Obdelava Slik

Total Page:16

File Type:pdf, Size:1020Kb

Obdelava Slik PROJEKTNA NALOGA ASTRONOMIJA Magnituda Rimske ceste Avtorji: Matic Ocepek Jernej Cucek Goran Bezjak Bernard Pavlovič Nikola Milijevski Mentor: prof. dr. Andrej Čadež Fakulteta za matematiko in fiziko, 2010 Projektna naloga astronomija: Magnituda Rimske ceste KAZALO UVOD ........................................................................................................................................ 3 KAKO DO FOTOGRAFIJ IN KAJ Z NJIMI ............................................................................ 4 IZPELJAVA ENAČBE .............................................................................................................. 5 IZRAČUNI IN REZULTATI..................................................................................................... 9 NAPAKE .................................................................................................................................. 15 ZAKLJUČEK ........................................................................................................................... 17 VIRI .......................................................................................................................................... 18 2 Projektna naloga astronomija: Magnituda Rimske ceste UVOD Rimska ali Mlečna cesta je megličast pas bele svetlobe sestavljen iz okoli 200 milijard zvezd, ki je ob jasnih nočeh viden na nočnem nebu in se vije po celotni nebesni sferi. Sestavljajo jo zvezde, zvezdni prah in plini v galaktični ravnini, ki je glede na nebesni ekvator nagnjena okoli 63 stopinj [1]. Površinska svetlost Rimske ceste je razmeroma majhna, zato jo je iz svetlobno onesnaženega mestnega ali predmestnega okolja težko videti. Njen najsvetlejši del je viden poleti, v smeri ozvezdja Strelca, v kateri se nahaja tudi osrednja zgostitev in središče galaksije. To dejstvo pa ne vpliva na svetlost, kajti okoli tega območja se nahaja velika količina medzvezdnega prahu, ki ne prepušča vidnega dela svetlobnega spektra. Radijska astronomska opazovanja porazdelitve vodikovih oblakov so pokazala, da je Rimska cesta spiralna galaksija Hubblovega tipa SBb/c, kar pomeni, da ima spiralno strukturo s prečko in izrazit centralni del. Velikost premera njenega galaktičnega diska so astronomi določili na okoli 90.000 svetlobnih let. V centru Rimske ceste je črna luknja, okoli katere se vrtijo zvezde in zvezdni sistemi. Masa Rimske ceste je ocenjena na 1012 mas Sonca. Pripada Lokalni jati galaksij, ki jo sestavljajo tri večje in 30 manjših galaksij in je druga po velikosti za Andromedo. Spiralni roki naše Galaksije sestavljajo medzvezdna snov, meglice, mlade zvezde in odprte gruče, ki nastajajo iz medzvezdne snovi. V galaktičnem jedru se nahaja točka simetrije celotnega sistema. V njem je črna luknja, z našega dela galaksije pa je to smer proti Strelcu. Sončni sistem je na obrobju galaktičnega diska okoli 28000 sv. let oddaljen od črne luknje (podatek je leta 1997 potrdila misija Hipparcos), okoli 20 sv. let nad galaktično ravnino. Okoli galaktičnega centra potuje s hitrostjo 220 km/s in zaokroži v 225 milijonih let. Nahaja se v bližini spiralnega kraka imenovanega lokalni ali Orionov krak. Slika 1: Na sliki je prikazana naša predstava Rimske ceste . S puščico je označeno središče našega Osončja [2]. Zaradi velikosti Rimske ceste, ki je vidna po celem nebu, jo je treba fotografirati s širokokotnimi objektivi in slike sestaviti. 