DEVELOPMENT of ACTIVE SURGE CONTROL DEVICES for CENTRIFUGAL COMPRESSORS (Centrifugális Kompresszorok Aktív Pompázs Szabályozó Eszközeinek Fejlesztése)

Total Page:16

File Type:pdf, Size:1020Kb

DEVELOPMENT of ACTIVE SURGE CONTROL DEVICES for CENTRIFUGAL COMPRESSORS (Centrifugális Kompresszorok Aktív Pompázs Szabályozó Eszközeinek Fejlesztése) DEVELOPMENT OF ACTIVE SURGE CONTROL DEVICES FOR CENTRIFUGAL COMPRESSORS (Centrifugális kompresszorok aktív pompázs szabályozó eszközeinek fejlesztése) by KÁROLY BENEDA Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Supervisor Prof. József Rohács DEPARTMENT OF AERONAUTICS, NAVAL ARCHITECTURE AND RAILWAY VEHICLES Budapest University of Technology and Economics BUDAPEST, HUNGARY June 2013 NYILATKOZAT Alulírott Beneda Károly kijelentem, hogy ezt a doktori értekezést magam készítettem és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem. Budapest, 2013. június ___________________________ Beneda Károly Az értekezésről készült bírálatok és a jegyzőkönyv a későbbiekben a Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Karának Dékáni Hivatalában elérhetőek. ACKNOWLEDGEMENTS As first my deepest grateful acknowledgements are due to my wife, Csilla, who has made me it possible to keep up with my work taking all the duties in the family, caring about our two sons unsparing her efforts. Her true love has helped me through all the hard periods. Then I have to thank my parents who have supported me to find my way in the life. I would like to express my gratitude to my present advisor, Professor József Rohács for the valuable support, guidance and suggestions throughout my work. I also wish to thank Professor Imre Sánta for his conscientious assistance even after his retirement. I am thankful to Árpád Veress, my roommate, for the useful remarks during our frequent discussions. I would like to express my special thanks for Vilmos Csomor and György Székely, the colleagues in the Department Laboratory, who have manufactured all required devices for my work. Hereby I wish to thank all other colleagues at the Department for their help as well. I would like to thank all my colleagues at AEROK Aviation Technical Training Centre for their endless support in improving my knowledge about aircraft engines and providing friendly atmosphere as well. I am very grateful to Budapest Aircraft Service Ltd. and to the deceased MALÉV – Hungarian Airlines, for their kind support on my work, providing an insight on the state-of- the-art aviation solutions. II ABSTRACT Centrifugal compressors are widely spread throughout the industry, with important applications in the transportation (aircraft engines, auxiliary power units), fuel cell systems, etc. All dynamic compressors are prone to instabilities at significantly lower mass flow rates than nominal, which restricts the useable operating range. In order to increase efficiency, stability and operational life, utilization requires finding solutions that are able to meet the requirements of the supplied downstream system while maintaining the compressor within the stable zone. Historically, the surge avoidance systems have been operated far from the surge margin, due to the lack of the possibilities for sensing the onset of surge and reacting on the conditions. As in electronics more sophisticated developments have been reached, the actively controlled surge suppression has been introduced in the late 1980’s. Over the past more than twenty years, most researches have focused on the improvement of existing systems, equipping them with more effective regulators, etc. The aim of the present dissertation is to find methods, which are not currently used as active surge suppression, but can meet the requirement of such application. The decision on the devices to be developed has to be based on a comprehensive analysis of the literature, in order to get familiarized with the up-to-date solutions in this field. With the selected methods, the investigation has to include a preliminary survey based on one-dimensional mathematical model, which is able to supply relevant information about the general behavior of the present devices. The software is written in MATLAB in order to extend the possibilities of calculations and visual interpretation. This has to be followed by detailed numerical simulations in three dimensions, in order to get information about the flow field in full particulars. For the CFD simulations, the ANSYS commercial software is selected, which is available at the Department. Another important step in the research is the design of a control system. Based on thorough survey of the related literature, a linear quadratic (LQ) optimal regulator has been chosen to develop and investigate. The simulation of compression system dynamic behavior with the investigated surge suppression device is realized in MATLAB Simulink environment as it offers extensive mathematical apparatus to solve similar problems in engineering. The previously mentioned parts of the work should also be supported by experimental research; hence a compressor test bench has been developed and equipped with a sophisticated data acquisition system. As a conclusion to the investigation, the achieved results are detailed and evaluated in order to ascertain the applicability of the chosen devices, draw consequences from the CFD simulations and find the possible ways of further improvement of the topic. III TABLE OF CONTENTS Introduction ................................................................................................................................ 1 Industrial background of the problem .................................................................................... 1 Aims of the thesis ................................................................................................................... 