Core Paper – Iii Ecology and Plant Geography

Total Page:16

File Type:pdf, Size:1020Kb

Core Paper – Iii Ecology and Plant Geography 1st BSC BOTANY 18BBO24C - CORE PAPER – III ECOLOGY AND PLANT GEOGRAPHY UNIT – V Plant geography and forestry: Principles of plant geography – Phytogeographical regions in India. Distribution types – continuous, discontinuous and endemic. Continental drift. Vegetation mapping, GIS and its application in forestry. Vegetation types - Rain forest, Deciduous forest, Mangrove forest and Scrub jungle. Minor forest produce. Agroforestry and Social forestry. Phytogeography Topics: • Principles • History • Description of earth • Theory of tolerance • Endemism • Brief description of major terrestrial biomes (sp. Tropical, temperate and tundra) • Phytogeographical divisions of India • Vegetation of Delhi Phytogeography or plant geography deals with the geographical distribution of plants on earth. Phytogeography is defined by Good (1964) as ‘that branch of botany that deals with the spatial relationships of plants both in the present and the past’. Plant ecology + phytogeography= geobotany In systematics plants are grouped into taxa. In ecology…………………….into communities etc In phytogeography………..into phytochoria. • Phytochoria are natural floristic areas that broadly correspond to climatic types, and are based on the total number of species with the same concentric distribution pattern. • A phytochorion, in phytogeography, is a geographic area with a relatively uniform composition of plant species. Adjacent phytochoria do not usually have a sharp boundary, but rather a soft one, a transitional area in which many species from both regions overlap. The region of overlap is called a vegetation tension zone. • Earliest definition was given by Schouw (1823) he divided the earths surface into 25 kingdoms represented by geographical areas named after their most characteristic plants. • Eg Kingdom of Saxifrages and mosses (Alpine Arctic) • Eg Kingdom of Umbelliferae and Cruciferae (Eurasia); it was further divided into provinces. • Turrill (1959) used the term ‘realm’ instead of Kingdom. • Good divided the earth into 6 Kingdoms and 37 regions. Good (1947) floristic kingdoms HISTORTY: • Study is quite old. • Even Theophrastus gave information regarding plants in Mediterranean region. • Linnaeus and de Candolle described geographical distribution of many plants. • However the first structural approach (as a separate subject) was made by Humboldt (1817). • He is credited to be the father of phytogeography: he studied the relationship between plants and environment, both latitudinally and altitudinally. • Important contribution by Sir JD hooker too. Studied plants from different parts of the world. AIMS: • To find out and record the distribution of plants in geographical regions of the world on the basis of latitudinal and longitudinal positions. • To determine the units into which the Earth can be divided on the basis of the similarity of ranges of taxa. • To name and classify these units into phytochoria. • To determine the causes which result in these ranges. Physical geography of the earth: Layers: • Crust • Mantle (upper and lower) • Core (outer and inner) • Core (3500kms) is the densest. It is mainly metallic iron with some nickel and other elements. • Core is surrounded by mantle (2900kms). • Crust is topmost (50kms). Divided into continental (granite rock) and oceanic crust (Basalt rock) • Granite rock (light)- Silica + aluminum (sial) • Basalt rock/felsic rock (dark)- Silica + Magnesium • Granite rock is less dense than basalt hence continental platforms float over the oceanic crust. • Lithosphere includes crust and top portion of mantle. • The line of separation between crust and mantle is called MOHO or mohorovicic discontinuity (after the seismologist Andrija Mohorovicic) CONTINENTAL DRIFT THEORY Natural Vegetation and Wild life What is Natural Vegetation • Natural Vegetation are plants that would grow in an area in the absence of human influence • Different types of natural vegetation grow in different climates and soil conditions What is biome? • Very large area on land having distinct type of vegetation and animal life because of similar climatic condition Eco systEm • A BIOLOGICAL COMMUNITY OF INTERACTING LIVING THINGS AND THEIR ENVIRONMENT • IT INCLUDE • 1)BIOLOGICAL COMMUNITY • 2) PHYSICAL ENVIRONMENT FAcoRs AFFEctING NAtURAL VEGEtAIoN • RELIEF • LAND • SOIL • CLIMATE • TEMPERATURE • PRECIPITATION • SUNLIGHT • LATITUDE AND ALTITUDE