3 Projektna naloga astronomija: Magnituda Rimske ceste Slika 2: »360° x 45°« Slika prikazuje Axel Millerjevo All sky panoramo naše Galaksije [3]. KAKO DO FOTOGRAFIJ IN KAJ Z NJIMI Preden smo se odpravili fotografirati, smo s pomočjo prof. Čadeža zasnovali teorijo tako, da izračuni niso bili odvisni od časa osvetljenosti fotografije, ampak le od razmerja osvetljenosti območja Rimske ceste, znanih zvezd in ozadja. Ker smo želeli povečati vidnost Rimske ceste, da bi se pri sestavljanju fotografij v enotno fotografijo lažje orientirali, smo čas osvetlitve nastavili na 4 minute. Ker se v tem času nebo zavrti približno za 1 stopinjo in nismo imeli stativa s sledenjem, smo na fotografijah dobili razmazane zvezde, a nas to ni oviralo pri izračunih, ker smo signal prebrali na vseh točkah razmazane zvezde. Za fotografiranje Rimske ceste smo morali izbrati noč, ko Luna dovolj zgodaj zaide in je nebo jasno. S tem smo zmanjšali moteče dejavnike atmosfere, kot so sipanje svetlobe, seeinig, itd... Dan z ustreznimi pogoji je bil 19. julij 2007. Odpravili smo se na vrh Krima (45°55'46'' N, 14°28'12'' E) na višino 1107 metrov. Sprva smo s pomočjo pripomočkov iz narave sestavili improviziran stativ za naš Canon EOS 300D z objektivom EF-S18-55mm f / 3.5 - 5.6. Ta fotoaparat omogoča fotografiranje z BULB funkcijo in sprožitev z daljincem. Posneli smo nekaj poskusnih fotografij, da smo izostrili občutek za čas osvetlitve in občutljivost (ISO). Po nekaj vaje smo posneli tri zaporedne fotografije, katere smo uporabili pri izračunu svetlosti vidnega dela Rimske ceste. Te zajemajo nebo od drevesnih krošenj preko zenita nazaj do obzorja. Izpustili smo le del nad Ljubljano, na katerem je bila zaradi nočne razsvetljave svetlobna onesnaženost preveč moteča in je bila fotografija za naše potrebe neuporabna. Osvetlitev vsake posamezne fotografije je znašala 240 sekund, odprtje leč F/5.6, ISO vrednost pa je bila nastavljena na največjo, to je ISO1600. Prva slika je bila zajeta 19. julija 2007 ob 1:23:50, druga ob 1:29:32 in tretja ob 1:37:48. Dolg čas osvetlitve je omogočil zajem dovolj osvetljenih fotografij, da se pas Rimske ceste lepo vidi na temnem ozadju Na treh slikah skupaj je zajet večji del neba po katerem poteka Rimska cesta. Obdelava fotografij je bila narejena s programom Adobe Photoshop CS. S pomočjo tega programskega paketa smo tri fotografije združili v eno skupno (slika 8). Nastala je dobra slika celotnega neba, a se ponekod vidi, da se fotografije sicer lepo ujamejo v posameznih točkah, težave pa povzroča sferična aberacija leče fotografskega aparata. To pa pomeni da so deli slike bolj oddaljeni od središča leče, se pravi ob robovih, po kotu bolj odmaknjeni od središča kot v resnici. To se precej dobro vidi pri združeni sliki, ker tudi posamezne fotografije nimajo enakih proporcev. Ker pa nas razdalje in razmerja pri tej projektni nalogi ne bodo zanimala, se na to nismo preveč ozirali. Fotografije smo po združitvi poimenovali kot »spodnja«, kjer so vidne še drevesne krošnje, nato »srednja«, ki zajema območje zenita in »zgornja«, ki prikazuje območje proti tlem od zenita. Najprej je bila posneta »spodnja«, potem »srednja« in nazadnje še »zgornja« fotografija. 4 Projektna naloga astronomija: Magnituda Rimske ceste Slika 3: Primerjava slike neba (leva, [4]) in naših fotografij (desno). Notranjost zelenega kroga na sliki predstavlja del neba, ki je bil viden iz naše lokacije, notranjost rumenega, rdečega in modrega lika je površina, ki smo jo zajeli z našimi fotografijami. IZPELJAVA ENAČBE Svetlobni tok, ki pade na en piksel, je v nekem sorazmerju z vrednostmi R,G,B, j C() R G B , (1) kjer je C neka konstanta za fotoaparat, ki je ne poznamo in je tudi ne potrebujemo, saj nas zanima samo razmerje dveh svetlobnih tokov, kjer se konstanta okrajša. Za poljubno zvezdo Z, ki je na sliki zaradi dolge osvetlitve razmazana čez nZ pikslov in katere magnitudo mZ poznamo, gre izpeljava enačbe takole: Sz n z() R G B z (2.0) nzz() R G B E K (2.1) D2 S100.4 mz ( F t K ) (2.2) z 0 4 0.4 mz SAz 10 (2.3) S log(z ) 0.4 m (2.4) A z log(Szz ) log( A ) 0.4 m (2.5) kjer je Sz, svetlost določene zvezde, A pa konstanta, ki se med posnetki ne spreminja. Ker so K, A, log(A) in -0.4 le konstante, velja odvisnost → log(Smzz ) 5 Projektna naloga astronomija: Magnituda Rimske ceste Preden nadaljujemo z izpeljavo se moramo zavedati, da zvezde svetijo v različnih barvah, zato