Henderson, L. (2007). Invasive, Naturalized and Casual Alien Plants in Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

Henderson, L. (2007). Invasive, Naturalized and Casual Alien Plants in Southern Africa Bothalia 37,2: 215–248 (2007) Invasive, naturalized and casual alien plants in southern Africa: a sum- mary based on the Southern African Plant Invaders Atlas (SAPIA) L. HENDERSON* Keywords: biomes, casual alien plants, invasive plants, Lesotho, naturalized plants, roadside surveys, SAPIA mapping project, South Africa, Swaziland ABSTRACT The primary objective of this publication is to provide an overview of the species identity, invasion status, geographical extent, and abundance of alien plants in South Africa, Swaziland and Lesotho, based on fi eld records from 1979 to the end of 2000. The dataset is all the species records for the study area in the Southern African Plant Invaders Atlas (SAPIA) database during this time period. A total of 548 naturalized and casual alien plant species were catalogued and invasion was recorded almost throughout the study area. Most invasion, in terms of both species numbers and total species abundance, was recorded along the southern, southwestern and eastern coastal belts and in the adjacent interior. This area includes the whole of the Fynbos and Forest Biomes, and the moister eastern parts of the Grassland and Savanna Biomes. This study reinforces previous studies that the Fynbos Biome is the most extensively invaded vegetation type in South Africa but it also shows that parts of Savanna and Grassland are as heavily invaded as parts of the Fynbos. The Fabaceae is prominent in all biomes and Acacia with 17 listed species, accounts for a very large proportion of all invasion. Acacia mearnsii was by far the most prominent invasive species in the study area, followed by A. saligna, Lantana camara, A. cyclops, Opuntia fi cus-indica, Solanum mauritianum, Populus alba/×canescens, Melia azedarach, A. dealbata and species of Prosopis. INTRODUCTION transects of between fi ve and 10 km long. Recordings of streambank species were made at virtually all water- History of roadside surveys in South Africa course crossings on the survey route. Roadside surveys of invasive plants in South Africa The Southern African Plant Invaders Atlas mapping were pioneered by Henderson and Musil (née Duggan) project (SAPIA) starting in 1979 in the central Transvaal, now Gauteng (Wells, Duggan & Henderson 1980), with the remainder The Southern African Plant Invaders Atlas (SAPIA) is of the Transvaal surveyed in 1982 and 1983 (Henderson a mapping project, launched in January 1994, to collate & Musil 1984). Surveys of the rest of South Africa were information on the distribution, abundance and habitat conducted by Henderson from 1986, starting with Natal types of invasive and naturalized alien plants in southern (Henderson 1989), followed by the Orange Free State Africa (Henderson 1998b). The fi rst phase of SAPIA, (Henderson 1991a), northern Cape (Henderson 1991b), involving volunteer participants, was scheduled for a eastern Cape (Henderson 1992), western and central fi ve-year period, ending in December 1998. The atlas Cape (completed in 1993 but unpublished), and southern region covered South Africa, Lesotho and Swaziland. and southwestern Cape (Henderson 1998a). Information was recorded on two standardized atlas All terminology used in this paper relating to invasive sheets, with slightly different species lists, covering the plants such as ‘alien’, ‘invasive’, ‘naturalized’, ‘casual western and eastern halves of the atlas region. One hun- alien’, ‘weed’ and ‘environmental weed’ conforms, as dred plant taxa were listed on each sheet, with a com- far as possible, to the defi nitions provided by Richardson bined total of 161 species. A pocket fi eld guide was com- et al. (2000) and Pyšek et al. (2004). The method used piled to help with the identifi cation of all listed species in these surveys was designed initially to make use of (Henderson 1995). otherwise unproductive travelling time whilst engaged in other research projects. The method was refi ned as SAPIA database the surveys progressed until a standardized method was developed (see Henderson 1992, 1998a). The presence A computerized SAPIA database was created by and abundance of all alien trees, large shrubs and con- incorporating all Henderson survey data (± 23 000 spicuous climbers which appeared to be naturalized or records) and SAPIA phase one project data (± 20 000 occurring outside of cultivation were recorded for each records). The SAPIA project continued on an ad hoc veld type category, habitat type (roadsides and adjoining basis and by the end of 2000 a total of ± 48 000 records veld, and streambanks) and quarter-degree/fi fteen minute had been accumulated. Thereafter, the SAPIA initiative square traversed by road. dwindled due to lack of funding. Only 10 000 records were added in the fi ve year period from 2001 to the Recordings of species on roadsides and in the adja- end of 2005. The SAPIA project was revived in 2006 cent veld were made from a moving vehicle along road with funding from the Department of Water Affairs and Forestry’s Working for Water Programme. The SAPIA * Agricultural Research Council: Plant Protection Research Institute, c/o SANBI, Private Bag X101, 0001 Pretoria. database has been computerized using Microsoft Access E-mail: [email protected] and is housed at the Plant Protection Research Institute MS. received: 2006-10-06. in Pretoria. 