A note on the exponentiation approximation of the birthday paradox Kaiji Motegi∗ and Sejun Wooy Kobe University Kobe University July 3, 2021 Abstract In this note, we shed new light on the exponentiation approximation of the probability that all K individuals have distinct birthdays across N calendar days. The exponen- tiation approximation imposes a pairwise independence assumption, which does not hold in general. We sidestep it by deriving the conditional probability for each pair of individuals to have distinct birthdays given that previous pairs do. An interesting im- plication is that the conditional probability decreases in a step-function form |not in a strictly monotonical form| as the more pairs are restricted to have distinct birthdays. The source of the step-function structure is identified and illustrated. The equivalence between the proposed pairwise approach and the existing permutation approach is also established. MSC 2010 Classification Codes: 97K50, 60-01, 65C50. Keywords: birthday problem, pairwise approach, permutation approach, probability. ∗Corresponding author. Graduate School of Economics, Kobe University. 2-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan. E-mail:
[email protected] yDepartment of Economics, Kobe University. 2-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan. E-mail:
[email protected] 1 1 Introduction Suppose that each of K individuals has his/her birthday on one of N calendar days consid- ered. Let K¯ = f1;:::;Kg be the set of individuals, and let N¯ = f1;:::;Ng be the set of ¯ calendar days, where 2 ≤ K ≤ N. Let Ak;n be an event that individual k 2 K has his/her birthday on day n 2 N¯ .