NAtURAL VEGEtAtIoNs IN INDIA • Grow where temperature and rainfall are plentiful to support a tree cover. • Forests are classified into üTropical evergreen forests/ Rain forest üTropical deciduous forests/Monsoon forest üTropical Thorn forest and Scrubs üMountane forest üMangrove forest NATURAL VEGETATION IN INDIA Tropical evergreen forests • Occur in the regions near the equator. Also called tropical rain forests. • Hard wood trees like rosewood, ebony, mahogany, etc are common. • Forests remain evergreen. Tropical deciduous forests ØAlso called monsoon forests ØTrees shed their leaves altogether in dry season to conserve water ØTrees found are hardwood trees like sal, teak, neem and shisham ØAnimals are tigers, lions, elephants, langoors and monkeys Tropical thorn forest and scrubs ØIts found in the areas getting less than 70cm of rainfall ØFound in Rajastan. Gujarath, MP etc ØAcacia, date palm, cactus, different shrubs and grasses are found here Montane forest ØFound in hilly and mountain region ØVegetation varies according to the increase in altitude ØFound in Himalayan region Mangrove forest ØFound in coastal areas where mud and silt get accumulated It is found in the Delta region ØSundarban forest STEPS TAKEN TO PROTECT FLORA AND FAUNA ØIndian wild life act passed ØBiosphere reserves were established ØPeriodic census ØSpecial projects like project tiger ØHunting of wild animals is banned Wild life sanctuaries National parks BIOSPHERE RESERVES Formative assessment ØWhat is eco system? ØVegetation in most part of India is not natural. Give reason ØName the most wide spread vegetation in India ØName the 4 bio-reserves which have been included in the World network of Bio reserves ØName the state in which Simlipal bio reserve located ØName the different types of vegetation in India ØDistinguish between evergreen forest and deciduous forest ØGive a brief account of mountain vegetation ØWhat are the measures taken by the government to protest flora and fauna in India? ØHow does relief and rainfall influence the distribution of natural vegetation in India? Geographic Information Systems (GIS) and the Conservation and Use of Plant Genetic Resources Summary of http://www.diva- gis.org/docs/gis_pgr_conservation.pdf DIVA-GIS is a free mapping program, (GIS), that can be used for many different purposes. It is particularly useful for mapping and analyzing biodiversity data, such as the distribution of species, or other 'point-distributions'. Geographic Information Systems • Said in a simple way: ‘a tool for managing information of any kind according to where it is located’ • Main elements: • Data input, verification and editing • Importing digital datasets • Data storage, retrieval and management • Stored as data: vector and raster • Data manipulation and analysis • Bring diverse datasets together, make them compatible and combine and analyze them • Output • Selecting areas or layers for output on a screen Ecogeographic surveying Source of of information of such survey can be: • Herbarium specimens • Germplasm accessions passport data • Experts • Literature • Field notes • Maps Ecogeographic surveying – main objectives Identifications of geographic areas which are: • Likely to contain specific desired traits (adaptations), taxa or habitats of interest • Highly diverse (whether environmentally, taxonomically or genetically) • Complementary to each other • Currently missing or under-represented in conservation efforts • Threatened with genetic erosion Output: An example: Distribution of Oryza longistaminata In southern Africa. Images, aerial photographs, satellite imagery, and radar images combined with other sources of data High diversity areas • Usually begins with dividing the target area into a number of smaller zones e.g. climate zone • Different geometric, political, socio-economic spatial units have been used • More examples: presence/absence of species, measures of diversity based on morphological characters or molecular markers (to calculate the morphological diversity of Capsicum spp) Complementary areas • Analyses of diversity • E.g. compare two areas to see if they have the same diversity of taxa or morphotypes • Can allow the diversity measure to be weighted for the distinctness of taxonomic units (thus calculate diversity values, e.g. taxa closely related or not) Under-conserved areas • Identify individual species, species-rich areas and vegetation types that are not represented or underrepresented • To identify ecogeographical gaps in existing ex situ germplasm collection Threatened areas • To predict genetic erosion by documenting and modeling changes of forests, wetlands, different land use types and cropping • Indicators of desertification, soil erosion, increasing outmigration, and appearance of new fields of agriculture into increasingly marginal areas • Can use result to early warning of crop failure and famine in regions of the world Analyses • To map different areas from different datasets • A case study from four separate analyses, from which the results are combined to produce a single map of priority areas for conservation interventions (se next slide) High priority areas for conservation
