,Lmol·m-2·s-1 (P = 0.26). Maximum leaf conductances (groax) were between 0.16 and 0.18 mol·m-2·s-1, varying less than 13% (P = 0.15). Midday xylem water potentials were similar between SE and SA (-1.2 to -1.4 MPa), but GS values were significantly less negative (-0.2 to -0.5 MPa). Thus, gas exchange and water relations in these understory age classes appeared similar, indicating no particular limitation to advanced regeneration be­ tween age classes. Resume: Le sapin de Fraser (Abies fraseri (Pursh) Poir.) est une espece d'arbre endemique dans les forets refuges sur Ie sommet des montagnes dans la partie sud des Appalaches, aux Etats-Unis d'Amenque.
    [Show full text]
  • I BSC II SEMESTER CBCS BOTANY PAPER-II Plant Ecology, Phytogeography, Plant Pathology
    I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-II STUDY MATERIAL K.S.Gitanjali Page 1 I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology UNIT-1 (2 Hr) Introduction and Scope of Ecology The branch of Biology that deals with the study of interrelationships and interdependence between biotic and Abiotic factors in an environment is called “Ecology or “Environmental biology”. In 1886 German Zoologist Ernst Haekal coined the term ‘Ecology’. It is derived from Greek words where ‘Oikos ‘means ‘home’. And ‘logos’ means ‘to study’. Odum Defines Ecology as “The study of structure and function of nature”. The term ‘Environment is derived from French word where ‘Environer’ means ‘to encircle ‘or ‘to surround’. “The study of interactions of man with the living and non living components of environment and interdisciplinary field study is referred as “Environmental studies”. SCOPE OF ECOLOGY 1. Study of Ecology provides knowledge for proper maintenance of natural resources. 2. It helps to understand the harmful effects of pollution, need for its control. 3. It provides knowledge about population, their interactions with environment. And necessity of maintenance of delicate balance between living and none living components of nature. 4. It provides Knowledge on Biodiversity, their types, reasons of depletion, their importance and methods of conservation. 5. It helps to take suitable steps to prevent the extinction of species and protect endangered (Species towards extinction) and endemic (Species restricted to a particular geographical region) species.
    [Show full text]
  • Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: an Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017
    Proc Indian Natn Sci Acad 83 No. 1 March 2017 pp. 151-174 Printed in India. DOI: 10.16943/ptinsa/2016/v82/48406 Review Article Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: An Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017 (Received on 14 March 2016; Revised on 20 May 2016; Accepted on 16 June 2016) A revisit to the literature on cultivated plant species agrobiodiversity in India revealed that the floristic diversity is represented by 17,926 species of angiosperm, while Indian agriculture cultivates 811 plant species and harbours more than 900 wild relatives of the cultivated plant species distributed over 10 (+ 1) biogeographic regions of the the country, significantly higher than commonly cited in the literature. Further, it revealed the role of Indian communities in domestication to cultivation of around 215 economically important plant species, and adaption of around 600 exotic crop species. Based on new evidence, several species require inclusion and others deletion, and many need further investigations to resolve the issue on country of their origin. Cultivation of crop species in diverse natural and man-made agroecological systems for centuries has generated a huge amount of genetic diversity in a large number of crop species, maintained by the farmers in the form of landraces or farmer’s varieties, and conserved as collections/accessions in the national agricultural research system. Keywords: Agrobiodiversity; Domestication; Cultivation; Genetic Diversity; Wild Relatives
    [Show full text]
  • Terpene and Terpenoid Emissions and Secondary Organic Aerosol Production
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION Rosa M. Flores Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons Copyright 2013 Rosa M. Flores Recommended Citation Flores, Rosa M., "TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION", Dissertation, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/818 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION By Rosa M. Flores A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Environmental Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © Rosa M. Flores This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Environmental Engineering. Department of Civil and Environmental Engineering Dissertation Advisor: Paul V. Doskey Committee Member : Chandrashekhar P. Joshi Committee Member : Claudio Mazzoleni Committee Member : Lynn Mazzoleni Committee Member : Judith Perlinger Department Chair: David Hand To dad
    [Show full text]
  • Diversity and Distribution of Ferns in Sub-Saharan Africa, Madagascar
    Journal of Biogeography (J. Biogeogr.) (2004) 31, 1579–1604 ORIGINAL Diversity and distribution of ferns in ARTICLE sub-Saharan Africa, Madagascar and some islands of the South Atlantic J. J. Aldasoro*, F. Cabezas and C. Aedo Real Jardı´n Bota´nico, Consejo Superior ABSTRACT de Investigaciones Cientı´ficas, Madrid, Spain Aim This paper reports the diversity and endemism patterns of African ferns, and explores the potential role of diversity refuges and environmental and historical factors in the shaping of these patterns. Material and locations The extant fern taxa occupying Africa south of the Sahara, Madagascar and some islands of the South Atlantic. Methods The number of taxa in each area or operational geographical unit (OGU) was scored, and the correlation between this number and physical and climatic variables analysed by standard pairwise and stepwise multiple regression analysis (SPR and SMR). The effects of biological factors such as dispersal capacity, reproductive biology, genetic features and certain physiological adaptations were evaluated by comparing the number of species in each OGU. Floral affinities among OGUs were analysed using non-metric multi-dimensional scaling (NMS) and parsimonic analysis of dispersion (PAD), and compared with b-turnover and inter-OGU distances. Results OGU area, elevation and the distance between refuges determined the composition of local floras, but only greater OGU area and the existence of higher maximum elevations increased species richness. The distance between refuges also affected the number of endemic species, especially on islands. The biological features studied only slightly influenced fern distribution. The main climatic predictor of species number was humidity. SPR and SMR revealed three main groups of ferns with different ecological trends.
