Limited-Birthday Distinguishers for Hash Functions Collisions Beyond the Birthday Bound Can Be Meaningful
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
MD5 Collisions the Effect on Computer Forensics April 2006
Paper MD5 Collisions The Effect on Computer Forensics April 2006 ACCESS DATA , ON YOUR RADAR MD5 Collisions: The Impact on Computer Forensics Hash functions are one of the basic building blocks of modern cryptography. They are used for everything from password verification to digital signatures. A hash function has three fundamental properties: • It must be able to easily convert digital information (i.e. a message) into a fixed length hash value. • It must be computationally impossible to derive any information about the input message from just the hash. • It must be computationally impossible to find two files to have the same hash. A collision is when you find two files to have the same hash. The research published by Wang, Feng, Lai and Yu demonstrated that MD5 fails this third requirement since they were able to generate two different messages that have the same hash. In computer forensics hash functions are important because they provide a means of identifying and classifying electronic evidence. Because hash functions play a critical role in evidence authentication, a judge and jury must be able trust the hash values to uniquely identify electronic evidence. A hash function is unreliable when you can find any two messages that have the same hash. Birthday Paradox The easiest method explaining a hash collision is through what is frequently referred to as the Birthday Paradox. How many people one the street would you have to ask before there is greater than 50% probability that one of those people will share your birthday (same day not the same year)? The answer is 183 (i.e. -
Network Security Chapter 8
Network Security Chapter 8 Network security problems can be divided roughly into 4 closely intertwined areas: secrecy (confidentiality), authentication, nonrepudiation, and integrity control. Question: what does non-repudiation mean? What does “integrity” mean? • Cryptography • Symmetric-Key Algorithms • Public-Key Algorithms • Digital Signatures • Management of Public Keys • Communication Security • Authentication Protocols • Email Security -- skip • Web Security • Social Issues -- skip Revised: August 2011 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Network Security Security concerns a variety of threats and defenses across all layers Application Authentication, Authorization, and non-repudiation Transport End-to-end encryption Network Firewalls, IP Security Link Packets can be encrypted on data link layer basis Physical Wireless transmissions can be encrypted CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Network Security (1) Some different adversaries and security threats • Different threats require different defenses CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Cryptography Cryptography – 2 Greek words meaning “Secret Writing” Vocabulary: • Cipher – character-for-character or bit-by-bit transformation • Code – replaces one word with another word or symbol Cryptography is a fundamental building block for security mechanisms. • Introduction » • Substitution ciphers » • Transposition ciphers » • One-time pads -
The Birthday Problem (2.7)
Combinatorics (2.6) The Birthday Problem (2.7) Prof. Tesler Math 186 Winter 2020 Prof. Tesler Combinatorics & Birthday Problem Math 186 / Winter 2020 1 / 29 Multiplication rule Combinatorics is a branch of Mathematics that deals with systematic methods of counting things. Example How many outcomes (x, y, z) are possible, where x = roll of a 6-sided die; y = value of a coin flip; z = card drawn from a 52 card deck? (6 choices of x) × (2 choices of y) × (52 choices of z) = 624 Multiplication rule The number of sequences (x1, x2,..., xk) where there are n1 choices of x1, n2 choices of x2,..., nk choices of xk is n1 · n2 ··· nk. This assumes the number of choices of xi is a constant ni that doesn’t depend on the other choices. Prof. Tesler Combinatorics & Birthday Problem Math 186 / Winter 2020 2 / 29 Addition rule Months and days How many pairs (m, d) are there where m = month 1,..., 12; d = day of the month? Assume it’s not a leap year. 12 choices of m, but the number of choices of d depends on m (and if it’s a leap year), so the total is not “12 × ” Split dates into Am = f (m, d): d is a valid day in month m g: A = A1 [···[ A12 = whole year jAj = jA1j + ··· + jA12j = 31 + 28 + ··· + 31 = 365 Addition rule If A ,..., A are mutually exclusive, then 1 n n n [ Ai = jAij i=1 i=1 X Prof. Tesler Combinatorics & Birthday Problem Math 186 / Winter 2020 3 / 29 Permutations of distinct objects Here are all the permutations of A, B, C: ABC ACB BAC BCA CAB CBA There are 3 items: A, B, C. -
Modes of Operation for Compressed Sensing Based Encryption
Modes of Operation for Compressed Sensing based Encryption DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Robin Fay, M. Sc. eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Siegen 2017 1. Gutachter: Prof. Dr. rer. nat. Christoph Ruland 2. Gutachter: Prof. Dr.-Ing. Robert Fischer Tag der mündlichen Prüfung: 14.06.2017 To Verena ... s7+OZThMeDz6/wjq29ACJxERLMATbFdP2jZ7I6tpyLJDYa/yjCz6OYmBOK548fer 76 zoelzF8dNf /0k8H1KgTuMdPQg4ukQNmadG8vSnHGOVpXNEPWX7sBOTpn3CJzei d3hbFD/cOgYP4N5wFs8auDaUaycgRicPAWGowa18aYbTkbjNfswk4zPvRIF++EGH UbdBMdOWWQp4Gf44ZbMiMTlzzm6xLa5gRQ65eSUgnOoZLyt3qEY+DIZW5+N s B C A j GBttjsJtaS6XheB7mIOphMZUTj5lJM0CDMNVJiL39bq/TQLocvV/4inFUNhfa8ZM 7kazoz5tqjxCZocBi153PSsFae0BksynaA9ZIvPZM9N4++oAkBiFeZxRRdGLUQ6H e5A6HFyxsMELs8WN65SCDpQNd2FwdkzuiTZ4RkDCiJ1Dl9vXICuZVx05StDmYrgx S6mWzcg1aAsEm2k+Skhayux4a+qtl9sDJ5JcDLECo8acz+RL7/ ovnzuExZ3trm+O 6GN9c7mJBgCfEDkeror5Af4VHUtZbD4vALyqWCr42u4yxVjSj5fWIC9k4aJy6XzQ cRKGnsNrV0ZcGokFRO+IAcuWBIp4o3m3Amst8MyayKU+b94VgnrJAo02Fp0873wa hyJlqVF9fYyRX+couaIvi5dW/e15YX/xPd9hdTYd7S5mCmpoLo7cqYHCVuKWyOGw ZLu1ziPXKIYNEegeAP8iyeaJLnPInI1+z4447IsovnbgZxM3ktWO6k07IOH7zTy9 w+0UzbXdD/qdJI1rENyriAO986J4bUib+9sY/2/kLlL7nPy5Kxg3 Et0Fi3I9/+c/ IYOwNYaCotW+hPtHlw46dcDO1Jz0rMQMf1XCdn0kDQ61nHe5MGTz2uNtR3bty+7U CLgNPkv17hFPu/lX3YtlKvw04p6AZJTyktsSPjubqrE9PG00L5np1V3B/x+CCe2p niojR2m01TK17/oT1p0enFvDV8C351BRnjC86Z2OlbadnB9DnQSP3XH4JdQfbtN8 BXhOglfobjt5T9SHVZpBbzhDzeXAF1dmoZQ8JhdZ03EEDHjzYsXD1KUA6Xey03wU uwnrpTPzD99cdQM7vwCBdJnIPYaD2fT9NwAHICXdlp0pVy5NH20biAADH6GQr4Vc -
A Note on the Exponentiation Approximation of the Birthday Paradox
A note on the exponentiation approximation of the birthday paradox Kaiji Motegi∗ and Sejun Wooy Kobe University Kobe University July 3, 2021 Abstract In this note, we shed new light on the exponentiation approximation of the probability that all K individuals have distinct birthdays across N calendar days. The exponen- tiation approximation imposes a pairwise independence assumption, which does not hold in general. We sidestep it by deriving the conditional probability for each pair of individuals to have distinct birthdays given that previous pairs do. An interesting im- plication is that the conditional probability decreases in a step-function form |not in a strictly monotonical form| as the more pairs are restricted to have distinct birthdays. The source of the step-function structure is identified and illustrated. The equivalence between the proposed pairwise approach and the existing permutation approach is also established. MSC 2010 Classification Codes: 97K50, 60-01, 65C50. Keywords: birthday problem, pairwise approach, permutation approach, probability. ∗Corresponding author. Graduate School of Economics, Kobe University. 2-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan. E-mail: [email protected] yDepartment of Economics, Kobe University. 2-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan. E-mail: [email protected] 1 1 Introduction Suppose that each of K individuals has his/her birthday on one of N calendar days consid- ered. Let K¯ = f1;:::;Kg be the set of individuals, and let N¯ = f1;:::;Ng be the set of ¯ calendar days, where 2 ≤ K ≤ N. Let Ak;n be an event that individual k 2 K has his/her birthday on day n 2 N¯ . -
Probability Theory