seštevanje R,G,B vrednosti nima smisla, če v zgornji odvisnosti (2.5) ne uporabimo mZ, ki je bila merjena za isti svetlobni spekter, kot ga pokriva CCD tipalo v fotoaparatu. Ta odvisnost bo naše vodilo pri izpeljavi. Veljati bi moralo razmerje: ()RGB g ObmočjeGalaksije Eng n() R G B gK g g (3) ZnanaZvezda n() R G B Ezzz n z() R G B z K Na levi strani so vrednosti teoretičnih izračunov, ki jih moramo še poiskati, a na desni strani so merjeni podatki. ObmočjeGalaksije Magnituda prej izbranega območja Rimske ceste se skriva v Eg . Z izpeljavo enačbe to pokažemo: Energija CCD senzorja v fotoaparatu je ObmočjeGalaksije dEg dP t , (4) kjer je dP I dS d (5) moč, ki pade iz dela Rimske ceste s površino dS na površino dS'. Simbol I pomeni sevalnost in d prostorski kot. Bolj nazorno to geometrijo pokaže slika 4: dS dS' Slika 4: Skica objektiva in poti žarkov 1 Uporabimo enačbo leče, kjer a postavimo na neskončno in na nič. To lahko naredimo, a ker so zvezde v primerjavi z razdaljo b od leče do CCD zelo daleč. 1 1 1 a fb (6) f a b 6 Projektna naloga astronomija: Magnituda Rimske ceste Velja razmerje površin a 2 dS dS' (7) b in definicija prostorskega kota D 2 SD2 2 d . (8) a2 a 24 a 2 Vzemimo sedaj košček Rimske ceste S in ga razglasimo za zvezdo z neko površino (R je radij zvezde) in magnitudo m. Naj ta »zvezda« na fotografiji zavzame površino S' (slika 5). Če predpostavimo, da zvezda sveti izotropno, lahko zapišemo LD 2 dP IdSd cos IdS , (9) 16a 2 kjer je L izsev. Sl – površina leče del galaksije - S S' – površina, ki jo del galaksije zavzame na fotografiji D/2 – polmer leče Slika 5: Prikaz padanja svetlobe iz dela galaksije skozi lečo na del fotografije. Sedaj naredimo še končen izračun do energije znane zvezde. Za znano zvezdo uporabimo sledeči zvezi za fluks F 0,4mZ F F0 10 in (10) L F . (11) 4 a 2 Zveze (9-11) za znano zvezdo vstavimo v enačbo (4) in dobimo E ZnanaZvezda 10 0.4mZ F D 2 0 . (12) t 4 7 Projektna naloga astronomija: Magnituda Rimske ceste Po analogiji zapišimo še zvezo za Rimsko cesto: E Območbmočjaksije 10 0.4mrc F D 2 0 (13) t 4 Zgoraj dobljeni enačbi (12) in (13) vstavimo v enačbo (3) in tako dobimo ObmočjeGalaksije Eg n g() R G B g ZnanaZvezda , (14) Ez n z() R G B z 0.4 mrc 2 10 FD0 n() R G B 4 gg (15) 0.4 mz 2 10 FD0 nzz() R G B 4 in izpostavimo magnitudo Rimske ceste ngg() R G B =► mmrc2,5 log z .
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Homework 6 – Stellar Physics 1. Cygnus X-1 Is an X-Ray Source In
    Homework 6 – Stellar Physics 1. Cygnus X-1 is an x-ray source in the constellation Cygnus that astrophysicists believe is a black hole. An artist’s impression is shown in Figure 1A. Figure 1A The mass of the black hole has been determined to be 14∙8 solar masses. (a) (i) State what is meant by the Schwarzschild radius of a black hole. (ii) Calculate the Schwarzchild radius of the black hole in Cygnus X-1. (b) The Hertzsprung-Russell (H-R) diagram shown in Figure 1B shows the relationship between luminosity and surface temperature of stars. Figure 1B Zeta Cygni B and Chi Cygni are two stars in the constellation Cygnus. They are shown on the H-R diagram. Chi Cygni is more luminous than Zeta Cygni B. Describe two other differences between these stars. (c) Another star, Aldebaran B, is a distance of 6∙16 x 1017 m from the Earth. The luminosity of Aldebaran B is 2∙32 x 1025 W and its temperature is determined to be 3∙4 x 103 K. (i) Calculate the radius of Aldebaran B. (ii) Calculate the apparent brightness of Aldebaran B as observed from Earth. 1 2. Hertzsprung-Russell (H-R) diagrams are widely used by physicists and astronomers to categorise stars. Figure 2A shows a simplified H-R diagram. Figure 2A (a) State what class of star Sirius B is. (b) Estimate the radius of Betelgeuse. (c) Ross 128 and Barnard’s Star have a similar temperature but Barnard’s Star has a slightly greater luminosity. Determine what other information this tells you about the two stars.