Recommended publications
  • Evolution of the Brazilian Phytogeography Classification Systems: Implications for Biodiversity Conservation
    Ciência e Cultura 51(5/6): 331-348, 1999. Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. JOLY, C.A.1; AIDAR, M.P.M.2;KLINK, C.A.3; McGRATH, D.G.4,5; MOREIRA, A. G.6; MOUTINHO, P.5; NEPSTAD, D.C.5,7; OLIVEIRA, A. A.8; POTT, A.9; RODAL, M.J.N.10 & SAMPAIO, E.V.S.B.11 1 Depto. Botânica, IB, UNICAMP, CP 6109, 13083-970, Campinas, SP (mailto:[email protected]) 2 Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CP 4005, 01061-970, São Paulo, SP ([email protected])([email protected]) 3 Depto. de Ecologia, Universidade de Brasilia, C.P. 04631, 70919-970, Brasilia, DF. ([email protected]) 4 Núcleo de Altos Estudos Amazônicos, UFPa, Campus Guamá, 66075-970, Belém, PA. 5 Instituto de Pesquisa Ambiental da Amazônia, Trav. Enéias Pinheiro, 1426, Marco, 66095-100 Belém, PA. ([email protected])([email protected]) 6The Woods Hole Research Center &Instituto de Pesquisa Ambiental da Amazônia, SCLN 210, bloco C, sala 209, 70865-530, Brasilia, DF ([email protected]) 7The Woods Hole Research Center, Woods Hole, MA 02543, USA. 8Universidade de São Paulo, USP, Instituto de Biociências, Ecologia. Rua Matão 321, trav. 14.05008-900. São Paulo, SP. 9Centro de Pesquisa Agropecuária do Pantanal, EMBRAPA, R. 21 de Setembro, 1880 , 79.320-900, Corumbá, MS (mailto:[email protected]) 10Departamento de Energia Nuclear, UFPE, Av. Prof. Luís Freire 1000, 50740-540, Recife, PE ([email protected]) 11Departamento de Biologia, UFRPE, R.
    [Show full text]
  • Global Ecological Forest Classification and Forest Protected Area Gap Analysis
    United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results
    [Show full text]
  • A Global Overview of Protected Areas on the World Heritage List of Particular Importance for Biodiversity
    A GLOBAL OVERVIEW OF PROTECTED AREAS ON THE WORLD HERITAGE LIST OF PARTICULAR IMPORTANCE FOR BIODIVERSITY A contribution to the Global Theme Study of World Heritage Natural Sites Text and Tables compiled by Gemma Smith and Janina Jakubowska Maps compiled by Ian May UNEP World Conservation Monitoring Centre Cambridge, UK November 2000 Disclaimer: The contents of this report and associated maps do not necessarily reflect the views or policies of UNEP-WCMC or contributory organisations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP-WCMC or contributory organisations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS EXECUTIVE SUMMARY INTRODUCTION 1.0 OVERVIEW......................................................................................................................................................1 2.0 ISSUES TO CONSIDER....................................................................................................................................1 3.0 WHAT IS BIODIVERSITY?..............................................................................................................................2 4.0 ASSESSMENT METHODOLOGY......................................................................................................................3 5.0 CURRENT WORLD HERITAGE SITES............................................................................................................4
    [Show full text]
  • Geography Chapter 5: Natural Vegetation And