216 Bothalia 37,2 (2007) Objectives of this study Data treatment • To provide an overview of the species identity, inva- Abundance sion status, geographical extent, and abundance of alien plants in South Africa, Swaziland and Lesotho, Species abundance ratings in the SAPIA database are based on fi eld records from 1979 to the end of 2000. qualitative estimates. Table 1 shows the abundance rat- ings used in the SAPIA database and the equivalent rat- • To highlight the most prominent invaders in the ing used in Henderson surveys. For the purposes of this region as a whole, in each of the biomes, and in study, species abundance ratings were converted to a riparian and wetland habitats. numerical value as done in previous surveys (Henderson • To compare invasion and provide species profi les for 1998a) and each abundance rating was expressed in each of the biomes. numbers of individuals or groups per 10 km transect/ recording (Table 1). METHODS Prominence A similar formula was used in this study to calcu- Sampling method late prominence as in previous studies by Henderson The dataset for this study is all the species records for (1998a). The prominence value of a species x in category South Africa, Swaziland and Lesotho in the SAPIA data- y (biome or study area) was calculated as follows: base collected from 1979 until the end of 2000 (± 48 000 total abundance of species x in category y records). During this period a concerted effort was made × 100 to gather as much data from as wide an area as possi- sum of the abundances of all species in category y ble. The information gathered is the best available data prominence = + concerning the extent of invasion and species composi- value tion, at least of the larger trees, shrubs and conspicuous total species records of species x in category y climbers, in the study area over this time period. × 100 sum of the records of all species in category y The SAPIA dataset was subdivided on a quarter- degree square (QDS) basis into six datasets representing The highest prominence values in a given category the biomes of southern Africa. According to Rutherford which add up to ± 160 points out of a total of 200 are (1997) there are seven biomes in southern Africa: Savanna, printed in bold in Appendices 1–3. The cut-off point is Fynbos, Forest, Grassland, Nama-Karoo, Succulent Karoo arbitrary but represents the upper 80% of the summed and Desert. The Forest Biome in southern Africa is min- prominence values. iscule, only occurring in the Knysna area. However, if all the forest patches elsewhere are included, its area increases several-fold (Rutherford 1997). In this study RESULTS Forest refers to the Forest Biome and also forest habitats within the Savanna, Fynbos and Grassland Biomes. The A total of 548 naturalized and casual alien plant spe- Desert Biome occurs almost exclusively in Namibia, cies were catalogued in the SAPIA database for South except for a very small patch along the Orange River Africa, Swaziland and Lesotho from 1979 to the end of bordering on South Africa that has been excluded from 2000 (Appendix 4). At least 119, mainly herbaceous, this study. taxa are considered to have been under-recorded and TABLE 1.—Abundance ratings used in Henderson surveys, SAPIA and this study Henderson surveys SAPIA This study Rating Roadsides and veld No.* Streambanks Rating All habitats† All habitats# 9 A virtually continuous, almost pure stand 1 000+ Any number, with cover more than 7 Very abundant 1 000 75% of the reference area 8 The commonest species in a generally con- 500–999 Any number, with 50–75% cover 6 Very abundant 1 000 tinuous tree or shrub layer 7 Less abundant than above but > 20 individu- 200–499 Any number, with 25–50% cover 5 Abundant 200 als or groups per km 6 10–20 individuals or groups per km 100–199 Any number with 5–25% cover 4 Abundant 200 5 5–10 individuals or groups per km 50–99 Numerous, but < 5% cover or scat- 3 Frequent 50 tered, with cover up to 5% 4 2–5 individuals or groups per km 20–49 Few, with small cover 2 Frequent 50 3 ± 1 individual or group per km 5–19 Solitary, with small cover 1 Occasional 10 2 Less abundant than above but more than 1 2–4 Occasional 10 individual or group per 5 km 1 ± 1 plant or group per 5–10 km 1 Rare 1 *, approximate numbers of individuals or groups per 10 km transect.