1 Method of the investigation .................................................................................................... 2 Organization of the thesis ....................................................................................................... 2 1. Phenomena and Possible Control of Centrifugal Compressor Surge ................................. 4 1.1. Centrifugal Compressors and Their Applications ....................................................... 4 1.1.1. General introduction ............................................................................................. 4 1.1.2. Operation principle of centrifugal compressors ................................................... 6 1.1.3. Determination of operational parameters of centrifugal compressors .................... 9 1.1.4. Major applications of centrifugal compressors .................................................. 15 1.2. Centrifugal Compressor Surge .................................................................................. 18 1.2.1. Introduction to Instabilities ................................................................................ 18 1.2.2. Classification of instabilities .............................................................................. 18 1.3. Effects of Surge on the Operation of the Centrifugal Compressor ............................ 22 1.3.1. Classifying species of surge ............................................................................... 22 1.3.2. Investigation of Effects of Deep Surge .............................................................. 26 1.3.3. Investigation of Effects of Mild and Classic Surge ............................................ 27 1.4. Possibilities of Active Surge Control on Centrifugal Compressors .......................... 28 1.4.1. Short Introduction into Passive Methods of Surge Avoidance .......................... 28 1.4.2. Active Surge Control Methods ........................................................................... 30 1.4.3. Concluding remarks ........................................................................................... 34 2. Active Control of Surge ................................................................................................... 35 2.1. Onset of Surge ........................................................................................................... 35 2.2. Mathematical Description of Surge Onset ................................................................. 37 2.2.1. Stability of a Compression System .................................................................... 37 2.3. Modeling of the Active Surge Control Methods ....................................................... 43 2.3.1. General Introduction to Surge Control Models .................................................. 43 2.3.2. Overview of the Developed Model .................................................................... 43 2.3.3. Governing Equations of the Model .................................................................... 44 2.4. Operational Concept of Investigated Methods .......................................................... 52 3. Developed Methods and Devices ..................................................................................... 54 3.1. Choosing the Methods for Development ................................................................... 54 3.2. CFD Simulation of Developed Surge Control Devices ............................................. 56 3.2.1. Introduction ........................................................................................................ 56 3.2.2. Variable Inducer Shroud Bleed .......................................................................... 56 3.2.3. Blade Load Distribution Control .......................................................................
Recommended publications
  • Limits to Principles of Electric Flight
    AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO) Limits to Principles of Electric Flight Dieter Scholz Hamburg University of Applied Sciences https://doi.org/10.5281/zenodo.4072283 Deutscher Luft- und Raumfahrtkongress 2019 German Aerospace Congress 2019 Darmstadt, Germany, 30.09. - 02.10.2019 Abstract Purpose – This presentation takes a critical look at various electric air mobility concepts. With a clear focus on requirements and first principles applied to the technologies in question, it tries to bring inflated expectations down to earth. Economic, ecologic and social (noise) based well accepted evaluation principles are set against wishful thinking. Design/methodology/approach – Aeronautical teaching basics are complemented with own thoughts and explanations. In addition, the results of past research and student projects are applied to the topic. Find ings – Electric air mobility may become useful in some areas of aviation. Small short-range general aviation aircraft may benefit from battery-electric or hybrid-electric propulsion. Urban air mobility in large cities will give time advantages to super-rich people, but mass transportation in cities will require a public urban transport system. Battery- electric passenger aircraft are neither economic nor ecologic. How overall advantages can be obtained from turbo- electric distributed propulsion (without batteries) is not clear. Maybe turbo-hydraulic propulsion has some weight advantages over the electric approach. Research limitations/implications – Research findings are from basic considerations only. A detailed evaluation of system principles on a certain aircraft platform may lead to somewhat different results. Practical implications – The discussion about electric air mobility concepts may get more factual. Investors may find some of the information provided easy to understand and helpful for their decision making.