    CLASS 9th SUBJECT: GEOGRAPHY CHAPTER 5: NATURAL VEGETATION AND WILDLIFE MULTIPLE CHOICE QUESTIONS 1. India belongs to which of the following categories according to natural vegetation and wildlife? a) A country lacking in biodiversity cover b) One of the twelve mega biodiversity countries of the world c) The country with the greatest forest cover d) None of these 2. Which is not included in the group of non-flowering plants? a) Orchids b) Algae c) Fungi d) None of these 3. Natural vegetation refers to ........community. a) Plant b) Animal c) Human Being d) None of these 4. Plants of a particular region or a period are termed as : a) Vegetation b) Fauna c) Flora d) None of these 5. Which term is used for the original plant cover of an area which has grown naturally? a) Garden b) Agriculture c) Virgin Vegetation d) Indigenous Species 6. Which of the following is not a relief feature? a) Land b) Soil c) Water d) None Of These 7. Which of the following river does not forms the Northern Plains ? a) The Indus b) The Ganga c) The Brahmaputra d) The Gandak 8. Forest is which type of resource? a) Renewable resources b) Exhaustible resources c) Non-renewable resources d) None of these 9. What is the position of India in the world with regard to plant diversity? a) First b) Tenth c) Twelfth d) None of these 10. Which term is used for virgin vegetation, which have come from outside India are termed as ….. a) Indigenous plants b) Endemic species c) Exotic Plants d) None of these 11.
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • Euphorbiaceae)
    Polish Botanical Journal 60(2): 147–161, 2015 DOI: 10.1515/pbj-2015-0024 PHYTOGEOGRAPHICAL ANALYSIS OF EUPHORBIA SUBGENUS ESULA (EUPHORBIACEAE) Dmitry V. Geltman Abstract. Euphorbia subg. Esula is one of four major clades within the genus. A geographical analysis of the 466 species in the subgenus is reported here. Every species was assigned to one of 29 geographical elements clustered in ten groups of ele- ments. This geographical analysis showed that the Tethyan group (comprising nine geographical elements) clearly dominates the subgenus and contains 260 species (55.79% of the total number of species). The most numerous geographical elements are Irano-Turanian (105 species) and Mediterranean (85). Other significant groups of elements are Boreal (91 species, 19.54%), East Asian (40 species, 8.58%), Madrean (26 species, 5.58%), Paleotropical (23 species, 4.94%) and South African (16 species, 3.43%). The area of the Tethyan floristic subkingdom is the center of the modern diversity of E. subg. Esula. It is likely that such diversity is the result of intensive speciation that took place during the Eocene–Miocene. Key words: Euphorbia subg. Esula, geographical elements, Irano-Turanian floristic region, Mediterranean floristic region, phytogeographical analysis, Tethyan floristic subkingdom Dmitry V. Geltman, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street, 2, St. Petersburg, 197376, Russia; e-mail: [email protected] Introduction genus euphorbia and its taxonomy cantly differ from traditional ones. For subgenus Esula (Riina et al. 2013), 21 sections were ac- The giant genus Euphorbia L. (Euphorbiaceae) re- cepted on the basis of analyses of the combined cently became a subject of detailed phylogenetic and ITS + ndhF dataset (Fig.
    [Show full text]
  • Supporting Information
    Supporting Information Kier et al. 10.1073/pnas.0810306106 1350 New Caledonia** Cape Region** Polynesia-Micronesia and Eastern Pacific** Atlantic Islands* Queensland tropical rain forests Caribbean Islands** East Melanesian Islands** Taiwan Northern Andes incl. northern Páramo** South American Atlantic Coastal Forests** Philippines** West-Ecuador/Choco* Peruvian/Bolivian Yungas & montane forests* Madagascar & Indian Ocean Islands incl. Socotra** Mountains of SW China** Western Ghats* Sri Lanka* SW Australian Floristic Region** New Guinea Tropical Florida 0 200 400 600 800 1000 Range equivalents per 10,000 km² Fig. S1. Top 20 regions according to the level of endemism richness of vascular plants. Asterisks indicate congruence (**) or large overlap (*) with the biodiversity hotspots by Conservation International (Mittermeier, et al. 2004). Orange bars indicate island regions, green bars mainland regions. Kier et al. www.pnas.org/cgi/content/short/0810306106 1of15 Fig. S2. Endemism richness (range equivalents per 10,000 km2) of terrestrial vertebrates at the ecoregion level of mainland (green) and island regions (orange). Boxes mark second and third quartiles, whiskers the nonoutlier range of the data. (A) Terrestrial vertebrates, (B) amphibians, (C) birds, (D) reptiles, and (E) mammals. Kier et al. www.pnas.org/cgi/content/short/0810306106 2of15 Spearman rank correlation Vascular 0.75 0.82 0.73 0.78 0.83 plants 90 Amphibians 0.76 0.82 0.82 0.87 0 90 Reptiles 0.85 0.85 0.94 ER rank ER rank 0 90 Birds 0.89 0.96 0 90 Mammals 0.94 0 90 Tetrapods ER rank ER rank ER rank 0 090090090090090 ER rank ER rank ER rank ER rank ER rank Fig.