Recommended publications
  • Proposed Techniques to Supplement the Loss in Nutrient Cycling for Replanted Coffee Plantations in Vietnam
    agronomy Article Proposed Techniques to Supplement the Loss in Nutrient Cycling for Replanted Coffee Plantations in Vietnam The Trinh Pham 1, Ngoc Hoi Nguyen 2 , Pham Nguyen Dong Yen 2, Tri Duc Lam 3 and Ngoc Thuy Trang Le 4,* 1 Department of Science and Technology in DakLak Province, 15A Truong Chinh, Buon Ma Thuot City 630000, Vietnam; [email protected] 2 Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam; [email protected] (N.H.N.); [email protected] (P.N.D.Y.) 3 NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; [email protected] 4 Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam * Correspondence: [email protected] Received: 23 May 2020; Accepted: 23 June 2020; Published: 25 June 2020 Abstract: Nutrient cycling of the coffee ecosystem is often characterized by nutrient losses during the harvest, tree’s growth, leaching and erosion. The “Coffee Rejuvenation Strategies in Vietnam” has risked not being complete on schedule, with the low survival rate of seedlings on replanted soil, due to the nutrient loss and imbalance supplements after a long-term of monoculture and intensive cultivation. In this study, measures, including biochemical and organic treatments were applied to replanted coffee farm, in order to supplement the loss of nutrient cycling. Survival rate, growth indicators, and soil properties from the controls and treatments, were monitored and compared during the experimental periods. The results suggested the optimal tillage model as follow: Remove old coffee trees with their stumps and roots; liming 1.5 tons/ha; dry tillage soil for the first 6 months; Intercrop Mexican marigold (Tagetes erecta) with new coffee plants for the next 6 months; From the second year, apply 5 kg of microbial organic fertilizer /hole/year; bury 30 kg of green manure/hole/2–3 years; apply NPK fertilizers according to the governmental recommended procedure.
    [Show full text]
  • Wattles of the City of Whittlesea
    Wattles of the City of Whittlesea PROTECTING BIODIVERSITY ON PRIVATE LAND SERIES Wattles of the City of Whittlesea Over a dozen species of wattle are indigenous to the City of Whittlesea and many other wattle species are commonly grown in gardens. Most of the indigenous species are commonly found in the forested hills and the native forests in the northern parts of the municipality, with some species persisting along country roadsides, in smaller reserves and along creeks. Wattles are truly amazing • Wattles have multiple uses for Australian plants indigenous peoples, with most species used for food, medicine • There are more wattle species than and/or tools. any other plant genus in Australia • Wattle seeds have very hard coats (over 1000 species and subspecies). which mean they can survive in the • Wattles, like peas, fix nitrogen in ground for decades, waiting for a the soil, making them excellent cool fire to stimulate germination. for developing gardens and in • Australia’s floral emblem is a wattle: revegetation projects. Golden Wattle (Acacia pycnantha) • Many species of insects (including and this is one of Whittlesea’s local some butterflies) breed only on species specific species of wattles, making • In Victoria there is at least one them a central focus of biodiversity. wattle species in flower at all times • Wattle seeds and the insects of the year. In the Whittlesea attracted to wattle flowers are an area, there is an indigenous wattle important food source for most bird in flower from February to early species including Black Cockatoos December. and honeyeaters. Caterpillars of the Imperial Blue Butterfly are only found on wattles RB 3 Basic terminology • ‘Wattle’ = Acacia Wattle is the common name and Acacia the scientific name for this well-known group of similar / related species.
    [Show full text]
  • Insecticidal Activity of Floral, Foliar, and Root Extracts of Tagetes Minuta
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. STORED-PRODUCTENTOMOLOGY Insecticidal Activity of Floral, Foliar, and Root Extracts of .Tagetes minuta (Asterales: Asteraceae) Against Adult Mexican Bean Weevils (Coleoptera: Bruchidae) DAVID K. WEAVER,l CARL D. WELLS,2.3FLORENCE V. DUNKEL, WOLFGANG BERTSCH,2 SHARLENE E. SING,l AND SHOBHA SRIHARAN4 Department of Entomology, Montana State University, Bozeman, MT 59717 J. Econ. Entomol. 87(6): 1718-1725 (1994) ABSTRACT Experiments were conducted to determine speed of action and toxicities of extracts of Tagetes minuta L., a source of naturally occurring insecticidal compounds. LC50 values for male and female Mexican bean weevils, Zabrotes subfasciatus (Boheman), were determined for /loral, foliar, and root extracts of T. minuta. The 24-h LCso values ranged from 138 lJ-g/cm2 for males exposed to the root extract (most susceptible) to 803 wlJcm2 for females exposed to the foliar extract (least susceptible). Increasing the duration of exposure 2 to 48 h decreased all LCso values 20-30 lJ-g/cm • Males were more susceptible than females. The time to incapacitation for 50% of the test insects (IT 50) for floral and foliar extracts indicated fast-acting, volatile components, whereas the root extract data indicated slower-acting components, likely a result of the interaction of photophase with time- dependent efficacy. Floral and foliar extracts of T. minuta may be useful as insecticides for controlling stored-product pests. KEY WORDS Zabrotes subfasciatus, Tagetes minuta, extracts MARIGOLDS,Tagetes spp., are a useful intercrop extract was 8.1 mg/g for Rhyzopertha dominica in agriculture.
