Mathematics People
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Of the American Mathematical Society August 2017 Volume 64, Number 7
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves -
Notices of the American Mathematical Society June/July 2006
of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u. .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-. -
Sastra Prize 2005
UF SASTRA PRIZE Mathematics 2005 Research Courses Undergraduate Graduate News Resources People BHARGAVA AND SOUNDARARAJAN TO RECEIVE THE FIRST SASTRA RAMANUJAN PRIZE The 2005 SASTRA Ramanujan Prize will be jointly awarded to Professors MANJUL BHARGAVA (Princeton University) and KANNAN SOUNDARARAJAN (University of Michigan). This annual prize, being awarded for the first time, is for outstanding contributions by individuals not exceeding the age of 32 in areas of mathematics influenced by Ramanujan in a broad sense. The age limit was set at 32 because Ramanujan achieved so much in his brief life of 32 years. The $10,000 prize will be awarded annually in December at the Srinivasa Ramanujan Centre of SASTRA University in Ramanujan's hometown, Kumbakonam, South India. MANJUL BHARGAVA has made phenomenal contributions to number theory, most notably by his discovery of higher order composition laws. This is his PhD thesis, written under the direction of Professor Andrew Wiles of Princeton University and published as a series of papers in the Annals of Mathematics. Gauss, the Prince of Mathematicians, constructed a law of composition for binary quadratic forms. Bhargava introduced entirely new and unexpected ideas that led to his discovery of such composition laws for forms of higher degree. Bhargava then applied these composition laws to solve a new case of one of the fundamental questions of number theory, that of the asymptotic enumeration of number fields of a given degree d. The question is trivial for d=1, and Gauss himself solved the case d=2 in 1801. Then in 1971 Davenport and Heilbronn solved the d=3 case. -
Arxiv:2007.03981V1 [Math.FA] 8 Jul 2020
FOURIER UNIQUENESS IN R4 ANDREW BAKAN, HAAKAN HEDENMALM, ALFONSO MONTES-RODRÍGUEZ, DANYLO RADCHENKO, AND MARYNA VIAZOVSKA Abstract. We show an interrelation between the uniqueness aspect of the recent Fourier interpolation formula of Radchenko and Viazovska and the Heisenberg uniqueness for the Klein-Gordon equation and the lattice- cross of critical density, studied by Hedenmalm and Montes-Rodríguez. This has been known since 2017. 1. Introduction 1.1. Basic notation in the plane. We write Z for the integers, Z+ for the positive integers, R for the real line, and C for the complex plane. We write H for the upper half-plane {τ ∈ C : Im τ> 0}. Moreover, we d let h·, ·id denote the Euclidean inner product of R . 1.2. The Fourier transform of radial functions. For a function f ∈ L1(Rd), we consider its Fourier transform (with x = (x1,..., xd) and y = (y1,..., yd)) −i2πhx,yid fˆ(y):= e f (x)dvold(x), dvold(x):= dx1 ··· dxd. ZRd If f is radial, then fˆis radial too. A particular example of a radial function is the Gaussian iπτ|x|2 (1.2.1) Gτ(x):= e , which decays nicely provided that Im τ> 0, that is, when τ ∈ H. The Fourier transform of a Gaussian is another Gaussian, in this case −d/2 −d/2 τ −iπ|y|2/τ τ (1.2.2) Gˆ τ(y):= e = G−1/τ(y), i i Here, it is important that τ 7→ −1/τ preserves hyperbolic space H. In the sense of distribution theory, the above relationship extends to boundary points τ ∈ R as well. -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
IMS Bulletin July/August 2004
Volume 33 Issue 4 IMS Bulletin July/August 2004 A Message from the (new) President Louis H Y Chen, Director of the Institute CONTENTS for Mathematical Sciences at the 2-3 Members’ News; National University of Singapore, is the Contacting the IMS IMS President for 2004–05. He says: hen I was approached by the 4 Profi le: C F Jeff Wu WCommittee on Nominations in 5 IMS Election Results: January 2003 and asked if I would be President-Elect and Council willing to be a possible nominee for IMS 7 UK Research Assessment; President-Elect, I felt that it was a great Tweedie Travel Award honor for me. However, I could not help 8 Mini-meeting Reports but think that the outcome of the nomi- nation process would most likely be a 10 Project Euclid & Google nominee who is based in the US, because, 11 Calls Roundup except for Willem van Zwet, Nancy Reid of probabilists and statisticians. 14 IMS Meetings and Bernard Silverman, all the 68 past Although IMS is US-based, its infl u- Presidents of IMS were US-based. When ence goes far beyond the US due to its 20 Other Meetings and I was fi nally chosen as the nominee for several fi rst-rate publications and many Announcements President-Elect, I was pleased, not so high quality meetings. Also, IMS has 23 Employment much because I was chosen, but because I reduced membership dues for individuals Opportunities took it as a sign that the outlook of IMS in developing countries to encourage 25 International Calendar of was becoming more international. -
After Ramanujan Left Us– a Stock-Taking Exercise S
