Sir Roger Penrose Spacetime in Loop Quantum Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Sir Roger Penrose Spacetime in Loop Quantum Gravity 2011 MICHALIK LECTURE Prof. Sir Roger Pen- rose has The University of Pittsburgh made many contribu- Department of Mathematics tions to the fields of Presents Mathemat- ics and The Edmund R. Michalik Physics. He proved that Distinguished Lecture in the singularities (such as black holes) Mathematical Sciences could be formed from the gravitation- al collapse of immense, dying stars and invented spin networks which later came to form the geometry of Sir Roger Penrose spacetime in loop quantum gravity. Prof. Penrose is also well known for Emeritus Rouse Ball Professor of Mathematics his 1974 discovery of Penrose tilings, at the Mathematical Institute, University of Oxford which are formed from two tiles that can only tile the plane non- periodically, and are the first tilings Can We See Through the Big to exhibit fivefold rotational sym- metry. He is the recipient of many awards and honors, including a Royal Bang, into Another World? Medal from the Royal Society and a Wolf Prize, which he shares with Ste- Abstract: The proposal of Conformal Cyclic Cosmology (abbreviated CCC) phen Hawking. Prof. Penrose’s book asserts that what we presently regard as the entire history of our universe, "The Road to Reality" gives a com- from its Big-Bang origin to its indefinitely expanding future, is but one ae- prehensive guide to the laws of phys- on in an unending succession of similar such aeons, where the infinite fu- ics. His latest book is "Cycles of ture of each matches to the big bang of the next via an infinite change of Time." scale. CCC predicts that supermassive black-hole encounters in the aeon prior to ours would be observable to us as families of concentric rings of unusual temperature structure in the cosmic microwave background. Recent 4:00 P.M. analysis of data from the WMAP satellite has been argued to provide con- firmation of this signal, allowing us to "see through" our Big Bang to such Monday, events occurring in the aeon prior to ours. The status of this controversial January 24, 2011 proposal will be discussed. Reception Immediately Ballroom B, Following the Lecture University Club This public lecture is part of an annual series in honor of at the University of Pittsburgh Professor Edmund R. Michalik, established through a gift Free and Open from the Michalik family. to the Public For further information, email: [email protected] Phone: 412-624-8375 or visit http://www.mathematics.pitt.edu .
Recommended publications
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
    universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors.
    [Show full text]
  • The State of the Universe a Bold Attempt to Make Sense of Relativity, Quantum Theory and Cosmology
    books and arts The state of the Universe A bold attempt to make sense of relativity, quantum theory and cosmology. The Road to Reality: A Complete Guide to the Laws of the Universe by Roger Penrose Jonathan Cape: 2004. 1,094 pp. £30 Jeffrey Forshaw JOSE FUSTA RAGA/CORBIS JOSE FUSTA “The most important and ambitious work of science for a generation.”That’s the claim from the publishers of Roger Penrose’s latest book. The claim is vastly overblown. Certainly Penrose has written a remarkable book: it introduces many of the topics that lie at the cutting edge of research into the fundamental nature of space, time and mat- ter. Although the book aims at a complete survey of modern particle physics and cos- mology, its principal concern is to address the fundamental tension between the two pillars of twentieth-century physics: Einstein’s general theory of relativity and quantum theory. This is a fascinating tension and one that Penrose tries to communicate in a quite uncompromising fashion. Although advertised as popular science, this book will be far from accessible to most non-experts. I suspect that there has never been such a bold attempt to communicate ideas of such mathematical complexity to a general audience. It is Penrose’s hope that Up the junction? Despite progress in many directions, we still haven’t found the one “road to reality”. non-experts will be able to go with the flow and get a taste of the excitement of the field the future, critically assessing the way in of the necessary mathematics.
    [Show full text]
  • MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3
    MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible.
    [Show full text]
  • Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
    Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • Relativistic Inversion, Invariance and Inter-Action
    S S symmetry Article Relativistic Inversion, Invariance and Inter-Action Martin B. van der Mark †,‡ and John G. Williamson *,‡ The Quantum Bicycle Society, 12 Crossburn Terrace, Troon KA1 07HB, Scotland, UK; [email protected] * Correspondence: [email protected] † Formerly of Philips Research, 5656 AE Eindhoven, The Netherlands. ‡ These authors contributed equally to this work. Abstract: A general formula for inversion in a relativistic Clifford–Dirac algebra has been derived. Identifying the base elements of the algebra as those of space and time, the first order differential equations over all quantities proves to encompass the Maxwell equations, leads to a natural extension incorporating rest mass and spin, and allows an integration with relativistic quantum mechanics. Although the algebra is not a division algebra, it parallels reality well: where division is undefined turns out to correspond to physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical significance, such as the invariant interval, the general invariant quantities in electromagnetism, and the basis set of quantities in the Dirac equation. It is speculated that the apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is conjectured that elements of inversion may play a role in the interaction of fields and matter. Keywords: invariants; inversion; division; non-division algebra; Dirac algebra; Clifford algebra; geometric algebra; special relativity; photon interaction Citation: van der Mark, M.B.; 1. Introduction Williamson, J.G. Relativistic Inversion, Invariance and Inter-Action.
