Fusion Research, with an Ultimate Goal to Make a Fusion Power Plant

Total Page:16

File Type:pdf, Size:1020Kb

Fusion Research, with an Ultimate Goal to Make a Fusion Power Plant 86 08.06.2017 The dream of imitating our Sun: The hopes and prospects for unlimited energy 2 Abstract This paper follows the historical development of the fusion research, with an ultimate goal to make a fusion power plant. Starting in the 1950`s, the different methods, setbacks and breakthroughs are explained. Fusion occurs in plasma, and initially the knowledge of hot plasma was limited. Several instabilities and other leakages of the plasma to the walls were early identified, leading to a greater task than first assumed. Reasons why the tokamak machine are the preferred setup amongst many possible ways of confining the hot plasma are given. Results from the greatest tokamaks yet, JET, TFTR and JT-60U, are outlined and discussed. The next step towards a fusion power plant is ITER, a bigger and more powerful machine that are being built in France. The specifications and objectives of ITER are given, together with a discussion on the scientific meaning of the expected results. At the end, an overview of different power plant designs will show how the future of fusion depends on what results ITER gives. i Acknowledgement I would like to thank Professor Henning Knutsen for guiding and helping me throughout the whole learning and writing process. His insight and expertise on fusion has been invaluable in the process of writing my thesis. I would also like to thank the University of Stavanger - Faculty of Science and Technology for giving me the opportunity to write my thesis. Last, but not least, I would like to thank my wife Trine and my children for supporting me during the year. ii Contents Abstract .................................................................................................................................................... i Acknowledgement .................................................................................................................................... ii Introduction ............................................................................................................................................. 1 The possible fusion reactions .............................................................................................................. 2 Binding energy curve ........................................................................................................................... 3 The -value ........................................................................................................................................ 4 The Q-value ......................................................................................................................................... 4 The Lawson criteria and the triple product ......................................................................................... 5 Up to Geneva 1958 .................................................................................................................................. 6 Magnetic confinement configurations ................................................................................................ 8 Magnetohydrodynamics – MHD ......................................................................................................... 9 Drifts .................................................................................................................................................. 10 Single Mirror ...................................................................................................................................... 11 Magnetic well ................................................................................................................................ 15 Toroidal ............................................................................................................................................. 17 The Stellarator ................................................................................................................................... 17 Tokamaks ........................................................................................................................................... 19 Divertor ............................................................................................................................................. 22 Heating the plasma ........................................................................................................................... 23 Ohmic heating ............................................................................................................................... 23 Neutral beam injection - NBI ......................................................................................................... 23 Radio-frequency heating – RF-heating .......................................................................................... 23 The 1960`s ............................................................................................................................................. 24 More instabilities ............................................................................................................................... 25 Bohm diffusion .................................................................................................................................. 25 Kink instabilities ................................................................................................................................. 26 Landau damping ................................................................................................................................ 26 Magnetic mirror ................................................................................................................................ 27 Toroidal confinement ........................................................................................................................ 29 Stellarator ...................................................................................................................................... 29 Tokamak ........................................................................................................................................ 29 Inertial confinement fusion ............................................................................................................... 30 The 1970`s ............................................................................................................................................. 33 Mirror ................................................................................................................................................ 35 Tokamak ............................................................................................................................................ 37 iii Sawteeth ............................................................................................................................................ 40 Inertial confinement fusion ............................................................................................................... 41 Lasers ............................................................................................................................................. 41 Particle beams ............................................................................................................................... 