    [Show full text]
  • The Phytogeography of Guam, Marianas Islands *
    The Phytogeography of Guam, Marianas Islands * Benjamin G. STONE Department of Botany, University of Malaya, Kuala Lumpur Formerly Chairman, Dept. of Biology, College of Guam, Agana, Guam. Our knowledge of the flo ra of Guam has accumulat ed rather slowly since Magellan's discovery of the island in 1521, and is based on the studies of a number of botanists , including Gaudichaud, Safford, Merrill (1914), Glassman (1948), Walker and Rodin, Wagner and Grether, Bryan, Stone (1964) and Fosberg, to name but a few . The island is the southernmost in the Marianas Chain, and phytogeograph ically can scarcely be considered a lone, but forms with the southern Marianas Islands-Rota, Tinian, Agiguan, and Saipan-a natural phytogeographic unit. Virtually all plants known in Guam also occur in the other Southern Marianas, and only a few plants oc cur in the Marianas except for Guam. These are mostly plants of the Northern M arianas, or a few species of Rota or Saipan not yet found in Guam (but probably occurring there ). Thus, the phytogeographic posi­ tion of Gua m is essentially the same as for th e Southern Marianas as a who le. Our knowledg e of the islands of Rota, T inian, and Saipan, is very largely due to the studies of R. Kan ehira, T. Hosokawa (1934a-c ), T. Tuyama, N . Fuku­ yama, and other Japanese scientists. The total flora so far recorded for Guam comes to 931 species, including the native and the introduced vascular plants. There are 6 gymnospe rms, 58 ferns and fern-allie s, 262 monocots, and 605 dicots.
    [Show full text]
  • A Biogeochemical Cycle Is Defined As the Movement of Elements, Like Those Mentioned Just a Moment Ago, Through Organisms and the Environment
    CORE COURSE BOTANY-PAPER II- Plant Ecology and Taxonomy (B. Sc. II Semester CBCS 2016) Biogeochemical Cycles (Cycles of Matter): A biogeochemical cycle is defined as the movement of elements, like those mentioned just a moment ago, through organisms and the environment. A way to remember this is to break apart the word 'biogeochemical' into pieces. The first part of the word, bio, involves biological organisms, like bacteria, plants, and animals. The next part of the word, geo, involves geological processes, like weathering of rocks. The last part of the word indicates chemical processes, such as the formation of molecules. Unlike the one-way flow of energy, matter is recycled within and between ecosystems. Elements, chemical compounds, and other forms of matter are passed from one organism to another and from one part of the biosphere to another through cycles that connect living things to the earth. Biogeochemical cycles connect living things to the earth. The four chemicals that make up 95% of living things are: carbon, hydrogen, oxygen and nitrogen. These elements are constantly being cycled through living and non-living organic matter. Nutrient cycles within ecosystems 1. Energy flows through an ecosystem and nutrients cycle within an ecosystem. Nutrients are substances such as water, carbon and nitrogen which are necessary for the survival of living things. Scientists create models to represent natural interactions in the environment which make it easier to study and understand the 'big picture' without having to physically measure an entire ecosystem. Diagrams of the nutrient cycles could be considered models of the actual cycles as they occur in nature.