    [Show full text]
  • CRD) to Notice of Proposed Amendment (NPA) 03-2006
    Comment Response Document (CRD) to Notice of Proposed Amendment (NPA) 03-2006 for amending the Executive Director Decision No. 2005/07/R of 19 December 2005 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 of 20 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks APPENDIX I AIRCRAFT TYPE RATINGS FOR PART-66 AIRCRAFT MAINTENANCE LICENCE CRD to NPA 03/2006 Explanatory Note I. General 1. The purpose of the Notice of Proposed Amendment (NPA) 03/2006, dated 20 April 2006 was to propose an amendment to Decision N° 2005/07/R of the Executive Director of the Agency of 19 December 2005 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 of 20 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks (ED Decision 2005/07/R). II. Consultation 2. The draft Executive Director Decision (ED Decision) amending ED Decision 2005/07/R was published on the web site (www.easa.europa.eu) on 21 April 2006. By the closing date of 2 June 2006, European Aviation Safety Agency (the Agency) had received 107 comments from 20 National Aviation Authorities, professional organisations and private companies. III. Publication of the CRD 3. All comments received have been acknowledged and incorporated into a Comment Response Document (CRD). This CRD contains a list of all persons and/or organisations that have provided comments and the answers of the Agency.
    [Show full text]
  • Download This Investigation Report In
    AVIATION INVESTIGATION REPORT A10P0242 LOSS OF ENGINE POWER AND LANDING ROLLOVER TRANSWEST HELICOPTERS LTD. BELL 214B-1 (HELICOPTER), C-GTWV LILLOOET, BRITISH COLUMBIA, 20 NM NW 29 JULY 2010 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report Loss of Engine Power and Landing Rollover Transwest Helicopters Ltd. Bell 214B-1 (Helicopter), C-GTWV Lillooet, British Columbia, 20 nm NW 29 July 2010 Report Number A10P0242 Summary The Transwest Helicopters Ltd. Bell 214B-1 helicopter (registration C-GTWV, serial number 28048), with 2 pilots onboard, was engaged in firefighting operations approximately 20 nautical miles northwest of Lillooet, British Columbia. At 1124 Pacific Daylight Time, after refilling the water bucket, the helicopter was on approach to its target near a creek valley. As the helicopter slowed and started to descend past a ridgeline into the creek valley, the engine lost power. The pilot-in-command, seated in the left-hand seat, immediately turned the helicopter left to climb back over the ridgeline to get to a clearing, released the water bucket and the 130-foot long-line from the belly hook, and descended toward an open area to land. The helicopter touched down hard on uneven, sloping terrain, and pitched over the nose. When the advancing main-rotor blade contacted the ground, the airframe was in a near-vertical, nose-down attitude, which then rotated the fuselage, causing it to land on the left side.
    [Show full text]
  • Design of a Business Jet
    Design of a Business Jet a project presented to The Faculty of the Department of Aerospace Engineering San José State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Nicholas Dea August 2018 approved by Dr. Nikos Mourtos Faculty Advisor Chapter 1 Introductory Literature Review 1.1 Motivation Currently, there are several factors that contribute to the negative connotations that come with air travel. Some issues that are most often negatively associated with flying are personal space and safety. These issues are at the forefront of today’s topics as airlines are doing their best to maximize profits, while leaving passengers in the rear-view mirror. One example of a reduction in one’s personal space would be in the journal article presented by Govindaraju and Crossley [1]. In their observations and analysis, they determined that the most profitable travel for airlines were not on large passenger transports with maximized seating, but rather with smaller regional jets whom are able to fly shorter distances, yet make a higher number of trips between the destinations. Others may argue that a reduction in personal space may be a hinderance on emergency evacuations as the volume of passengers that must exit the plane in confined spaces will take considerably more time than fewer passengers in wider more open aisles and seats. Safety refers to a multitude of factors, for instance, security checkpoints as well as turbulence or airplane mechanical or technical issues. Safety is an issue as the public and those setting the regulations have a distance between the two as to what the objective of the security measures are meant for, as discussed in the article by David Caskey [2].