42 1980`s-present ...................................................................................................................................... 43 Magnetic confinement fusion ........................................................................................................... 44 Magnetic mirror ............................................................................................................................ 44 Tokamak ............................................................................................................................................ 46 Joint European Torus – JET ............................................................................................................ 46 Tokamak Fusion Test Reactor – TFTR ............................................................................................ 49 JT-60 / JT-60U / JT-60SA ................................................................................................................ 51 Other tokamaks ............................................................................................................................. 52 The H-mode ....................................................................................................................................... 52 ELMs .................................................................................................................................................. 52 Alpha-particle heating ....................................................................................................................... 53 Wendelstein 7-X ................................................................................................................................ 54 ITER .................................................................................................................................................... 56 ITER final design- EDA-FEAT .......................................................................................................... 57 Operation ...................................................................................................................................... 59 Inertial
Recommended publications
  • Stellarators. Present Status and Future Planning
    STELLARATORS Present Status and Future Planning H. Wobig, Garching IMax-Planck-Institut für Plasmaphysikl magnetic axis Fig. 1 — Period of toroidally dosed magnetic surfaces. The stellarator is a closed toroidal device open-ended configurations like mirror ma­ designed to confine a hot plasma In a ma­ chines (see EN, 12 8/9) there are always gnetic field. It is one of the oldest concepts plasma particles which escape the confine­ magnetic surfaces is investigated by field to have been investigated in the search for ment volume along the magnetic field and line integration. The topology of the field controlled thermonuclear fusion. an isotropic distribution function cannot be lines is determined by the rotational trans­ The basic idea of the stellarator was maintained. If this anisotropy is too strong form or twist number 1/27t (or+), which is developed by Lyman Spitzer, Professor of it gives rise to instabilities and enhanced the number of revolutions of a field line Astronomy at Princeton in 19511). Experi­ plasma losses. It is mainly to avoid these around the magnetic axis during one toroi­ mental studies began in 1952 and after the disadvantages that toroidal confinement dal revolution. declassification of fusion research in 1958 has been preferred. The need for a helical field can be under­ the idea was picked up by other research In toroidal configurations, the currents stood from a look at the particle orbits. groups. In Europe, the first stellarators which generate the confining magnetic Charged particles tend to follow the field were built in the Max-Planck Institute for fields can be classified under three lines and unless these are helical, because Physics and Astrophysics in Munich and categories : of inhomogeneities, the particles will drift later at Culham, Moscow and Karkhov.
    [Show full text]
  • The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
    The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R.
    [Show full text]
  • Nuclear Weapons Databook
    Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Thomas B. Cochran, William M. Arkin, Robert S. Morris, and Milton M. Hoenig A book by the Natural Resources Defense Council, Inc. BALUNGER PUBLISHING COMPANY Cambridge, Massachusetts A Subsidiary of Harper & Row, Publishers, Inc. Copyright a 1987 by the Natural Resources Defense Council, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise, without the prior written consent of the publisher. International Standard Book Number: 0-88730-126-6 (CL) 0-88730-146-0 (PB) Library of Congress Catalog Card Number: 82-24376 Printed in the United States of America Library of Congress CataloGng-iii-PublicationData U.S. nuclear warhead facility profiles. (Nuclear weapons databook ;v. 3) "A book by the Natural Resources Defense Council, Inc." Includes bibliographical references and index. 1. Nuclear weapons-United States. 2. Munitions-United States. I. Cochran, Thomas B. 11. Natural Resources Defense Council. 111. Title: US nuclear warhead facility profiles. IV. Title: United States nuclear warhead facility profiles. V. Series: Cochran, Thomas B. Nuclear weapons databook ;v. 3. U264.C6 1984 vol. 3 355.8'25119'0973 87-14552 [U264] ISBN 0-88410-172-X (v. 1) ISBN 0-88410-173-8 (pbk. : v. 1) ISBN 0-88730-124-X (v. 2) ISBN 0-88730-125-8 (pbk. : v. 2) ISBN 0-88730-126-6 (v. 3) ISBN 0-88730-146-0 (pbk.
    [Show full text]
  • Highlights in Early Stellarator Research at Princeton
    J. Plasma Fusion Res. SERIES, Vol.1 (1998) 3-8 Highlights in Early Stellarator Research at Princeton STIX Thomas H. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA (Received: 30 September 1997/Accepted: 22 October 1997) Abstract This paper presents an overview of the work on Stellarators in Princeton during the first fifteen years. Particular emphasis is given to the pioneering contributions of the late Lyman Spitzer, Jr. The concepts discussed will include equilibrium, stability, ohmic and radiofrequency plasma heating, plasma purity, and the problems associated with creating a full-scale fusion power plant. Brief descriptions are given of the early Princeton Stellarators: Model A, Model B, Model B-2, Model B-3, Models 8-64 and 8-65, and Model C, and also of the postulated fusion power plant, Model D. Keywords: Spitzer, Kruskal, stellarator, rotational transform, Bohm diffusion, ohmic heating, magnetic pumping, ion cyclotron resonance heating (ICRH), magnetic island, tokamak On March 31 of this year, at the age of 82, Lyman stellarator was brought to the headquarters of the U.S. Spitzer, Jr., a true pioneer in the fields of astrophysics Atomic Energy Commission in Washington where it re- and plasma physics, died. I wish to dedicate this presen- ceived a favorable reception. Spitzer chose the name tation to his memory. "Project Matterhorn" for the project which was to be Forty-six years ago, in early 1951, Spitzer, then sited in the Princeton area, on the newly acquired For- chair of the Department of Astronomy at Princeton restal tract, and funding began on July 1 of that year University, together with Princeton physicist John 121- Wheeler, had been thinking about the physics of ther- Spitzer's earliest stellarator papers comprise a truly monoclear processes.
