Maximising HVDC Support for GB Black Start and System Restoration

Total Page:16

File Type:pdf, Size:1020Kb

Maximising HVDC Support for GB Black Start and System Restoration Part of Maximising HVDC Support for GB Black Start and System Restoration Document Reference HVDC-BS-001 Revision of Issue 2.0 Revision Description Revised based on industry consultation Confidentiality Public Date of Issue 04-12-2019 Client Scottish Government The National HVDC Centre is part of Scottish & Southern Electricity Networks and is funded through the Electricity Network Innovation Competition as the Multi- Terminal Test Environment (MTTE) Project. Scottish and Southern Electricity Networks is a trading name of Scottish Hydro Electric Transmission plc, Registered in Scotland No. SC213461, having its Registered Office at Inveralmond House, 200 Dunkeld Road, Perth, PH1 3AQ; and is a member of the SSE Group www.ssen.co.uk This document contains proprietary information belonging to SSE and/or affiliated companies and shall be used only for the purpose for which it was supplied. It shall not be copied, reproduced, disclosed or otherwise used, nor shall such information be furnished in whole or in part to third parties, except in accordance with the terms of any agreement under which it was supplied or with the prior consent of SSE and shall be returned upon request. No warranty is given by the HVDC Centre in relation to this report, or the use(s) to which it may be put. All intellectual property rights created by the HVDC Centre in creating this report will belong to the HVDC Centre, unless otherwise agreed in writing. Revision Record Rev Date Originator(s) Checker(s) Approver Description Oluwole Daniel Adeuyi Simon Gill 1.0 11-09-2019 Simon Marshall First Issue – For Comment Abdullah Emhemed 2.0 04-12-2019 Oluwole Daniel Adeuyi Abdullah Ben Marshall Revised version Emhemed hvdccentre.com Public Table of Contents Executive Summary .......................................................................................................................................................... iii Abbreviations .................................................................................................................................................................. vii List of figures .................................................................................................................................................................. viii List of tables ..................................................................................................................................................................... ix 1 Introduction .............................................................................................................................................................. 1 1.1 Drivers for Change in GB Electricity System...................................................................................................... 2 1.1.1 Emissions Reduction Directives ................................................................................................................ 2 1.1.2 Renewable Energy and Net Zero Targets .................................................................................................. 2 1.1.3 EU Electricity Interconnection Targets ...................................................................................................... 3 1.2 Consequences of Changes in GB Electricity System.......................................................................................... 3 1.2.1 Declining Black Start Generation Capacity ................................................................................................ 3 1.2.2 System Inertia Reduction .......................................................................................................................... 4 1.2.3 Short Circuit Level Reduction .................................................................................................................... 4 1.2.4 Black Start Grid Code Requirements ......................................................................................................... 5 1.3 Components of GB Black Start Services ............................................................................................................ 6 1.3.1 Self-start up Capability without External Electrical Power ....................................................................... 6 1.3.2 Re-energising Part of GB Transmission Network Capability ..................................................................... 6 1.3.3 Block Loading ............................................................................................................................................ 7 1.4 Overview of HVDC Schemes ............................................................................................................................. 7 1.4.1 Technical Benefits ..................................................................................................................................... 7 1.4.2 Comparison of HVDC Technologies .......................................................................................................... 7 1.4.3 Limitations of HVDC Schemes ................................................................................................................... 8 2 HVDC Applications in GB ........................................................................................................................................... 9 2.1 Architecture of GB HVDC schemes ................................................................................................................... 9 2.1.1 Electricity Interconnections ...................................................................................................................... 