On the Higgs Boson (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Science & ROGER PENROSE
Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez. -
Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors. -
MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3
MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible. -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. -
Fermi Lecture 6 Weak Force Carriers W, Z and Origin of Mass: Higgs Particle
Frontiers in Physics and Astrophysics Fermi Lecture 6 Weak Force carriers W, Z and Origin of Mass: Higgs Particle Barry C Barish 5-December-2019 Fermi Lecture 6 1 Enrico Fermi Fermi Lecture 6 2 Enrico Fermi Lectures 2019-2020 Frontiers of Physics and Astrophysics • Explore frontiers of Physics and Astrophysics from an Experimental Viewpoint • Some History and Background for Each Frontier • Emphasis on Large Facilities and Major Recent Discoveries • Discuss Future Directions and Initiatives ---------------------------------------------------------------------- • Thursdays 4-6 pm • Oct 10,17,24,one week break, Nov 7 • Nov 28, Dec 5,12,19 Jan 9,16,23 • Feb 27, March 5,12,19 Fermi Lecture 6 3 Frontiers Fermi Lectures 2019-2020 - Barry C Barish • Course Title: Large Scale Facilities and the Frontiers of Physics • The Course will consist of 15 Lectures, which will be held from 16:00 to 18:00 in aula Amaldi, Marconi building, according to the following schedule: • 10 October 2019 - Introduction to Physics of the Universe 17 October 2019 - Elementary Particles 24 October 2019 - Quarks 7 November 2019 – Particle Accelerators 28 November 2019 – Big Discoveries and the Standard Model 5 December 2019 – Weak Force Carriers – Z, W: and Higgs Mechanism 12 December 2019 – Higgs Discovery; Supersymmetry? Intro to Neutrinos 19 December 2019 – Neutrinos 9 January 2020 – Neutrino Oscillations and Future Perspectives (2) 16 January 2020 - Gravitational Waves (1) 23 January 2020 - Gravitational Waves (2) 27 February 2020 – Gravitational Waves – Future Perspectives 5 March 2020 – Dark Matter 12 March 2020 – Particle Astrophysics, Experimental Cosmology 19 March 2020 - The Future • All Lectures and the supporting teaching materials will be published by the Physics Department. -
Highlights of Modern Physics and Astrophysics
Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of -
Discovery of a New Particle
Discovery of a New Particle! Experimental High-Energy Physics Group! McGill! Homer’s Physics 101! 2012.September.28! ! http://nonsensibleshoes.com http://twitter.com! 2! Leon Lederman Quotations! ! ! “god particle” nickname: because the particle ! “…is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive…”! 1993! http://wikipedia.org! A second reason: because “…the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing.”! 3! Reductionism Epitomised! Condensed-Matter! &" Low Energies! Atomic Physics! Nuclear" Physics! High-Energy" Particle Physics! 4! The (known) Fundamental Particles & Forces! Note: gravity is (temporarily) omitted! 5! What gives masses to fundamental particles such as quarks and electrons, and why are they so different? Important Distinction:! ! We already know how composite matter! (e.g., atoms, fish, pizza, planets, people)! gets most of its mass:! binding E = mc2! ! ! 6! ! So why should you care about the fundamental stuff?! ! ! Q: If your fundamental particles had no mass, what" would they be doing?! ! ! A: They’d all be zipping around at the speed of light.! !!- no fish! !!- no pizza! No us…! !!- no planets! ! 7! ! But the issue of masses of fundamental particles" really takes its origins from the time of Rutherford! Nuclear Physics! Radioactivity:! atoms transmute! Lord Rutherford" ! ! Particle Physics! Force is weak because W particle is massive!! -
Edit Winter 2012/13
Winter 2012|13 THE ALUMNI MAGAZINE + billet & general COUNCIL PAPERS prOfessor pETEr HIGGS on breakthroughs, the boson and the best of edinburgh TIDE Of INNOvation our energy experts embrace the ocean’s poWer ALSO INSIDE 300 years of chemistry, and counting | our iconic library unveiled | careers in the spotlight winter 2012|13 contents foreWord contents elcome to the winter 2012/13 issue of Edit. It’s 16 10 Walways interesting to hear your stories about how your time at Edinburgh helped you stand out from the crowd, and in this edition we take the opportunity to introduce you to just a few of your fellow trailblazing academics and alumni. Professor Peter Higgs, whose 1964 theory led 48 years later to the discovery of the Higgs boson, is now a name known worldwide – but many 04 08 of his passions remain close to home (p8). The unique marine testing facility due to open at King’s Buildings in 2013 (p14) is another Edinburgh breakthrough with a debt to the past. Inside, we also celebrate the many milestones of the School of Chemistry (p22), take you on 30 a tour of our revamped Main Library (p10), and highlight how our innovative online teaching programmes continue to break new ground for today’s students (p26). Whether you’re a recent graduate or studied at Edinburgh long ago, we’d love for you to share your stories and memories with us. With all best wishes for the holiday season. 08 the interview 04 update Professor Peter Higgs on Kirsty MacDonald breakthroughs, the boson 20 alumni profiles and the best of Edinburgh Director of Development -