    [Show full text]
  • Physicists Propose New Way to Stabilize Next-Generation Fusion
    PRINCETON PLASMA PHYSICS LABORATORY A Collaborative National Center for Fusion & Plasma Research WEEKLY October 16, 2017 THIS WEEK WEDNESDAY, OCT. 18 Council Café Lunch Physicists propose new way 12 p.m. u Cafeteria Andrea Moten, Interim Head of HR to stabilize next-generation PPPL Colloquium 4:15 p.m. u MBG Auditorium fusion plasmas Properties and Degradation By Raphael Rosen of Polyimide in Extreme Hygrothermal Environments Alan Zehnder, Cornell University key issue for next-generation fusion reactors is the possible impact of many unsta- A ble Alfvén eigenmodes, wave-like disturbances produced by the fusion reac- THURSDAY, OCT. 19 tions that ripple through the plasma in doughnut-shaped fusion facilities called toka- maks. Deuterium and tritium fuel react when heated to temperatures near 100 million Open Forum with Dave McComas degrees Celsius, producing high-energy helium ions called alpha particles that heat 2 p.m. the plasma and sustain the fusion reactions. See page 6 for details. These alpha particles are even hotter than the fuel and have so much energy that FRIDAY, OCT. 20 they can drive Alfvén eigenmodes that allow the particles to escape from the reac- Public Tour tion chamber before they can heat the plasma. Understanding these waves and how 10 a.m. they help alpha particles escape is a key research topic in fusion science. Email [email protected] for info. continued on page 4 UPCOMING OCT. 23–27 Project Matterhorn physicist Rolf Sinclair 59th Annual Meeting of the APS Division of Plasma Physics returns to PPPL 45 years after he left Milwaukee, Wisconsin By Jeanne Jackson DeVoe THURSDAY, OCT.
    [Show full text]
  • Years of Fusion Research
    “50” Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Independent Activities Period (IAP) January 19, 2011 MIT PSFC Cambridge, MA 02139 1 FiFusion Fi FiPre Powers th thSe Sun “We nee d to see if we can mak e f usi on work .” John Holdren @MIT, April, 2009 3 Toroidal Magg(netic Confinement (1940s-earlyy) 50s) • 1940s - first ideas on using a magnetic field to confine a hot plasma for fusion. • 1947 Sir G.P. Thomson and P. C. Thonemann began classified investigations of toroidal “pinch” RF discharge, eventually lead to ZETA, a large pinch at Harwell, England 1956. • 1949 Richter in Argentina issues Press Release proclaiming fusion, turns out to be bogus, but news piques Spitzer’s interest. • 1950 Spitzer conceives stellarator while on a ski lift, and makes ppproposal to AEC ($50k )-initiates Project Matterhorn at Princeton. • 1950s Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when magnetic fusion research was declassified. US and others unveil results at 2nd UN Atoms for Peace Conference in Geneva 1958. Fusion Leading to 1958 Geneva Meeting • A period of rapid progress in science and technology – N-weapons, N-submarine, Fission energy, Sputnik, transistor, .... • Controlled Thermonuclear Fusion had great potential – Much optimism in the early 1950s with expectation for a quick solution – Political support and pressure for quick results (but bud gets were low, $56M for 1951-1958) – Many very “innovative” approaches were put forward. – Early fusion reactor concepts - Tamm/Sakharov, Spitzer (Model D) very large. • Reality began to set in by the mid 1950s – Coll ectiv e eff ects - MHD instability ( 195 4), Bo hm d iffus io n was ubi qui tous – Meager plasma physics understanding led to trial and error approaches – A multitude of experiments were tried and ended up far from fusion conditions – Magnetic Fusion research in the U.S.