9 2.1.2 Embedded Links ...................................................................................................................................... 10 2.1.3 Offshore Wind Connections .................................................................................................................... 10 2.1.4 AC Island Connections ............................................................................................................................. 10 2.2 Potential Contribution of HVDC Schemes to System Restoration .................................................................. 11 2.2.1 Review and Instruct Stage ....................................................................................................................... 12 2.2.2 Start-up Stage.......................................................................................................................................... 13 2.2.3 Power Islands Stage ................................................................................................................................ 13 2.2.4 Skeletal Network Stage ........................................................................................................................... 14 3 System Restoration Requirements with HVDC Capability ...................................................................................... 16 3.1 Technical Requirements for Black Start Service Providers ............................................................................. 16 3.1.1 Time to Connect ...................................................................................................................................... 16 3.1.2 Service Availability .................................................................................................................................. 16 3.1.3 Voltage Control ....................................................................................................................................... 16 3.1.4 Frequency Control ................................................................................................................................... 16 3.1.5 Resilience of Supply BS Service ............................................................................................................... 16 Page i Maximising HVDC Support for GB Black Start HVDC-BS-001 – Revision 2.0 and System Restoration 04-12-2019 Public 3.1.6 Resilience of Supply BS Auxiliary Unit(s) ................................................................................................. 16 3.1.7 Block Loading Size ................................................................................................................................... 16 3.1.8 Reactive Power Capability ....................................................................................................................... 17 3.1.9 Sequential Start-ups ................................................................................................................................ 17 3.2 System Requirements versus HVDC Capability ............................................................................................... 17 3.2.1 Analysis using RAG status ....................................................................................................................... 17 3.2.2 Key Findings on HVDC Technical Capability across BS and Restoration ................................................. 19 3.2.3 Gaps and Opportunities .......................................................................................................................... 20 4 Case Study of HVDC Schemes in North of England and Scotland ........................................................................... 22 4.1 HVDC Black Start Services in Scotland Zone – Case Studies ..........................................................................
Recommended publications
  • Interconnector Services
    Interconnector Services Industry Challenges OUR SERVICES AT A GLANCE The electricity sector around the world is undergoing significant changes, often driven by the decarbonisation Interconnector policy and regulation agenda. For most countries, however, security of supply • Design of regulatory regimes remains the number one priority. At the same time, (including Cap and Floor in consumer price also remains a key issue. Interconnectors Great Britain) are uniquely well placed to meet these challenges of • Policy design (e.g. incentives to sustainability, security and affordability. increase interconnection) Interconnectors are unique transmission • Energy market design (e.g. design assets that enable the flow of electricity of capacity market to incorporate interconnectors) over high voltage cables between different NorthConnect countries or regions. The economic Icelink rationale for interconnectors is driven by Quantitative analysis fundamental differences in the generation mixes in the connecting countries which • Power market fundamentals lead to systematic electricity price NSN modelling spreads over long periods of time. For • Cost-benefit analysis (e.g. example, the generation portfolio in Moyle Viking arbitrage revenues, Capacity Great Britain (primarily thermal and Greenwire Market, ancillary services) renewable generation, with some nuclear) Greenlink BritNed is very different from that in France • Socio-economic impact analysis East-West (predominantly nuclear) or Norway Nemo • Financial analysis (e.g. to support (predominantly hydro). This is beneficial to IFA2 IFA FABLink ElecLink investment decisions) consumers as it allows cheaper electricity Aquind to be imported at times of high local prices and to generators as it allows surplus Strategic support generation to be exported at times of low • Advising on negotiations with Currently operational local prices.