Probability Theory Course Notes — Harvard University — 2011 C. McMullen March 29, 2021 Contents I TheSampleSpace ........................ 2 II Elements of Combinatorial Analysis . 5 III RandomWalks .......................... 15 IV CombinationsofEvents . 24 V ConditionalProbability . 29 VI The Binomial and Poisson Distributions . 37 VII NormalApproximation. 44 VIII Unlimited Sequences of Bernoulli Trials . 55 IX Random Variables and Expectation . 60 X LawofLargeNumbers...................... 68 XI Integral–Valued Variables. Generating Functions . 70 XIV RandomWalkandRuinProblems . 70 I The Exponential and the Uniform Density . 75 II Special Densities. Randomization . 94 These course notes accompany Feller, An Introduction to Probability Theory and Its Applications, Wiley, 1950. I The Sample Space Some sources and uses of randomness, and philosophical conundrums. 1. Flipped coin. 2. The interrupted game of chance (Fermat). 3. The last roll of the game in backgammon (splitting the stakes at Monte Carlo). 4. Large numbers: elections, gases, lottery. 5. True randomness? Quantum theory. 6. Randomness as a model (in reality only one thing happens). Paradox: what if a coin keeps coming up heads? 7. Statistics: testing a drug. When is an event good evidence rather than a random artifact? 8. Significance: among 1000 coins, if one comes up heads 10 times in a row, is it likely to be a 2-headed coin? Applications to economics, investment and hiring. 9. Randomness as a tool: graph theory; scheduling; internet routing. We begin with some previews. Coin flips. What are the chances of 10 heads in a row? The probability is 1/1024, less than 0.1%. Implicit assumptions: no biases and independence. 10 What are the chance of heads 5 out of ten times? ( 5 = 252, so 252/1024 = 25%). -
A Non-Uniform Birthday Problem with Applications to Discrete Logarithms
A NON-UNIFORM BIRTHDAY PROBLEM WITH APPLICATIONS TO DISCRETE LOGARITHMS STEVEN D. GALBRAITH AND MARK HOLMES Abstract. We consider a generalisation of the birthday problem that arises in the analysis of algorithms for certain variants of the discrete logarithm problem in groups. More precisely, we consider sampling coloured balls and placing them in urns, such that the distribution of assigning balls to urns depends on the colour of the ball. We determine the expected number of trials until two balls of different colours are placed in the same urn. As an aside we present an amusing “paradox” about birthdays. Keywords: birthday paradox, discrete logarithm problem (DLP), probabilistic analysis of randomised algorithms 1. Introduction In the classical birthday problem one samples uniformly with replacement from a set of size N until the same value is sampled twice. It is known that the expected time at which this match first occurs grows as πN/2. The word “birthday” arises from a common application of this result: the expected value of the minimum number of people in a room before two of them have the same birthday is approximately 23.94 (assuming birthdays are uniformly distributed over the year). The birthday problem can be generalised in a number of ways. For example, the assumption that births are uniformly distributed over the days in the year is often false. Hence, researchers have studied the expected time until a match occurs for general distributions. One can also generalise the problem to multi-collisions (e.g., 3 people having the same birthday) or coincidences among individuals of different “types” (e.g., in a room with equal numbers of boys and girls, when can one expect a boy and girl to share the same birthday). -
The Matching, Birthday and the Strong Birthday Problem