    [Show full text]
  • Energetic Beam Ion Transport in LHD the Distribution of Energetic Beam Ions Is Measured by Fast Neutral Particle Analysis Using a Natural Dia- Mond Detector in LHD
    Published by Fusion Energy Division, Oak Ridge National Laboratory Building 9201-2 P.O. Box 2009 Oak Ridge, TN 37831-8071, USA Editor: James A. Rome Issue 69 May 2000 E-Mail: [email protected] Phone (865) 574-1306 Fax: (865) 576-5793 On the Web at http://www.ornl.gov/fed/stelnews Greifswald Branch of IPP moves into new building In early April, about 120 employees of the Max-Planck- Institut für Plasmaphysik (IPP), Greifswald Branch, moved into their new building on the outskirts of the old university town. Up to this time the staff of the Stellarator Theory, Wendelstein 7-X Construction, and Experimental Plasma Physics divisions as well as Administration, Tech- nical Services, and the Computer Center had worked in rented offices at two different locations. Now everybody works under one roof — a roof in the shape of a wave (see Fig. 1), symbolizing the waves on the Baltic Sea. Fig. 2. After unpacking their boxes, the staff of IPP Greif- About 300 persons will work in this new branch institute swald gathered on the galleries above the institute’s “main by the start of the Wendelstein 7-X (W7-X) experiment, road” for an informal opening ceremony on 3 April 2000. scheduled for 2006. This experiment is the successor to the W7-AS stellarator in Garching, with a goal of demon- strating that the advanced stellarator concept, developed at In this issue . IPP, is suitable as a fusion reactor. Even before W7-X has Greifswald Branch of IPP moves into new its first plasma, a smaller, classical stellarator will run in building Greifswald.
    [Show full text]
  • Magnetic Confinement Fusion
    Magnetic confinement fusion - Wikipedia 1 of 7 Magnetic confinement fusion Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy. In order to overcome the electrostatic repulsion between the nuclei, they must have a temperature of tens of millions of degrees, The reaction chamber of the TCV, an creating a plasma. In addition, the plasma experimental tokamak fusion reactor at École must be contained at a sufficient density for polytechnique fédérale de Lausanne, Lausanne, Switzerland which has been used in research a sufficient time, as specified by the Lawson since it was built in 1992. The characteristic torus- criterion (triple product). shaped chamber is clad with graphite to help withstand the extreme heat (the shape is distorted Magnetic confinement fusion attempts to by the camera's fisheye lens). use the electrical conductivity of the plasma to contain it through interaction with magnetic fields. The magnetic pressure offsets the plasma pressure. Developing a suitable arrangement of fields that contain the fuel without excessive turbulence or leaking is the primary challenge of this technology. Contents History Plasma Types Magnetic mirrors Toroidal machines Z-pinch Stellarators https://en.wikipedia.org/wiki/Magnetic_confinement_fusion Magnetic confinement fusion - Wikipedia 2 of 7 Tokamaks Compact toroids Other Magnetic fusion energy See also References External links History The development of magnetic fusion energy (MFE) came in three distinct phases.
    [Show full text]
  • Spitzer S 100Th: Founding PPPL & Pioneering Work in Fusion Energy
    (1) Spitzer’s 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett (2) Some Stories From Working with Spitzer In the Early Years Russell Kulsrud Princeton Plasma Physics Laboratory Colloquium Dec. 4, 2013 These are shorter versions of talks we gave at the 100th Birthday Celebration for Lyman Spitzer, October 19-20, 2013, Peyton Hall, Princeton University, http://www.princeton.edu/astro/news-events/public-events/spitzer-100/ https://www.princeton.edu/research/news/features/a/?id=11377 Video of a longer talk by Kulsrud, “My Early Years Spent Working with Lyman Spitzer“: https://mediacentral.princeton.edu/id/1_1kil7s0p Thanks for slides: Dale Meade, Rob Goldston, Eleanor Starkman and PPPL photo archives, ... PPPL Historical Photos: https://www.dropbox.com/sh/tjv8lbx2844fxoa/FtubOdFWU2 June 19, 2014: added historical info. Jul 9, 2015: pointer to updated figure Lyman Spitzer Jr.’s 100th: Founding PPPL & Pioneering Work in Fusion Energy Outline: • Pictorial tour: from Spitzer’s early days, the Model-C stellarator (1960’s), to TFTR’s 10 megawatts of fusion & the Hubble Space Telescope (Dec. 9-10, 1993) • Russell Kulsrud: A few personal reflections on early days working with Lyman Spitzer. • The road ahead for fusion: – Interesting ideas being pursued in fusion, to improve confinement & reduce the cost of power plants I never officially met Prof. Spitzer, though I saw him at a few seminars. Heard many stories from Tom Stix, Russell Kulsrud, & others, learned from the insights in his book and his ideas in other books. 2 2 Lyman Spitzer, Jr. 1914-1997 Photo by Orren Jack Turner, from Biographical Memoirs V.