    [Show full text]
  • Public Document Pack
    Public Document Pack Argyll and Bute Council Comhairle Earra Ghaidheal agus Bhoid Customer Services Executive Director: Douglas Hendry Kilmory, Lochgilphead, PA31 8RT Tel: 01546 602127 Fax: 01546 604435 DX 599700 LOCHGILPHEAD e.mail –[email protected] 20 June 2012 NOTICE OF MEETING A meeting of the PLANNING, PROTECTIVE SERVICES AND LICENSING COMMITTEE will be held in the COUNCIL CHAMBER, KILMORY, LOCHGILPHEAD on WEDNESDAY, 27 JUNE 2012 at 10:00 AM , or at the conclusion of the Planning, Protective Services and Licensing Committee at 9.30 am, whichever is the later, which you are requested to attend. Douglas Hendry Executive Director - Customer Services BUSINESS 1. APOLOGIES FOR ABSENCE 2. DECLARATIONS OF INTEREST (IF ANY) 3. MINUTES Planning, Protective Services and Licensing Committee 30 May 2012 (Pages 1 - 16) 4. PRIVATE HIRE LICENSING - LIST OF APPROVED VEHICLES Report by Head of Governance and Law (to follow) 5. DUNLOSSIT ESTATE: ERECTION OF DWELLINGHOUSE AND DETACHED GARAGE: LAND TO SOUTH WEST OF LAGGAN BRIDGE, ISLE OF ISLAY (REF: 10/01931/PP) Report by Head of Planning and Regulatory Services (Pages 17 - 44) 6. MR AND MRS S BATE: SITE FOR THE ERECTION OF CROFT HOUSE: LAND EAST OF ACHARA, OBAN (REF: 11/02115/PPP) Report by Head of Planning and Regulatory Services (Pages 45 - 64) 7. MRS AILSA MORGAN: ERECTION OF 5KW WIND TURBINE (15 METRES TO HUB HEIGHT): LAND NORTH EAST TO TORRBREAC, DERVAIG, ISLE OF MULL (REF: 11/02492/PP) Report by Head of Planning and Regulatory Services (Pages 65 - 80) 8. A'CHRUACH WIND FARM LIMITED: WINDFARM COMPRISING 21 TURBINES (126.5 METRES HIGH TO BLADE TIP), ERECTION OF 2 METEOROLOGICAL MET MASTS, SUB STATION, CONTROL BUILDING, CONSTRUCTION COMPOUNDS, ACCESS WORKS AND ANCILLARY DEVELOPMENT (AMENDED PROPOSAL): LAND AT A'CHRUACH, KILMELFORD FOREST, WEST OF MINARD (REF: 11/02520/PP) Report by Head of Planning and Regulatory Services (Pages 81 - 114) 9.
    [Show full text]
  • Expert Perspectives on Norway's Energy Future
    Research Paper Antony Froggatt, Paul Stevens and Siân Bradley Edited by Germana Canzi and Amanda Burton Energy, Environment and Resources Programme | June 2020 Expert Perspectives on Norway’s Energy Future Future on Norway’s Energy Expert Perspectives Expert Perspectives on Norway’s Energy Future Froggatt, Stevens and Bradley Stevens Froggatt, Chatham House Contents Abbreviations 2 Summary 3 1 Preamble: Energy Transition in a Post-COVID-19 World 5 2 Challenges and Opportunities for Norway 8 3 Norway’s Energy Future 13 4 Conclusions and Recommendations 38 Annex: Expert Perspectives 40 About the Editors 90 About the Interviewees 91 About the Authors 95 Acknowledgments 96 1 | Chatham House Expert Perspectives on Norway’s Energy Future Abbreviations CCS carbon capture and storage CCU carbon capture and use CCUS carbon capture, use and storage COP Conference of the Parties EIA Energy Information Administration EV electric vehicle GHG greenhouse gas GtCO2e gigatonnes of carbon dioxide equivalent IEA International Energy Agency IPCC International Panel on Climate Change LUC land-use change mtoe million tonnes of oil equivalent NETs negative emissions technologies SAF sustainable aviation fuels SMR steam methane reformer SWF sovereign wealth fund UNEP United Nations Environment Programme UNFCCC United Nations Framework Convention on Climate Change 2 | Chatham House Expert Perspectives on Norway’s Energy Future Summary • The world is undergoing a transition away from fossil fuels towards renewable energy. However, the speed and depth of this transition is uncertain and controversial. This will have significant implications for Norway, one of the world’s largest exporters of both energy and capital. • With international efforts to limit increases in global temperature to 2°C, and as close as possible to 1.5°C, appearing increasingly off-track, there is an urgent need for a rapid move away from the unabated use of fossil fuels.