Journal of Statistical Planning and Inference 130 (2005) 377–389 www.elsevier.com/locate/jspi The matching, birthday and the strong birthday problem: a contemporary review Anirban DasGupta Department of Statistics, Purdue University, 1399 Mathematical Science Building, West Lafayette, IN 47907, USA Received 7 October 2003; received in revised form 1 November 2003; accepted 10 November 2003 Dedicated to Herman Chernoff with appreciation and affection on his 80th birthday Available online 29 July 2004 Abstract This article provides a contemporary exposition at a moderately quantitative level of the distribution theory associated with the matching and the birthday problems. A large number of examples, many not well known, are provided to help a reader have a feeling for these questions at an intuitive level. © 2004 Elsevier B.V. All rights reserved. Keywords: Birthday problem; Coincidences; Matching problem; Poisson; Random permutation; Strong birthday problem 1. Introduction My first exposure to Professor Chernoff’s work was in an asymptotic theory class at the ISI. Later I had the opportunity to read and teach a spectrum of his work on design of experiments, goodness of fit, multivariate analysis and variance inequalities. My own modest work on look-alikes in Section 2.8 here was largely influenced by the now famous Chernoff faces. It is a distinct pleasure to write this article for the special issue in his honor. This article provides an exposition of some of the major questions related to the matching and the birthday problems. The article is partially historical, and partially forward looking. For example, we address a new problem that we call the strong birthday problem. -
Approximations to the Birthday Problem with Unequal Occurrence Probabilities and Their Application to the Surname Problem in Japan*
Ann. Inst. Statist. Math. Vol. 44, No. 3, 479-499 (1992) APPROXIMATIONS TO THE BIRTHDAY PROBLEM WITH UNEQUAL OCCURRENCE PROBABILITIES AND THEIR APPLICATION TO THE SURNAME PROBLEM IN JAPAN* SHIGERU MASE Faculty of Integrated Arts and Sciences, Hiroshima University, Naka-ku, Hiroshima 730, Japan (Received July 4, 1990; revised September 2, 1991) Abstract. Let X1,X2,...,X~ be iid random variables with a discrete dis- tribution {Pi}~=l. We will discuss the coincidence probability Rn, i.e., the probability that there are members of {Xi} having the same value. If m = 365 and p~ ~ 1/365, this is the famous birthday problem. Also we will give two kinds of approximation to this probability. Finally we will give two applica- tions. The first is the estimation of the coincidence probability of surnames in Japan. For this purpose, we will fit a generalized zeta distribution to a fre- quency data of surnames in Japan. The second is the true birthday problem, that is, we will evaluate the birthday probability in Japan using the actual (non-uniform) distribution of birthdays in Japan. Key words and phrases: Birthday problem, coincidence probability, non-uni- formness, Bell polynomial, approximation, surname. I. Introduction It is frequently observed that, even within a small group, there are people with the same surname. It may not be considered so curious to find persons with the same surname in a group compared to those with the same birthday. But if we consider the variety of surnames and the relatively small portions of each surname in some countries, this fact becomes less trivial than is first seen. -
A FIRST COURSE in PROBABILITY This Page Intentionally Left Blank a FIRST COURSE in PROBABILITY
A FIRST COURSE IN PROBABILITY This page intentionally left blank A FIRST COURSE IN PROBABILITY Eighth Edition Sheldon Ross University of Southern California Upper Saddle River, New Jersey 07458 Library of Congress Cataloging-in-Publication Data Ross, Sheldon M. A first course in probability / Sheldon Ross. — 8th ed. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-13-603313-4 ISBN-10: 0-13-603313-X 1. Probabilities—Textbooks. I. Title. QA273.R83 2010 519.2—dc22 2008033720 Editor in Chief, Mathematics and Statistics: Deirdre Lynch Senior Project Editor: Rachel S. Reeve Assistant Editor: Christina Lepre Editorial Assistant: Dana Jones Project Manager: Robert S. Merenoff Associate Managing Editor: Bayani Mendoza de Leon Senior Managing Editor: Linda Mihatov Behrens Senior Operations Supervisor: Diane Peirano Marketing Assistant: Kathleen DeChavez Creative Director: Jayne Conte Art Director/Designer: Bruce Kenselaar AV Project Manager: Thomas Benfatti Compositor: Integra Software Services Pvt. Ltd, Pondicherry, India Cover Image Credit: Getty Images, Inc. © 2010, 2006, 2002, 1998, 1994, 1988, 1984, 1976 by Pearson Education, Inc., Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458 All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. Pearson Prentice Hall™ is a trademark of Pearson Education, Inc. Printed in the United States of America 10987654321 ISBN-13: 978-0-13-603313-4 ISBN-10: 0-13-603313-X Pearson Education, Ltd., London Pearson Education Australia PTY. Limited, Sydney Pearson Education Singapore, Pte. Ltd Pearson Education North Asia Ltd, Hong Kong Pearson Education Canada, Ltd., Toronto Pearson Educacion´ de Mexico, S.A. -