    [Show full text]
  • Chapter 3 MATERIAL and METHODS
    Chapter 3 MATERIAL AND METHODS 3.1. Introduction The study of flora consists of plant and situation of plant habitat. There are many definitions for word "flora". The word "flora" refers to the plants occurring within a given region. A Flora may contain anything from a simple list of the plants occurring in an area to a very detailed account of those plants. Floras are different from popular manuals in that they attempt to cover all of the plants, rather than only the most common or conspicuous ones. When a researcher wants to study Flora he/or she can understand many things from that. A Flora ahnost always contains scientific names, and it may also include common names, literature references, descriptions, habitats, geographical distribution, illustrations, flowering times, and notes. Less often, Floras includes such specialized information as data on plant chemistry, reproduction, chromosome numbers, and population occurrences. Sometimes, the plants are listed alphabetically, and sometimes they are represented within a classification system that indicates which plants are most similar or are thought to be related. Floras often also include devices called "keys" that enable the user to identify an unknown plant. Floristic elements are most often defined subjectively by grouping plant ranges into types based on descriptions provided by floras and manuals (McLaughlin and Bowers, 1990). By study of floristic traits of an area, it is possible to describe floristic province and phytogeographical regions. The delimitation of floristic provinces and sub-provinces is mainly based on the distribution boundaries of vascular plant species (Yurtsev, 1994) which is known as true plants.
    [Show full text]
  • Age-Class Differences in Shoot Photosynthesis and Water Relations of Fraser Fir (Abies Fraseri), Southern Appalachian Mountains, USA
    Pagination not final/Pagination non finale NOTE / NOTE Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA Keith Reinhardt, Daniel M. Johnson, and William K. Smith Abstract: Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its nat­ ural environment. We measured and compared photosynthetic gas exchange and water relations of ,understory gerrninant seedlings «3 cm height), older seedlings (>3 years old and -0.15-1 m tall), and saplings (>10 years old and -1-2 m tall) on a leaf-level basis. No significant differences in gas exchange were found among the age classes, although midday xy­ lem water potentials were significantly different among the age classes. Differences in maximum photosynthesis (Amax) were <13%, ranging between 2.4 and 2.7 J,Lmol·m-2·s-1 (P = 0.26). Maximum leaf conductances (groax) were between 0.16 and 0.18 mol·m-2·s-1, varying less than 13% (P = 0.15). Midday xylem water potentials were similar between SE and SA (-1.2 to -1.4 MPa), but GS values were significantly less negative (-0.2 to -0.5 MPa). Thus, gas exchange and water relations in these understory age classes appeared similar, indicating no particular limitation to advanced regeneration be­ tween age classes. Resume: Le sapin de Fraser (Abies fraseri (Pursh) Poir.) est une espece d'arbre endemique dans les forets refuges sur Ie sommet des montagnes dans la partie sud des Appalaches, aux Etats-Unis d'Amenque.