    [Show full text]
  • Section 3 - British Airways Fleet
    SECTION 3 - BRITISH AIRWAYS FLEET AIRCRAFT FLEET Number in service with Group companies at December 31, 2005 On balance Operating leases sheet off balance sheet Total Future aircraft extendible Dec 05 deliver Option other ies s AIRLINE OPERATIONS (Note 1) Boeing 747-400 57 57 Boeing 777 40 3 43 Boeing 767-300 21 21 Boeing 757-200 13 13 Airbus A319 (Note 2) 21 10 2 33 32 Airbus A320 (Note 3) 9 2 16 23 7 Airbus A321 7 7 3 Boeing 737-300 5 5 Boeing 737-400 Note 4) 19 19 Boeing 737-500 9 9 Turbo Props (Note 5) 8 8 Embraer RJ145 16 3 9 28 Avro RJ100 (Note 6) 15 15 British Aerospace 146 4 4 Group Total 207 30 52 289 10 32 Notes: 1. Includes those operated by British Airways Plc and British Airways CitiExpress Ltd. 2. Certain future deliveries and options include reserved delivery positions, and may be taken as any A320 family aircraft. 3. Includes 1 Airbus 320 returned to service from sub-lease to GB Airways. 4. Includes 1 Boeing 737-400 returned to service from sub-lease to Air One. 5. Comprises 8 de Havilland Canada DHC-8s. Excludes 5 British Aerospace ATPs stood down pending return to lessor and 12 Jetstream 41s sub-leased to Eastern Airways. 6. Excludes 1 Avro RJ100 sub-leased to Swiss. 7. Future deliveries have increased by 4 to 10 to replace 10 A320 aircraft due to leave the fleet from 2007. AIRCRAFT DELIVERY SCHEDULE - Mainline (firm orders) As at December 31 st 2005 2007/08 2008/09 TOTAL Airbus A320 4 3 7 Airbus A321 3 3 7 3 10 TOTAL MAINLINE FLEET PROFILES The fleet profiles on the following pages give positions for mainline jet aircraft as at December 31, 2005.
    [Show full text]
  • United States Patent (Io) Patent No.: US 9,909,505 B2 Gallagher Et Al
    11111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (io) Patent No.: US 9,909,505 B2 Gallagher et al. (45) Date of Patent: *Mar. 6, 2018 (54) EFFICIENT, LOW PRESSURE RATIO (58) Field of Classification Search PROPULSOR FOR GAS TURBINE ENGINES CPC ... F02K 3/06; F02K 1/06; FO1D 5/282; FO1D 17/14; FO1D 5/147; FO1D 15/12; (71) Applicant: United Technologies Corporation, Hartford, CT (US) (Continued) (72) Inventors: Edward J. Gallagher, West Hartford, (56) References Cited CT (US); Byron R. Monzon, Cromwell, CT (US); Shari L. Bugaj, U.S. PATENT DOCUMENTS Haddam, CT (US) 3,287,906 A 11/1966 McCormick 3,468,473 A 9/1969 Davies et al. (73) Assignee: United Technologies Corporation, (Continued) Farmington, CT (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 EP 1712738 10/2006 U.S.C. 154(b) by 17 days. G13 1516041 6/1978 This patent is subject to a terminal dis- (Continued) claimer. OTHER PUBLICATIONS (21) Appl. No.: 14/695,373 Gray, D.E. et al. (1978). Energy efficient engine preliminary design (22) Filed: Apr. 24, 2015 and integration study. United Technologies Corporation; Pratt & Whitney Aircraft Group. Prepared for NASA. Nov. 1, 1978. pp. (65) Prior Publication Data 1-366. US 2016/0201607 Al Jul. 14, 2016 (Continued) Related U.S. Application Data Primary Examiner Carlos A Rivera (63) Continuation-in-part of application No. 13/484,858, (74) Attorney, Agent, or Firm Carlson, Gaskey & Olds, filed on May 31, 2012, now Pat. No. 9,121,368, and P.C.
    [Show full text]
  • 1111111111111111111Inuuu11
    1111111111111111111inuuu1111111111u~ (12) United States Patent (io) Patent No.: US 9,926,885 B2 Gallagher et al. (45) Date of Patent: Mar. 27, 2018 (54) EFFICIENT, LOW PRESSURE RATIO (56) References Cited PROPULSOR FOR GAS TURBINE ENGINES U.S. PATENT DOCUMENTS (71) Applicant: United Technologies Corporation, 2,258,792 A 4/1941 New Farmington, CT (US) 2,936,655 A 5/1960 Peterson et al. (Continued) (72) Inventors: Edward J. Gallagher, West Hartford, CT (US); Byron R. Monzon, FOREIGN PATENT DOCUMENTS Cromwell, CT (US) EP 0791383 8/1997 (73) Assignee: UNITED TECHNOLOGIES EP 1142850 10/2001 CORPORATION, Farmington, CT (Continued) (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 McMillian, A.(2008) Material development for fan blade contain- U.S.C. 154(b) by 0 days. ment casing. Abstract. p. 1. Conference on Engineering and Physics: Synergy for Success 2006. Journal of Physics: Conference Series (21) Appl. No.: 15/709,540 vol. 105. London, UK. Oct. 5, 2006. (22) Filed: Sep. 20, 2017 (Continued) (65) Prior Publication Data Primary Examiner Zelalem Eshete US 2018/0023511 Al Jan. 25, 2018 (74) Attorney, Agent, or Firm Carlson, Gaskey & Olds, Related U.S. Application Data P.C. (63) Continuation of application No. 15/252,689, filed on Aug. 31, 2016, which is a continuation of application (57) ABSTRACT (Continued) A gas turbine engine includes a bypass flow passage that has (51) Int. Cl. an inlet and defines a bypass ratio in a range of approxi- F02K 3/075 (2006.01) mately 8.5 to 13.5.