Ref: after-ramanujanls.tex Ver. Ref.: : 20200426a After Ramanujan left us– a stock-taking exercise S. Parthasarathy [email protected] 1 Remembering a giant This article is a sequel to my article on Ramanujan [14]. April 2020 will mark the death centenary of the legendary Indian mathe- matician – Srinivasa Ramanujan (22 December 1887 – 26 April 1920). There will be celebrations of course, but one way to honour Ramanujan would be to do some introspection and stock-taking. This is a short survey of notable achievements and contributions to mathematics by Indian institutions and by Indian mathematicians (born in India) and in the last hundred years since Ramanujan left us. It would be highly unfair to compare the achievements of an individual, Ramanujan, during his short life span (32 years), with the achievements of an entire nation over a century. We should also consider the context in which Ramanujan lived, and the most unfavourable and discouraging situation in which he grew up. We will still attempt a stock-taking, to record how far we have moved after Ramanujan left us. Note : The table below should not be used to compare the relative impor- tance or significance of the contributions listed there. It is impossible to list out the entire galaxy of mathematicians for a whole century. The table below may seem incomplete and may contain some inad- vertant errors. If you notice any major lacunae or omissions, or if you have any suggestions, please let me know at [email protected]. 1 April 1920 – April 2020 Year Name/instit. Topic Recognition 1 1949 Dattatreya Kaprekar constant, Ramchandra Kaprekar number Kaprekar [1] [2] 2 1968 P.C. -
Weak Subconvexity for Central Values of L-Functions
ANNALS OF MATHEMATICS Weak subconvexity for central values of L-functions By Kannan Soundararajan SECOND SERIES, VOL. 172, NO. 2 September, 2010 anmaah Annals of Mathematics, 172 (2010), 1469–1498 Weak subconvexity for central values of L-functions By KANNAN SOUNDARARAJAN Abstract We describe a general method to obtain weak subconvexity bounds for many classes of L-functions. We give several examples of our bound, and our work has applications to a conjecture of Rudnick and Sarnak for the mass equidistribution of Hecke eigenforms 1. Introduction and statement of results A fundamental problem in number theory is to estimate the values of L- functions at the center of the critical strip. The Langlands program predicts that all L-functions arise from automorphic representations of GL.N / over a number field, and moreover that such L-functions can be decomposed as a product of primitive L-functions arising from irreducible cuspidal representations of GL.n/ over Q. The L-functions that we consider will either arise in this manner, or will be the Rankin-Selberg L-function associated to two irreducible cuspidal representations. Note that such Rankin-Selberg L-functions are themselves expected to arise from automorphic representations, but this is not known in general. Given an irreducible cuspidal automorphic representation (normalized to have unitary central character), we denote the associated standard L-function by L.s; /, and its analytic conductor (whose definition we shall recall shortly) by 1 1 " C./. There holds generally a convexity bound of the form L. ; / " C./ 4 2 C (see Molteni [28]).1 The Riemann hypothesis for L.s; / implies the Lindelof¨ hypothesis: L. -
Maryna Viazovska (HU Berlin)
s well as BMS Friday Colloquium Friday 4 November 2016 at 14:15 Tea & Cookies starting at 13:00 BMS Loft, Urania, An der Urania 17, 10787 Berlin Maryna Viazovska (HU Berlin) Solving packing problems by linear programming How much of Euclidean space can be filled with pairwise non-over- lapping congruent copies of a given convex body K? We call this the body packing problem. Problems of this kind are solved comple- tely only in rare cases. One powerful method to attack these geome- tric questions is linear programming. This approach was developed by Philippe Delsarte in the early seventies. Based on inequalities for © Maryna Viazovska the distance distribution of point configurations, this method was successfully applied to the “kissing number problem“ in dimensions 8 and 24. The original Delsarte method was applied to the optimization on compact spaces. In 2003, Cohn and Elkies generalized this method to Euclidean space. In particular, they improved existent upper bounds for the maximum density of sphere packings in dimensions 4,...,36. Recently, Viazovska and her coauthors proved that linear pro- gramming provides tight bounds for sphere packing in dimensions 8 and 24. In her talk, Viazovska will explain the linear programming method and demonstrate how it works on various examples. Born in the Ukraine, Maryna Viazovska completed her PhD at MPIM in Bonn in 2013 under the supervision of Don Zagier. Her research interests include number theory and discrete geometry. In October 2013, she became a visiting researcher at the IHÉS in France. In August 2014, she took up the two-year position of BMS Dirichlet Postdoctoral Fellow based at HU Berlin, during which time she solved the hyper- sphere packing problem for dimension 8. -
Meetings & Conferences of the AMS, Volume 49, Number 5