    [Show full text]
  • Phytogeographical and Ecological Affinities of the Bryofloristic Regions of Southern Africa
    Polish Botanical Journal 57(1): 109–118, 2012 PHYTOGEOGRAPHICAL AND ECOLOGICAL AFFINITIES OF THE BRYOFLORISTIC REGIONS OF SOUTHERN AFRICA 1 JACQUES VAN ROOY & ABRAHAM E. VAN WYK Abstract. There is a high degree of correspondence between the bryofl oristic regions of southern Africa and phytochoria based on the distribution of seed plants, especially those of White and Linder. The bryofl oristic classifi cation provides evidence for a greater Afromontane Region that includes the Cape Floristic as well as the Maputaland-Pondoland Regions, but excludes the Afro-alpine Region. Recent numerical classifi cations of the region do not support a Greater Cape Floristic Region or Kingdom, but reveal the existence of a broad-scale temperate (Afrotemperate) phytochorion consisting of the Kalahari-Highveld and Karoo- Namib Regions. Endemism is much lower in the moss than the seed plant fl oras of congruent phytogeographical regions. The bryofl oristic regions correspond in varying degrees with the biomes and vegetation types of southern Africa. Key words: Plant biogeography, fl oristic region, biome, phytochorion, mosses, TWINSPAN, southern Africa Jacques van Rooy, National Herbarium, South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, South Africa. Academic affi liation: H.G.W.J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa; e-mail: [email protected] Abraham E. van Wyk, H.G.W.J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa; e-mail: [email protected] INTRODUCTION Phytogeographical classifi cations of Africa have African phytochoria, namely the recognition of generally been based on the distribution of seed a central Kalahari-Highveld Region, inclusion plants only.
    [Show full text]
  • I BSC II SEMESTER CBCS BOTANY PAPER-II Plant Ecology, Phytogeography, Plant Pathology
    I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-II STUDY MATERIAL K.S.Gitanjali Page 1 I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology UNIT-1 (2 Hr) Introduction and Scope of Ecology The branch of Biology that deals with the study of interrelationships and interdependence between biotic and Abiotic factors in an environment is called “Ecology or “Environmental biology”. In 1886 German Zoologist Ernst Haekal coined the term ‘Ecology’. It is derived from Greek words where ‘Oikos ‘means ‘home’. And ‘logos’ means ‘to study’. Odum Defines Ecology as “The study of structure and function of nature”. The term ‘Environment is derived from French word where ‘Environer’ means ‘to encircle ‘or ‘to surround’. “The study of interactions of man with the living and non living components of environment and interdisciplinary field study is referred as “Environmental studies”. SCOPE OF ECOLOGY 1. Study of Ecology provides knowledge for proper maintenance of natural resources. 2. It helps to understand the harmful effects of pollution, need for its control. 3. It provides knowledge about population, their interactions with environment. And necessity of maintenance of delicate balance between living and none living components of nature. 4. It provides Knowledge on Biodiversity, their types, reasons of depletion, their importance and methods of conservation. 5. It helps to take suitable steps to prevent the extinction of species and protect endangered (Species towards extinction) and endemic (Species restricted to a particular geographical region) species.
    [Show full text]
  • Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: an Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017
    Proc Indian Natn Sci Acad 83 No. 1 March 2017 pp. 151-174 Printed in India. DOI: 10.16943/ptinsa/2016/v82/48406 Review Article Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: An Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017 (Received on 14 March 2016; Revised on 20 May 2016; Accepted on 16 June 2016) A revisit to the literature on cultivated plant species agrobiodiversity in India revealed that the floristic diversity is represented by 17,926 species of angiosperm, while Indian agriculture cultivates 811 plant species and harbours more than 900 wild relatives of the cultivated plant species distributed over 10 (+ 1) biogeographic regions of the the country, significantly higher than commonly cited in the literature. Further, it revealed the role of Indian communities in domestication to cultivation of around 215 economically important plant species, and adaption of around 600 exotic crop species. Based on new evidence, several species require inclusion and others deletion, and many need further investigations to resolve the issue on country of their origin. Cultivation of crop species in diverse natural and man-made agroecological systems for centuries has generated a huge amount of genetic diversity in a large number of crop species, maintained by the farmers in the form of landraces or farmer’s varieties, and conserved as collections/accessions in the national agricultural research system. Keywords: Agrobiodiversity; Domestication; Cultivation; Genetic Diversity; Wild Relatives
    [Show full text]