    [Show full text]
  • Action at a Distance in Quantum Theory
    Mathematics 2015, 3, 329-336; doi:10.3390/math3020329 OPEN ACCESS mathematics ISSN 2227-7390 www.mdpi.com/journal/mathematics Article Action at a Distance in Quantum Theory Jerome Blackman 1,2 1 Syracuse University, Syracuse, NY 13244, USA; E-Mail: [email protected]; Tel.: +315-699-8730 or +754-220-5502. 2 7005 Lakeshore Rd. Cicero, NY 13039, USA Academic Editor: Palle E.T. Jorgensen Received: 8 March 2015 / Accepted: 22 April 2015 / Published: 6 May 2015 Abstract: The purpose of this paper is to present a consistent mathematical framework that shows how the EPR (Einstein. Podolsky, Rosen) phenomenon fits into our view of space time. To resolve the differences between the Hilbert space structure of quantum theory and the manifold structure of classical physics, the manifold is taken as a partial representation of the Hilbert space. It is the partial nature of the representation that allows for action at a distance and the failure of the manifold picture. Keywords: action at a distance; EPR; measurement theory 1. Introduction In many books and articles on quantum theory two different statements appear. The first is that quantum theory is the most accurate theory in the history of physics and the second is that it is an incomplete theory. Both of these statements are true, but the incompleteness assertion usually does not refer to the fact that not all questions are answerable at any given time, which is true of all interesting theories, but that quantum theory is a very uncomfortable fit with our usual picture of what kind of space we live in, namely some sort of three or four dimensional manifold.
    [Show full text]
  • Highlights of Modern Physics and Astrophysics
    Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • The Quantum Structure of Space and Time
    QcEntwn Structure &pace and Time This page intentionally left blank Proceedings of the 23rd Solvay Conference on Physics Brussels, Belgium 1 - 3 December 2005 The Quantum Structure of Space and Time EDITORS DAVID GROSS Kavli Institute. University of California. Santa Barbara. USA MARC HENNEAUX Universite Libre de Bruxelles & International Solvay Institutes. Belgium ALEXANDER SEVRIN Vrije Universiteit Brussel & International Solvay Institutes. Belgium \b World Scientific NEW JERSEY LONOON * SINGAPORE BElJlNG * SHANGHAI HONG KONG TAIPEI * CHENNAI Published by World Scientific Publishing Co. Re. Ltd. 5 Toh Tuck Link, Singapore 596224 USA ofJice: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK ofice; 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-PublicationData A catalogue record for this hook is available from the British Library. THE QUANTUM STRUCTURE OF SPACE AND TIME Proceedings of the 23rd Solvay Conference on Physics Copyright 0 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereoi may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-256-952-9 ISBN 981-256-953-7 (phk) Printed in Singapore by World Scientific Printers (S) Pte Ltd The International Solvay Institutes Board of Directors Members Mr.
    [Show full text]
  • Book of Abstracts Ii Contents
    TAM2013 - Venice Monday, 4 March 2013 - Friday, 8 March 2013 Venice Book of Abstracts ii Contents Heavy Quarks, the Origin of Mass, and CP Violation for the Universe ........... 1 Quantum Geometry and the Holometer Experiment ..................... 1 The Pierre Auger Observatory: results on the highest energy particles ........... 1 In quest of sterile neutrinos, an experimental review .................... 2 Casimir effect as an explanation of dark energy ....................... 2 The Higgs boson and extra dimensions ............................ 2 Higgs boson cross sections at LHC and open issues ..................... 3 Interacting Ricci Dark Energy with power-law and logarithmic corrections . 3 The Measurement of Time ................................... 3 Measurement of the neutrino velocity with the OPERA detector in the CNGS beam . 4 Time-reversal violation and the origin of matter in the Universe .............. 4 Direct observation of time-reversal violation in B0 decays ................. 4 TBA ............................................... 5 CMS Observation of a new boson at the LHC and its implications for the origin of mass 5 The Higgs Hunt with ATLAS atLHC ............................. 5 The next ten years of dark energy research .......................... 6 Discovering Dark Matter .................................... 6 The Fate of the Quantum .................................... 6 Black holes, TeV-scale gravity and the LHC .......................... 6 Time’s Arrow in Cosmology .................................. 7 Time and Fermions:
    [Show full text]
  • Birdtracks for SU(N)
    SciPost Phys. Lect. Notes 3 (2018) Birdtracks for SU(N) Stefan Keppeler Fachbereich Mathematik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany ? [email protected] Abstract I gently introduce the diagrammatic birdtrack notation, first for vector algebra and then for permutations. After moving on to general tensors I review some recent results on Hermitian Young operators, gluon projectors, and multiplet bases for SU(N) color space. Copyright S. Keppeler. Received 25-07-2017 This work is licensed under the Creative Commons Accepted 19-06-2018 Check for Attribution 4.0 International License. Published 27-09-2018 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhysLectNotes.3 Contents Introduction 2 1 Vector algebra2 2 Birdtracks for SU(N) tensors6 Exercise: Decomposition of V V 8 ⊗ 3 Permutations and the symmetric group 11 3.1 Recap: group algebra and regular representation 14 3.2 Recap: Young operators 14 3.3 Young operators and SU(N): multiplets 16 4 Colour space 17 4.1 Trace bases vs. multiplet bases 18 4.2 Multiplet bases for quarks 20 4.3 General multiplet bases 22 4.4 Gluon projectors 23 4.5 Some multiplet bases 26 5 Further reading 28 References 29 1 SciPost Phys. Lect. Notes 3 (2018) Introduction The term birdtracks was coined by Predrag Cvitanovi´c, figuratively denoting the diagrammatic notation he uses in his book on Lie groups [1] – hereinafter referred to as THE BOOK. The birdtrack notation is closely related to (abstract) index notation. Translating back and forth between birdtracks and index notation is achieved easily by following some simple rules.
    [Show full text]