    [Show full text]
  • The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report
    Planning Scotland’s Seas The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report Marine Scotland The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Final Report Date: July 2013 Project Ref: R/4136/1 Report No: R.2097 © ABP Marine Environmental Research Ltd Version Details of Change Date 1.0 Draft 29.04.2013 2.0 Draft 15.05.2013 3.0 Final 07.06.2013 4.0 Final 28.06.2013 5.0 Final 01.07.2013 6.0 Final 05.07.2013 Document Authorisation Signature Date Project Manager: S F Walmsley PP 05.07.2013 Quality Manager: C E Brown 05.07.2013 Project Director: S C Hull 05.07.2013 ABP Marine Environmental Research Ltd ABPmer is certified by: Quayside Suite, Medina Chambers, Town Quay, Southampton, Hampshire SO14 2AQ Tel: +44 (0) 23 8071 1840 Fax: +44 (0) 23 8071 1841 Web: www.abpmer.co.uk Email: [email protected] All images copyright ABPmer apart from front cover (wave, anemone, bird) and policy & management (rockpool) Andy Pearson www.oceansedgepzhotography.co.uk The Scottish Marine Protected Area Project – Developing the Evidence Base for Impact Assessments and the Sustainability Appraisal Summary Introduction The Marine (Scotland) Act and the UK Marine and Coastal Access Act contain provisions for the designation of a network of Marine Protected Areas (MPAs) in Scottish territorial and offshore waters in order to protect marine biodiversity and geodiversity and contribute to a UK and international network of MPAs.
    [Show full text]
  • Scottish Government Arctic Policy: Mapping Report Jafry, Tahseen; Mikulewicz, Michael; Mattar, Sennan; Davidson, Magnus; Bremner, Barbara
    Scottish Government Arctic Policy: Mapping Report Jafry, Tahseen; Mikulewicz, Michael; Mattar, Sennan; Davidson, Magnus; Bremner, Barbara Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link to publication in ResearchOnline Citation for published version (Harvard): Jafry, T, Mikulewicz, M, Mattar, S, Davidson, M & Bremner, B 2019, Scottish Government Arctic Policy: Mapping Report. Scottish Government. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details of how to contact us. Download date: 01. Oct. 2021 SCOTTISH GOVERNMENT ARCTIC POLICY MAPPING REPORT Compiled by Professor Tahseen Jafry Centre for Climate Justice Glasgow Caledonian University Project Team Dr Michael Mikulewicz and Sennan Mattar GCU Centre for Climate Justice Magnus Davidson and Barbara Bremner Environmental Research Institute, University of the Highlands and Islands June 2019 compiled in November 2018 Table of Contents 1. EXECUTIVE SUMMARY ........................................................................................................ 5 Context and background ...........................................................................................................
    [Show full text]
  • Integration of Electricity Markets
    Norwegian School of Economics Bergen, Autumn 2018 Integration of Electricity Markets An Analysis of TSO-Owned and Non-TSO-Owned Cross-Border Interconnectors Sofie Handal Bruvik & Sigrid Marthea Hernes Supervisor: Lassi Ahlvik Master Thesis within the profile of Economics and the profile of Energy, Natural Resources and the Environment NORWEGIAN SCHOOL OF ECONOMICS This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible - through the approval of this thesis - for the theories and methods used, or results and conclusions drawn in this work. Abstract The European electricity market is gradually becoming more integrated due to increased cross- border transmission capacity. Integrated electricity markets are expected to improve social welfare through security of supply and efficient electricity generation. Thus, inadequate cross- border transmission capacity causes an inefficient allocation of resources at a regional level. The integration of electricity markets will impact electricity prices and the social welfare in the connected regions. A cross-border interconnector between the bidding zone NO5 in Norway and the market area Great Britain will exploit the different price levels and structures of the regions. The interconnector is expected to increase electricity prices in NO5 and decrease electricity prices in Great Britain. Further, the social welfare is expected to increase in both NO5 and Great Britain. This thesis estimates the annual congestion rent of a 1 400 MW interconnector between NO5 and Great Britain. The Norwegian share of the congestion rent is estimated to vary between e51,4 million and e168,4 million in the period from 2026 to 2045.
    [Show full text]
  • Download Who's Got the Power?
    Who’s got the Power? You’ll be blown away! Managed and operated by Who’s got the Power? (WGTP) guide notes Curriculum for Excellence links: Science > Planet Earth > Energy sources and sustainability Third Level: By investigating renewable energy sources and taking part in practical activities to harness them, I can discuss their benefts and potential problems. Literacy and English > Listening and Talking > Tools for listening and talking Third Level: When I engage with others, I can make a relevant contribution, encourage others to contribute and acknowledge that they have the right to hold a different opinion. I can respond in ways appropriate to my role and use contributions to refect on, clarify or adapt thinking. Literacy and English > Reading > Understanding, analysing and evaluating Third Level: To help me develop an informed view, I am exploring the techniques used to infuence my opinion. I can recognise persuasion and assess the reliability of information and credibility and value of my sources. Technology > Technological developments in society Third Level: From my studies of sustainable development, I can refect on the implications and ethical issues arising from technological developments for individuals and societies Who’s got the Power? is a dialogue activity that builds on students’ prior knowledge of renewable energy. Three renewables are discussed: hydro, wind and tidal. It is possible to run this activity with little knowledge of renewables, though some background reading is strongly advised. Use the fact sheets and video links provided to get started and learn how the renewable works. An Internet connection that can access You Tube is required to view the videos.