The Quantum Structure of Space and Time
QcEntwn Structure &pace and Time This page intentionally left blank Proceedings of the 23rd Solvay Conference on Physics Brussels, Belgium 1 - 3 December 2005 The Quantum Structure of Space and Time EDITORS DAVID GROSS Kavli Institute. University of California. Santa Barbara. USA MARC HENNEAUX Universite Libre de Bruxelles & International Solvay Institutes. Belgium ALEXANDER SEVRIN Vrije Universiteit Brussel & International Solvay Institutes. Belgium \b World Scientific NEW JERSEY LONOON * SINGAPORE BElJlNG * SHANGHAI HONG KONG TAIPEI * CHENNAI Published by World Scientific Publishing Co. Re. Ltd. 5 Toh Tuck Link, Singapore 596224 USA ofJice: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK ofice; 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-PublicationData A catalogue record for this hook is available from the British Library. THE QUANTUM STRUCTURE OF SPACE AND TIME Proceedings of the 23rd Solvay Conference on Physics Copyright 0 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereoi may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-256-952-9 ISBN 981-256-953-7 (phk) Printed in Singapore by World Scientific Printers (S) Pte Ltd The International Solvay Institutes Board of Directors Members Mr. -
Book of Abstracts Ii Contents
TAM2013 - Venice Monday, 4 March 2013 - Friday, 8 March 2013 Venice Book of Abstracts ii Contents Heavy Quarks, the Origin of Mass, and CP Violation for the Universe ........... 1 Quantum Geometry and the Holometer Experiment ..................... 1 The Pierre Auger Observatory: results on the highest energy particles ........... 1 In quest of sterile neutrinos, an experimental review .................... 2 Casimir effect as an explanation of dark energy ....................... 2 The Higgs boson and extra dimensions ............................ 2 Higgs boson cross sections at LHC and open issues ..................... 3 Interacting Ricci Dark Energy with power-law and logarithmic corrections . 3 The Measurement of Time ................................... 3 Measurement of the neutrino velocity with the OPERA detector in the CNGS beam . 4 Time-reversal violation and the origin of matter in the Universe .............. 4 Direct observation of time-reversal violation in B0 decays ................. 4 TBA ............................................... 5 CMS Observation of a new boson at the LHC and its implications for the origin of mass 5 The Higgs Hunt with ATLAS atLHC ............................. 5 The next ten years of dark energy research .......................... 6 Discovering Dark Matter .................................... 6 The Fate of the Quantum .................................... 6 Black holes, TeV-scale gravity and the LHC .......................... 6 Time’s Arrow in Cosmology .................................. 7 Time and Fermions: -
Topological Defects in Cosmology 1 1.1 Introduction
Topological Defects in Cosmology 1 Alejandro Gangui Instituto de Astronom´ıay F´ısica del Espacio, Ciudad Universitaria, 1428 Buenos Aires, Argentina and Dept. de F´ısica, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires, Argentina Abstract Topological defects are ubiquitous in condensed–matter physics but only hypothetical in the early universe. In spite of this, even an indirect evidence for one of these cosmic objects would revolu- tionize our vision of the cosmos. We give here an introduction to the subject of cosmic topological defects and their possible observable signatures. Beginning with a review of the basics of general defect formation and evolution, we then focus on mainly two topics in some detail: conducting strings and vorton formation, and some specific imprints in the cosmic microwave background radiation from simulated cosmic strings. arXiv:astro-ph/0110285v1 11 Oct 2001 1Lecture Notes for the First Bolivian School on Cosmology La Paz, 24–28 September, 2001 http://www.umsanet.edu.bo/fisica/cosmo2k1.html i ii Contents 1 Topological Defects in Cosmology 1 1.1 Introduction...................................... .. 1 1.1.1 Howdefectsform ................................. 2 1.1.2 Phase transitions and finite temperature field theory . ...... 4 1.1.3 TheKibblemechanism.............................. 5 1.1.4 Asurveyoftopologicaldefects. ... 6 1.1.5 Conditions for their existence: topological criteria . ...... 8 1.2 Defectsintheuniverse ............................... ... 9 1.2.1 Local and global monopoles and domain walls . 10 1.2.2 Aredefectsinflatedaway? . .. .. .. 11 1.2.3 Cosmicstrings .................................. 12 1.2.4 String loops and scaling . 14 1.2.5 Globaltextures .................................. 17 1.2.6 Evolution of global textures . 18 1.3 Currentsalongstrings ..............................