    [Show full text]
  • The Journal of the Association of Lunar and Planetary Observers ?:Ftc Strolling Astronomer
    The Journal Of The Association Of Lunar And Planetary Observers ?:ftc Strolling Astronomer 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 Volume 29, Numbers 7-8 Published August, 1982 Classical Mars chart by G. V. Schiaparelli from Memoria Sesta, Roma, 1899. Note the very dark RIMA TENUIS (thin or fine fissure) dividing the North Polar Cap into two unequal parts along the 150° W - 325° W areographic meridians. Discovered by Schiaparelli during the Martian northern late spring in 1888, RIMA TENUIS was last well observed by M. Maggini in 1918. It unexpectedly appeared again across the North Polar Cap before the Martian northern summer solstice in February, 1980, when it was photographed for the first time by Mars observers in the ALPO. Contributed by Mars Recorder Charles F. Capen. 1111111111111111111111111111111111111111111111::- THE STROLLING ASTRONOMER - Box 3AZ - University Park, New Mexico - 88003 - Residence telephone 522-4213 (Area Code 505) ::- in Las Cruces, New Mexico - Founded In 1947 - IN THIS ISSUE OBSERVING MARS X-REPORTING MARS OBSERVATIONS, by C. F. Capen ................................................... pg. 133 MARS OBSERVING AIDS - BOOKS, KITS, GRAPHS, AND CHARTS, by C. F. Capen ................................................... pg. 138 POSSIBLE LONG TERM CHANGES IN THE EQUATORIAL ZONE OF JUPITER, by Randy Tatum .................................................. pg. 141 SOME EUROPEAN VISUAL OBSERVATIONS OF SATURN IN 1981, by G. Adamoli ...................................................
    [Show full text]
  • Astrophysics
    Publications of the Astronomical Institute rais-mf—ii«o of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE IA U Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 1987 Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE I A U 10 Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 5 1 987 CHIEF EDITOR OF THE PROCEEDINGS: LUBOS PEREK Astronomical Institute of the Czechoslovak Academy of Sciences 251 65 Ondrejov, Czechoslovakia TABLE OF CONTENTS Preface HI Invited discourse 3.-C. Pecker: Fran Tycho Brahe to Prague 1987: The Ever Changing Universe 3 lorlishdp on rapid variability of single, binary and Multiple stars A. Baglln: Time Scales and Physical Processes Involved (Review Paper) 13 Part 1 : Early-type stars P. Koubsfty: Evidence of Rapid Variability in Early-Type Stars (Review Paper) 25 NSV. Filtertdn, D.B. Gies, C.T. Bolton: The Incidence cf Absorption Line Profile Variability Among 33 the 0 Stars (Contributed Paper) R.K. Prinja, I.D. Howarth: Variability In the Stellar Wind of 68 Cygni - Not "Shells" or "Puffs", 39 but Streams (Contributed Paper) H. Hubert, B. Dagostlnoz, A.M. Hubert, M. Floquet: Short-Time Scale Variability In Some Be Stars 45 (Contributed Paper) G. talker, S. Yang, C. McDowall, G. Fahlman: Analysis of Nonradial Oscillations of Rapidly Rotating 49 Delta Scuti Stars (Contributed Paper) C. Sterken: The Variability of the Runaway Star S3 Arietis (Contributed Paper) S3 C. Blanco, A.