Meetings & Conferences of the AMS IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website.See http://www.ams.org/meetings/. Programs and abstracts will continue to be displayed on the AMS website in the Meetings and Conferences section until about three weeks after the meeting is over. Final programs for Sectional Meetings will be archived on the AMS website in an electronic issue of the Notices as noted below for each meeting. Niky Kamran, McGill University, Wave equations in Kerr Montréal, Quebec geometry. Rafael de la Llave, University of Texas at Austin, Title to Canada be announced. Centre de Recherches Mathématiques, Special Sessions Université de Montréal Asymptotics for Random Matrix Models and Their Appli- cations, Nicholas M. Ercolani, University of Arizona, and May 3–5, 2002 Kenneth T.-R. McLaughlin, University of North Carolina at Chapel Hill and University of Arizona. Meeting #976 Combinatorial Hopf Algebras, Marcelo Aguiar, Texas A&M Eastern Section University, and François Bergeron and Christophe Associate secretary: Lesley M. Sibner Reutenauer, Université du Québec á Montréal. Announcement issue of Notices: March 2002 Combinatorial and Geometric Group Theory, Olga G. Khar- Program first available on AMS website: March 21, 2002 lampovich, McGill University, Alexei Myasnikov and Program issue of electronic Notices: May 2002 Vladimir Shpilrain, City College, New York, and Daniel Issue of Abstracts: Volume 23, Issue 3 Wise, McGill University. Commutative Algebra and Algebraic Geometry, Irena Deadlines Peeva, Cornell University, and Hema Srinivasan, Univer- For organizers: Expired sity of Missouri-Columbia. -
Arxiv:0707.3327V1 [Math.AP] 23 Jul 2007 Some Connections Between
Some connections between results and problems of De Giorgi, Moser and Bangert Hannes Junginger-Gestrich & Enrico Valdinoci∗ October 31, 2018 Abstract Using theorems of Bangert, we prove a rigidity result which shows how a question raised by Bangert for elliptic integrands of Moser type is connected, in the case of minimal solutions without self-intersections, to a famous conjecture of De Giorgi for phase transitions. 1 Introduction The purpose of this note is to relate some probelms posed by Moser [Mos86], Bangert [Ban89] and De Giorgi [DG79]. In particular, we point out that a rigidity result in a question raised by Bangert for the case of minimal solutions of elliptic integrands would imply a one-dimensional symmetry for minimal phase transitions connected to a famous conjecture of De Giorgi. Though the proofs we present here are mainly a straightening of the existing literature, we hope that our approach may clarify some points in these important problems and provide useful connections. 1.1 The De Giorgi setting arXiv:0707.3327v1 [math.AP] 23 Jul 2007 A classical phase transition model (known in the literature under the names of Allen, Cahn, Ginzburg, Landau, van der Vaals, etc.) consists in the study ∗Addresses: HJG, Mathematisches Institut, Albert-Ludwigs-Universit¨at Freiburg, Abteilung f¨ur Reine Mathematik, Eckerstraße 1, 79104 Freiburg im Breisgau (Germany), [email protected], EV, Dipartimento di Matemati- ca, Universit`adi Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy), [email protected]. The work of EV was supported by MIUR Variational Meth- ods and Nonlinear Differential Equations. -
Luis Caffarelli Lecture Notes
Luis Caffarelli Lecture Notes Broddie often melodizes stunningly when tautological Robert misforms robustiously and christens her irade. Stuffed Wojciech manoeuvre palatially, he overcrop his antibodies very sorrowfully. Sopping Giffy mystifies oracularly. The sponsors and was a review team, lecture notes that reflects exceptional mathematical analysis this item to seeing people around topics discussed are lipschitz Dirección de correo verificada de sissa. Communications on homeland and Applied Mathematics. The stamp problem it the biharmonic operator. The wreck of this lecture is void discuss three problems in homogenization and their interplay. Nirenberg should phone to study theoretical physics. Walter was a highly regarded researcher in analysis and control theory. Fundamental solutions of homogeneous fully nonlinear elliptic equations. Regularity of news free accident with application to the Pompeiu problem. Talks were uniformly excellent. Proceedings of the International Congress of Mathematicians. The nonlinear character while the equations is used in gravel essential way, whatsoever he obtains results because are the nonlinearity not slate it. Caffarelli, Luis; Silvestre, Luis. Don worked with luis caffarelli lecture notes in many years ago with students, avner variational problems in any book contains the error has had three stellar researchers. The smoothness of separate free surface tablet a filtration problem. Nike sneaker in above one week. The continuity of the temperature in the Stefan problem. Axially symmetric infinite cavities. The subtle problem every two fluids. On the regularity of reflector antennas. Nav start or be logged at this place although if instant is NOT progressively loaded. Laplacian and the water obstacle problem. Growing up with luis caffarelli lecture notes in.