    [Show full text]
  • The Revista Aérea Collection
    The Revista Aérea Collection Dan Hagedorn and Pedro Turina 2008 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Historical Note.................................................................................................................. 2 Arrangement..................................................................................................................... 2 Scope and Content Note................................................................................................. 2 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 4 Series A: Aircraft...................................................................................................... 4 Series B: Propulsion............................................................................................. 218 Series C: Biography............................................................................................. 262 Series D: Organizations......................................................................................
    [Show full text]
  • REPARACIÓN Y MANTENIMIENTO DE AERONAVES CLASE 2 Los Alcances Y Limitaciones Arriba Listados Quedan
    (SERVICIO AL PÚBLICO) REPARACIÓN Y MANTENIMIENTO DE AERONAVES CLASE 2 Los alcances y limitaciones arriba listados quedan sujetos conforme al documento Certificado de Estación de Reparación núm. WTXR173J, de la tabla de contenido parte A 003 Rev. 17, Autorizado por la Federal Aviation Administration (FAA) de los Estados Unidos de Norteamérica. REPARACIÓN Y MANTENIMIENTO DE AERONAVES CLASE 3 Los alcances y limitaciones arriba listados quedan sujetos conforme al documento Certificado de Estación de Reparación núm. MARCA MODELO WTXR173J, de la tabla de contenido parte A 003 Rev. 17, Autorizado por la CESSNA 441, Federal Aviation Administration (FAA) 525, de los Estados Unidos de 525A. Norteamérica. EMBRAER EMB-500 (PHENOM 100) MARCA MODELO CESSNA 441, 525, 525A. EMBRAER EMB-500 (PHENOM 100) MARCA MODELO CESSNA 550, S550, 560/XL, MARCA MODELO REPARACIÓN Y MANTENIMIENTO DE AERONAVES CLASE 4 Los alcances y limitaciones arriba listados quedan sujetos conforme al documento Certificado de Estación de Reparación núm. WTXR173J, de la tabla de contenido parte A 003 Rev. 17, Autorizado por la Federal Aviation Administration (FAA) de los Estados Unidos de Norteamérica. REPARACIÓN Y MANTENIMIENTO DE MOTORES CLASE 3 MARCA MODELO CESSNA 441, 525, 525A. EMBRAER EMB-500 (PHENOM 100) MARCA MODELO CESSNA 550, S550, 560/XL MARCA MODELO CESSNA 441, 525, 525A. EMBRAER EMB-500 (PHENOM 100) MARCA MODELO CESSNA 550, S550, MARCA MODELO 560/XL REPARACIÓN Y MANTENIMIENTO DE MOTORES CLASE 3 (Continuación) Los alcances y limitaciones arriba listados quedan sujetos conforme al documento Certificado de Estación de Reparación núm. WTXR173J, de la tabla de contenido parte A 003 Rev. 17, Autorizado por la Federal Aviation Administration (FAA) de los Estados Unidos de Norteamérica.