    [Show full text]
  • The Community Renewable Opportunity Portal
    The Community Renewable Opportunity Portal Argyll and Bute has a distinguished track record of pioneering and delivering renewable energy developments, including • Beinn Ghlas in Lorne, one of the first commercial scale Scottish wind farms; and • Cruachan Power Station at Loch Awe, Scotland’s largest pumped storage hydro-electric power station. This pioneering spirit is not limited to the private sector; communities in Argyll and Bute have been at the forefront in developing and owning income-generating renewable energy projects since 2004. The residents of Gigha established the world’s first wholly community owned, grid connected wind farm to enable them to pay back the loan used to purchase the island and to make improvements to housing stock and services. Background Together with our community planning partners, Argyll and Bute Council have developed a Renewable Energy Action Plan (REAP) to deliver our vision which is; “Argyll and Bute will be at the heart of renewable energy development in Scotland by taking full advantage of its unique and significant mix of indigenous renewable resources and maximising the opportunities for sustainable economic growth for the benefit of its communities and Scotland.” One of the specific areas of focus within the REAP is to assist local communities to secure socio- economic benefit from renewables and to assist in the development of local renewable energy projects. This Community Renewable Opportunity Portal (CROP) is a key outcome of the REAP and aims to provide advice and guidance to enable communities to secure the social, environmental and economic benefits that renewable energy can provide. The CROP will also help to support the Scottish Government’s ambitious 2020 Renewable Energy Route Map which outlines a target of 500MW of community and locally-owned renewable energy by 2020 and has put in place a series of measures to enable communities to reach this goal including, the Community and Renewable Energy Scheme (CARES) and Renewable Energy Investment Fund (REIF).
    [Show full text]
  • Integration of Pump Hydro Storage with a Tidal Stream Array To
    Department of Mechanical and Aerospace Engineering Integration of Pump Hydro Storage with a Tidal Stream Array to Achieve a Base Load Author: Muhammad Nazrin Bin Zaid Supervisor: Dr. Andrew Grant A thesis submitted in partial fulfilment for the requirement of the degree Master of Science Sustainable Engineering: Renewable Energy Systems and the Environment 2014 Copyright Declaration This thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. Signed: Date: 6th September 2014 2 Abstract This thesis examines the feasibility of using pump hydro storage (PHS) as a storage solution to renewable energy generation. The renewable energy technology investigated is tidal stream energy. A tidal stream energy system proposed for construction in the Pentland Firth was examined. As tidal stream generators are located in the coast surrounded by seawater, the thesis focuses on possible sites to deploy a seawater PHS system; this eliminates the need for a lower reservoir and only requires the construction of an upper reservoir thus easing the deployment of PHS systems. Two sites were identified and studied. A tool was developed using excel that can be used to gain the theoretical available energy in a reservoir with a known volume.