    [Show full text]
  • Meteoroids, Meteors, Meteorites, and Tektites Meteoroids, Meteors, Meteorites, and Tektites a M.A.R.S
    Meteoroids, Meteors, Meteorites, and Tektites Meteoroids, Meteors, Meteorites, and Tektites A M.A.R.S. Resource Document Compiled and Edited by James M. Thomas for the Museum Astronomical Resource Society 1 Meteoroids, Meteors, Meteorites, and Tektites Document History July 14, 2000 First printed release. Distributed to those present at the July 2000 meeting of M.A.R.S., used as a reference during a presentation on the subject. October 3, 2001 Slight format revisions made. September 2, 2004 Revised into a slide format. Copyright © 2000 by James M. Thomas. Permission is granted to reproduce portions of the text with the provision that full credit is given to the source. Special permission must be obtained to reproduce the document in its entirety. The Museum Astronomical Resource Society, also known as the MARS Astronomy Club, is sponsored by the Museum of Science and Industry (MOSI), Tampa, Florida. You may learn more about MARS online at their website, URL: “www.marsastro.org”. 2 Meteoroids, Meteors, Meteorites, and Tektites Table of Contents Subject Pages Astronomical Measurements 4 - 5 Meteors 6 - 10 Meteor Showers 11 - 15 Table of Meteor Showers 16 - 19 Meteor Showers Listed 20 - 54 Alphabetically by Name Observing Meteors 55 - 56 Meteorites 57 – 60 Meteorite History 61 - 72 Tektites 73 - 76 Useful Resources 77 – 79 Bibliography 80 3 Meteoroids, Meteors, Meteorites, and Tektites Astronomical Measurements It is a good idea to review certain measurements that are used throughout this document. A mile (abbreviated: mi) is a unit of length that is well known in the United States. It is also known as a statute mile, and is equivalent to 5280 feet or 1760 yards.
    [Show full text]
  • Arxiv:0709.4613V2 [Astro-Ph] 16 Apr 2008 .Quirrenbach A
    Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) M. S. Cunha · C. Aerts · J. Christensen-Dalsgaard · A. Baglin · L. Bigot · T. M. Brown · C. Catala · O. L. Creevey · A. Domiciano de Souza · P. Eggenberger · P. J. V. Garcia · F. Grundahl · P. Kervella · D. W. Kurtz · P. Mathias · A. Miglio · M. J. P. F. G. Monteiro · G. Perrin · F. P. Pijpers · D. Pourbaix · A. Quirrenbach · K. Rousselet-Perraut · T. C. Teixeira · F. Th´evenin · M. J. Thompson Asteroseismology and interferometry Received: date M. S. Cunha and T. C. Teixeira Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal. E-mail: [email protected] C. Aerts Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium; Afdeling Sterrenkunde, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands. J. Christensen-Dalsgaard and F. Grundahl Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark. A. Baglin and C. Catala and P. Kervella and G. Perrin LESIA, UMR CNRS 8109, Observatoire de Paris, France. L. Bigot and F. Th´evenin Observatoire de la Cˆote d’Azur, UMR 6202, BP 4229, F-06304, Nice Cedex 4, France. T. M. Brown Las Cumbres Observatory Inc., Goleta, CA 93117, USA. arXiv:0709.4613v2 [astro-ph] 16 Apr 2008 O. L. Creevey High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301, USA; Instituto de Astrofsica de Canarias, Tenerife, E-38200, Spain. A. Domiciano de Souza Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Ger- many. P. Eggenberger Observatoire de Gen`eve, 51 chemin des Maillettes, 1290 Sauverny, Switzerland; In- stitut d’Astrophysique et de G´eophysique de l’Universit´e de Li`ege All´ee du 6 Aoˆut, 17 B-4000 Li`ege, Belgium.
    [Show full text]
  • Binocular Certificate Handbook
    Irish Federation of Astronomical Societies Binocular Certificate Handbook How to see 110 extraordinary celestial sights with an ordinary pair of binoculars © John Flannery, South Dublin Astronomical Society, August 2004 No ordinary binoculars! This photograph by the author is of the delightfully whimsical frontage of the Chiat/Day advertising agency building on Main Street, Venice, California. Binocular Certificate Handbook page 1 IFAS — www.irishastronomy.org Introduction HETHER NEW to the hobby or advanced am- Wateur astronomer you probably already own Binocular Certificate Handbook a pair of a binoculars, the ideal instrument to casu- ally explore the wonders of the Universe at any time. Name _____________________________ Address _____________________________ The handbook you hold in your hands is an intro- duction to the realm far beyond the Solar System — _____________________________ what amateur astronomers call the “deep sky”. This is the abode of galaxies, nebulae, and stars in many _____________________________ guises. It is here that we set sail from Earth and are Telephone _____________________________ transported across many light years of space to the wonderful and the exotic; dense glowing clouds of E-mail _____________________________ gas where new suns are being born, star-studded sec- tions of the Milky Way, and the ghostly light of far- Observing beginner/intermediate/advanced flung galaxies — all are within the grasp of an ordi- experience (please circle one of the above) nary pair of binoculars. Equipment __________________________________ True, the fixed magnification of (most) binocu- IFAS club __________________________________ lars will not allow you get the detail provided by telescopes but their wide field of view is perfect for NOTES: Details will be treated in strictest confidence.
    [Show full text]