Generic Attacks Against Beyond-Birthday-Bound Macs
Generic Attacks against Beyond-Birthday-Bound MACs Gaëtan Leurent1, Mridul Nandi2, and Ferdinand Sibleyras1 1 Inria, France {gaetan.leurent,ferdinand.sibleyras}@inria.fr 2 Indian Statistical Institute, Kolkata [email protected] Abstract. In this work, we study the security of several recent MAC constructions with provable security beyond the birthday bound. We con- sider block-cipher based constructions with a double-block internal state, such as SUM-ECBC, PMAC+, 3kf9, GCM-SIV2, and some variants (LightMAC+, 1kPMAC+). All these MACs have a security proof up to 22n/3 queries, but there are no known attacks with less than 2n queries. We describe a new cryptanalysis technique for double-block MACs based on finding quadruples of messages with four pairwise collisions in halves of the state. We show how to detect such quadruples in SUM-ECBC, PMAC+, 3kf9, GCM-SIV2 and their variants with O(23n/4) queries, and how to build a forgery attack with the same query complexity. The time com- plexity of these attacks is above 2n, but it shows that the schemes do not reach full security in the information theoretic model. Surprisingly, our attack on LightMAC+ also invalidates a recent security proof by Naito. Moreover, we give a variant of the attack against SUM-ECBC and GCM-SIV2 with time and data complexity O˜(26n/7). As far as we know, this is the first attack with complexity below 2n against a deterministic beyond- birthday-bound secure MAC. As a side result, we also give a birthday attack against 1kf9, a single-key variant of 3kf9 that was withdrawn due to issues with the proof. -
Hash Functions & Macs ECE 646 Lecture 9
ECE 646 Lecture 9 Required Reading W. Stallings, "Cryptography and Network-Security,” Chapter 11 Cryptographic Hash Functions Appendix 11A Mathematical Basis of Birthday Attack Hash functions & MACs Chapter 12 Message Authentication Codes Recommended Reading SHA-3 Project https://csrc.nist.gov/projects/hash-functions/sha-3-project 1 2 Digital Signature Hash function Alice Bob arbitrary length Message Signature Message Signature m message Hash Hash function function hash h Hash value 1 function Hash value yes no Hash value 2 Public key Public key h(m) hash value algorithm algorithm fixed length Alice’s private key Alice’s public key 3 4 1 Vocabulary Hash functions Basic requirements hash function hash value 1. Public description, NO key message digest message digest hash total 2. Compression fingerprint arbitrary length input ® fixed length output imprint 3. Ease of computation cryptographic checksum compressed encoding MDC, Message Digest Code 5 6 Hash functions Hash functions Security requirements Dependence between requirements It is computationally infeasible Given To Find 1. Preimage resistance 2nd preimage resistant y x, such that h(x) = y collision resistant 2. 2nd preimage resistance x’ ¹ x, such that x and y=h(x) h(x’) = h(x) = y 3. Collision resistance x’ ¹ x, such that h(x’) = h(x) 7 8 2 Hash functions Brute force attack against (unkeyed) One-Way Hash Function Given y mi’ One-Way Collision-Resistant i=1..2n Hash Functions Hash Functions 2n messages with the contents required by the forger OWHF CRHF h preimage resistance ? 2nd preimage resistance h(mi’) = y collision resistance n - bits 9 10 Creating multiple versions of Brute force attack against Yuval the required message Collision Resistant Hash Function state thereby borrowed I confirm - that I received r messages r messages acceptable for the signer required by the forger $10,000 Mr.