    [Show full text]
  • Trends in the Development of Geographic Botany Author(S): Hugh M
    Trends in the Development of Geographic Botany Author(s): Hugh M. Raup Source: Annals of the Association of American Geographers, Vol. 32, No. 4 (Dec., 1942), pp. 319-354 Published by: Taylor & Francis, Ltd. on behalf of the Association of American Geographers Stable URL: http://www.jstor.org/stable/2561177 . Accessed: 25/08/2011 14:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Taylor & Francis, Ltd. and Association of American Geographers are collaborating with JSTOR to digitize, preserve and extend access to Annals of the Association of American Geographers. http://www.jstor.org ANNALS of the Association of American Geographers Volume XXXII DECEMBER, 1942 No. 4 Trendsin the Developmentof Geographic Botany HUGH M. RAUP CONTENTS Introduction................................................................. 319 Theophrastusto Humboldt:Floristic Plant Geography.......... .............. 320 Humboldtto Darwin ................ ........................... 324 The Effectsof Darwinismupon Plant Geography.............. ................ 327 CurrentTrends in Plant Geography: FloristicPlant Geography..........................................
    [Show full text]
  • Unit 2: Ecosystem and Phytogeography
    CORE COURSE BOTANY-PAPER II- Plant Ecology and Taxonomy (B. Sc. II Semester CBCS 2016) Unit 2: Ecosystem and Phytogeography Ecosystems: Concept, Structure and Functions: Concept of an Ecosystem: Living organisms cannot live isolated from their non-living environment because the latter provides materials and energy for the survival of the former i.e. there is interaction between a biotic community and its environment to produce a stable system; a natural self-sufficient unit which is known as an ecosystem. An ecosystem is, therefore, defined as a natural functional ecological unit comprising of living organisms (biotic community) and their non-living (abiotic or physico- chemical) environment that interact to form a stable self-supporting system. A pond, lake, desert, grassland, meadow, forest etc. are common examples of ecosystems. Structure and Function of an Ecosystem: Each ecosystem has two main components: (1) Abiotic; & (2) Biotic (1) Abiotic Components: The non living factors or the physical environment prevailing in an ecosystem form the abiotic components. They have a strong influence on the structure, distribution, behaviour and inter-relationship of organisms. Abiotic components are mainly of two types: (a) Climatic Factors: Which include rain, temperature, light, wind, humidity etc. (b) Edaphic Factors: Which include soil, pH, topography minerals etc.? The functions of important factors in abiotic components are given below: Soils are much more complex than simple sediments. They contain a mixture of weathered rock fragments, highly altered soil mineral particles, organic matter, and living organisms. Soils provide nutrients, water, a home, and a structural growing medium for organisms. The vegetation found growing on top of a soil is closely linked to this component of an ecosystem through nutrient cycling.
    [Show full text]
  • The Painted Hills: Thirty Million Years of Phytogeography
    OREGON PLANTS, OREGON PLACES' The Painted Hills: Thirty Million Years of Phytogeography By Stuart Garrett and Berta Youtie The Painted Hills Unit, John Day Fossil Beds National on plant life. Fossils in local geological formations allow Monument lies at 600 meters (1970 ft.) above sea level observations of more than 30 million years of earth's about 15 km. (9 mi.) northwest of Mitchell, Oregon along history. Bridge Creek, a tributary of the John Day River. Human History Native Americans lived in John Day Valley for at least 8,000 years. The Painted Hills area divided Plateau and Great Basin (Paiute) cultures. Both groups made extensive use of plant resources in the area. The roots, nuts, seeds 6.1 and berries of a variety of plants were used for food, J'• / , medicine, shelter, cordage and ceremony. Biscuitroot PAINTED 1411-1-5 , 3/711,/ (Lomatium spp.)., also called wild celery or, in Indian ter- - minology, "kouse," was an important staple of the Indian diet. Bitterroot (Lewisia rediviva) roots were peeled and boil- ed prior to eating. Camas (Camassia quamash) bulbs were dug as flowers faded and were baked in underground pits JOHN DAYFOSSIL 13 ED5 lined with balsamroot (F3atsamorhiza spp.) leaves. Even the lNA TIONAL MOM/NEWT 2 stems, fruits and roots of prickly-pear cactus (Opuntia sp.) were consumed. Fiber was obtained from willow (Salix sp.), Sete Indian hemp (Apocynum sp.) and cattail (Typha latifolia). AfTN Bows were manufactured from juniper (Juniperus orriden- calls) (Zucker et al. 1983) BLA C (1C, 130 TTE Native Americans developed a pattern of seasonal travels which allowed them to visit particular sites for selected resources.
    [Show full text]