    [Show full text]
  • Curriculum Vitae Fredrik Rüter 9 February 2016
    Curriculum Vitae Fredrik Rüter 9 February 2016 Name RÜTER Fredrik Date of Birth 8 May 1960 Nationality Swedish Position Senior Consultant Languages Swedish: mother tongue Danish and Norwegian: good understanding conversation and reading English: fluent (business, conversation, reading, writing) German, Spanish and French: very very basic conversation Coordinates FRECC Reimersholmsgatan 59 SE–117 40 Stockholm SWEDEN +46 76 555 61 05 [email protected] Summary CV In HVDC and Power Cable industry since 1986 Extensive Technical experience of submarine and underground HV cables, XLPE, MI, LPOF Extensive experience from production, installation and testing of HV cables Served as Chairman for Cigré Study Committee B1 (Insulated Cables) Extensive Line Management experience (R&D, Technology, QA, Sales, Consultancy Services) Certified QA System Auditor Trained EMS Auditor (Environmental Management System) Experience from Project Development Certified Project Manager (PMI) Served as Project Manager for large Projects (>100 MEUR) Extensive international experience and network Senior Consultant in several cable projects, producing technical specification, partaking in procurement and selection process, technical support to project manager during implementation, acting company representative on- and offshore et cetera Experience of assisting cable projects in Environmental permit process, including environmental court hearings Familiar with testing facilities in Europe Engineering Manager in large submarine HVDC Projects Extensive
    [Show full text]
  • Driven by Our Purpose
    Drax Group plc Drax Group Annual report and accounts 2020 Driven by our purpose Drax Group plc Annual report and accounts 2020 Welcome to Drax Group Our purpose To enable a zero carbon, lower cost energy future Our ambition Our ambition is to become carbon negative Read more about Philip Cox how we plan to by 2030. Being carbon negative means CBE, Chair achieve our ambition from our that we will be removing more carbon Chair and CEO on dioxide from the atmosphere than we pages 8 and 10 produce throughout our direct business operations globally – creating a carbon Will Gardiner, negative company CEO Our strategic aims To build a long-term future Read more on page 16 for sustainable biomass By expanding our sustainable bioenergy supply chain and reducing costs we are developing options for long-term biomass operations – renewable generation, negative carbon emissions, system support services and third party supply of biomass to international markets. To be the leading provider Read more on page 36 of power system stability Through a portfolio of flexible and renewable generation, and large industrial and commercial customer supply business, we will provide system support services to allow the power system to utilise intermittent renewable energy accelerating the UK’s decarbonisation en route to 2050. Read more on To give our customers page 38 control of their energy We provide our customers with renewable energy, and the opportunity to control and optimise energy use and cost, helping us support the energy system. Front cover: Foresters in Weyerhaeuser working forest, Mississippi, USA, where more carbon is stored See more online at and more wood inventory is grown each year than is www.drax.com extracted for wood products such as biomass pellets.
    [Show full text]
  • System Control Boundaries and Control Boundary Procedures
    This document is not controlled. The current version is held on the Energy Networks Intranet. SYSTEM CONTROL BOUNDARIES & OPSAF-11-030 CONTROL BOUNDARY PROCEDURES Issue No. 4 1 SCOPE This document details the control boundaries and the procedures to be adopted for achieving Safety from the System and the issue of Safety Documents and Keys when working on or testing Plant and HV Apparatus at the control boundaries. Plant and Apparatus ownership is detailed in the Site Responsibility Schedules. This document should be read in conjunction with: PSSI 17 – “Work On or Testing of Customers’ Installations and the Control of Safety from the System at ScottishPower/Customer Boundaries”, and PSMSP 5.2 - “Responsibilities of Control Persons and Authorised Persons who act as Control Persons”. 2 ISSUE RECORD This is a controlled maintained document. All copies printed via the Intranet or photocopied will be deemed uncontrolled. Issue Date Issue No Author Amendment Details Oct 98 1 Raymond Nelson Initial Issue May 2001 2 Allan MacLeod & 1. Inclusion of RISSP Procedure in Dave McKay 2. Review of Control Boundaries and Interface Procedures Feb 2005 3 Fiona Muir, 1. Transfer of Control Authority Allan MacLeod & Procedure. Raymond Nelson 2. RISSP Procedure for NMC Scotland 3. Control Boundaries Updated 4. Inclusion of Work on Transmission Crossings Over Distribution HV Circuits 5. PSMC name updated to NMC Aug 2005 4 Raymond Nelson Section 7, Par 7.4 &7.5 – Clarification of Points of Isolation that can be quoted on Safety Documents : 43 Page Document 3 ISSUE AUTHORITY Author Owner Issue Authority Fiona Muir, Allan MacLeod Raymond Nelson Paul Brown & Raymond Nelson Operational Risk manager Safety Quality & Risk Director ……………………… © SP Power Systems Limited -1- PSMSP 4.5 This document is not controlled.
    [Show full text]