    [Show full text]
  • Geared Turbofan - Wikipedia 7/9/20, 1010 AM
    Geared turbofan - Wikipedia 7/9/20, 10)10 AM Geared turbofan The geared turbofan is a type of turbofan aircraft engine, with a gearbox between the fan and the low Geared turbofan pressure shaft to spin each at optimum angular velocities. Contents Technology Engines Tentatives Geared turbofan. [1]: Fan. [2]: Gearbox. See also References Notes Bibliography Technology In a conventional turbofan, a single shaft (the "low-pressure" or LP shaft) connects the fan, the low- pressure compressor and the low-pressure turbine (a second concentric shaft connects the high- pressure compressor and high-pressure turbine). In this configuration, the maximum tip speed for the larger radius fan limits the rotational speed for the LP shaft and thus the LP compressor and turbine. At high bypass ratios (and thus high radius ratios) the tip speeds of the LP turbine and LP compressor must be relatively low, which means extra compressor and turbine stages are required to keep the average stage loadings and, therefore, overall component efficiencies to an acceptable level. In a geared turbofan, a planetary reduction gearbox between the fan and the LP shaft allows the latter to run at a higher rotational speed thus enabling fewer stages to be used in both the LP turbine and the LP compressor, increasing efficiency and reducing weight. However, some energy will be lost as heat in the gear mechanism and weight saved on turbine and compressor stages is partly offset by that of the gearbox. There are manufacturing cost and reliability implications as well. The lower fan speed allows higher bypass ratios, leading to reduced fuel consumption and much reduced noise.
    [Show full text]
  • British Airways Fleet Aircraft Delivery Schedule
    SECTION 3 - BRITISH AIRWAYS FLEET AIRCRAFT FLEET Number in service with Group companies at December 31, 2002 On balance Operating leases sheet off balance sheet Total Future aircraft extendible other Dec 02 deliveries Options AIRLINE OPERATIONS (Notes 1&2) Concorde (Note 3) 7 7 Boeing 747-400 56 56 Boeing 777 43 43 Boeing 767-300 (Note 4) 21 21 Boeing 757-200 15 1 16 Airbus A319 (Note 5) 21 10 2 33 3 99 Airbus A320 13 2 8 23 7 Airbus A321 10 Boeing 737-300 21 21 Boeing 737-400 19 5 5 29 Boeing 737-500 10 10 Turbo Props (Note 6) 40 40 Embraer RJ145 16 3 9 28 17 Avro RJ100 16 16 British Aerospace 146 5 5 Group Total 216 36 96 348 20 116 Notes: 1. Includes those operated by British Airways Plc, CityFlyer Express, Deutsche BA and British Airways Citiexpress. 2. Excludes 3 Boeing 747-200s, 2 Boeing 737-300s and 1 Boeing 737-400 stood down pending disposal or return to lessor and 1 Boeing 747-400 sub-leased to Qantas. 3. Includes 2 Concordes currently stood down pending safety modifications. 4. Includes 3 Boeing 767-300s temporarily out of service. 5. Certain future deliveries and options include reserved delivery positions and may be taken as any A320 family aircraft. 6. Includes 12 Jetstream 41 aircraft, 13 British Aerospace ATP aircraft, 5 ATR 72 aircraft and 10 de Havilland Canada DHC-8 aircraft. AIRCRAFT DELIVERY SCHEDULE - Mainline (firm orders) As at December 31st 2002 Q4 2002/03 2003/04 2004/05 2005/06 2006/07 TOTAL Airbus A319 2 1 3 Airbus A320 1 3 3 7 Airbus A321 6 4 10 1 3 6 9 1 20 TOTAL British Airways Fact Book 2002 44 MAINLINE FLEET PROFILES The fleet profiles on the following pages give positions for mainline jet aircraft as at December 31 2002.
    [Show full text]
  • Edición 2018-V12 = Rev. 01
    Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 3/12 Página: 601 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 -ARGUS. (Continuación) -Otra visita al Museo de la Regia Aeronautica nos ha permitido fotografi ar el Argus As-10c. -Primorosamente restaurado y con su bancada original. -Las fotos son gentileza de nuestro colaborador JGB. “Motor Argus As-5” -Como vemos se trata de dos motores con cilindros en W unidos por el mismo cigüeñal. Un motor encima y el “Argus As-10c en Vigna di Valle” otro invertido. -Parece ser que el diseño es de Riedel, el ingeniero que hizo el motor de arranque de dos tiempos superchato y rápido para las turbinas de Junkers, BMW y Heinkel-Hirth. -En el Museo de Cracovia encontramos el Argus As5. Un mastodonte de 24 cilindros y 1500 CV a 1800 rpm, -Se ha localizado en un informe hasta ahora confi dencial cubicando unos 94 litros y pesando 1100 Kgs. (el Technical Memorandum No.706 de la NACA) una silu- eta del Argus As7, un radial de 9 cilindros que en el texto principal se menciona pero no se conoce ni su arquitectura. * * * Logos de fabricantes de motores Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 3/12 Página: 602 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev.
    [Show full text]