    [Show full text]
  • Signature Redacted %
    EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM ARCHW.$ By MASS ACHUSETTS INSTITUTE Lauren A. Merriman I OF IECHNOLOLGY MAY U6 2015 SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING I LIBR ARIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2015 Lauren A. Merriman. All Rights Reserved. - The author hereby grants to MIT permission to reproduce and to distribute publicly Paper and electronic copies of this thesis document in whole or in part. Signature of Author:_ Signature redacted %. Lauren A. Merriman Department of Nuclear Science and Engineering May 22, 2014 Signature redacted Certified by:. Dennis Whyte Professor of Nuclear Science and Engineering I'l f 'A Thesis Supervisor Signature redacted Accepted by: Richard K. Lester Professor and Head of the Department of Nuclear Science and Engineering 1 EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM By Lauren A. Merriman Submitted to the Department of Nuclear Science and Engineering on May 22, 2014 In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Nuclear Science and Engineering ABSTRACT Fusion has been "forty years away", that is, forty years to implementation, ever since the idea of harnessing energy from a fusion reactor was conceived in the 1950s. In reality, however, it has yet to become a viable energy source. Fusion's promise and failure are both investigated by reviewing the history of the United States domestic fusion program and comparing technological forecasting by fusion scientists, fusion program budget plans, and fusion program budget history.
    [Show full text]
  • Axisymmetric Tandem Mirror D-T Neutron Source
    Axisymmetric Tandem Mirror D-T Neutron Source W. Horton∗ and J. Pratt University of Texas at Austin, Institute for Fusion Studies A.W. Molvik Lawrence Berkeley National Laboratory R.M. Kulsrud, N.J. Fisch Princeton Plasma Physics Laboratory I. OVERVIEW We propose to harness an axisymmetric tandem mirror machine to create an intense neutron source[1] [2]. Our machine would be initially based on the successful GAMMA-10 tandem mirror experiment in Tsukuba, Japan and the Gas Dynamic Trap (GDT) mirror experiment in Novosibirsk, Russia. In addition it would be suitable for testing of several other axisymmetric stabilization methods: kinetic stabilizers [3] [4], sloshing ions, and wall stabilization, which would enable higher-Q operation than with GDT-type stabilization. The GAMMA-10 has achieved record breaking confinement results that extrapolate to the production of fusion power in a range of fusion Q from 0.1 to 5 in the near future [5]. In this work the authors outline a linear system that could produce large neutron fluxes in a spectrum nearly identical to that of the ITER device currently being built[6]. A hydrogen prototype of a D-T mirror neutron source would allow experiments on stabilization in axisymmetric cells and expanders that would lead to an optimized fusion Q design. Optimizations are needed for fusion-fission hybrid designs versus pure fusion designs. II. ADVANTAGES OF TANDEM MIRRORS The linear axisymmetric system has major conceptual advantages over all toroidal systems. We list a few of these advantages here: (1) Simplicity of engineering with no interlinked magnetic-field coils and no volt-second transformer considerations.
    [Show full text]
  • STATUS of FUSION RESEARCH and IMPLICATIONS for D-3He SYSTEMS
    STATUS OF FUSION RESEARCH AND IMPLICATIONS FOR D-3He SYSTEMS George H. Miley Fusion Studies Laboratory University of Illinois 103 South Goodwin Avenue Urbana, IL 61801 World-wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven.(*-') Both approaches are now in reach of this goal within the next few years using a D-T equivalent plasma. For magnetic confinement, this step is expected in one of the large tokamak experimental devices such as TFTR (USA), JET (EC), JT-60 (Japan), or T-15 (USSR). Upgraded versions of the Nova glass laser (USA) and CEKKO (Japan) also appear to have a good chance at this goal. The light-ion beam facility "PBFA-11" is viewed as a "dark horse" candidate. Recent physics parameters obtained in these various experiments will be briefly reviewed in this presentation. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The time schedules envisioned by workers in the various countries involved are fairly similar.(l-J) For example, the European Community (EC) proposes to go from the physics studies in JET to an engineering test reactor (NET) which has a construction decision in 1991. This is projected to result in a demonstration reactor after 2015. Plans for inertial confinement are-currently centered on the development of a "next-step'' target facility based on an advanced 5-megajoule laser on roughly the same time scale as NET.(5) The facilities required for both magnetic and inertial confinement will be large and expensive.
    [Show full text]