    [Show full text]
  • Acacia Mearnsii) in the Tsomo Valley in Eastern Cape: Consequences on the Water Recharge and Soil Dynamics (An Ongoing Study)
    Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ May 2009 ▪ Vol. 9 ▪ No. 2 Impact of the removal of black wattle (Acacia mearnsii) in the Tsomo Valley in Eastern Cape: Consequences on the water recharge and soil dynamics (an ongoing study) HPM Moyo, S Dube and AO Fatunbi Department of Livestock and Pasture Sciences, University of Fort Hare Email: [email protected] lack wattle (Acacia mearnsii) (Galatowitsch and Richardson is a fast growing leguminous 2004). Acacia mearnsii ranks first in B (nitrogen fixing) tree and it is water use among invasive species, often used as a commercial source using 25% of the total amount, and of tannins and a source of fire wood is estimated to reduce mean annual for local communities (DWAF 1997). runoff by 7% in South Africa (Dye Riparian ecosystems are widely re- and Jarmain 2004). The invasive garded as being highly prone to in- ability of this species is partly due to vasion by alien plants, especially A. its ability to produce large numbers mearnsii, largely because of their of long-lived seeds (which may be dynamic hydrology, nutrient levels, triggered to germinate by fires) and and ability to disperse propagules the development of a large crown (Galatowitsch and Richardson that shades other vegetation (Nyoka 2004). Disturbing native vegetation 2003). also causes invasion as this often Acacia mearnsii threatens na- prepares a seed bed for invader spe- tive habitats by competing with in- cies (DWAF 1997). Native fynbos digenous vegetation, replacing grass tree species lack mycorrhyzal asso- communities; reducing native biodi- ciates and therefore are less efficient versity and increasing water loss at nutrient uptake (Smita 1998), from the riparian zones (Nyoka leading to them being out-competed 2003).
    [Show full text]
  • Essential Oils in Food Preservation, Flavor and Safety
    Essential Oils in Food Preservation, Flavor and Safety Edited by Victor R. Preedy Department of Nutrition and Dietetics, King's College London, London, UK • AMSTERDAM BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ELSEVIER Academic Press is an imprint of Elsevier Contents Contributors xxiii Supercritical Fluid Extraction GC-MS (SFE Biography xxxi GC-MS) Involving Use of Multidimensional Preface xxxiii GC to Resolve Enantiomers for Essential Oils of Lavandula 12 Enantioselective Capillary Gas Chromatography Part I and Online Methods of Isotope Ratio Mass General Aspects Spectrometry 13 Enantioselective Capillary Gas Chromatography and Isotope Ratio Mass Spectrometry, 1. Essential Oils: What They Are and How Coupled Online with Capillary Gas the Terms Are Used and Defined Chromatography on an HP5 Column for Jose-Luis Rios Various Essential Oils 13 Online Gas Chromatography Pyrolysis Introduction 3 Isotope Ratio Mass Spectrometry An Historical Overview 3 (HRGC-P-IRMS) for the Flavor Compounds Concept and Definition 3 Decanal, Linalool, Linalyl Acetate, Variability of Essential Oils 4 E-2-Hexenal, and E-2-Hexenol in Presence and Functions in the Vegetable Essential Oils 13 Kingdom 4 Isotope Ratio Mass Spectrometry Online Essential Oils 4 Obtaining Coupled with Capillary Gas Control and 5 Analyses Chromatography (GC-Py-IRMS) 14 Chemical Composition 5 Gas Chromatography-Combustion-lsotope Terpenes 6 Ratio Mass Spectrometry (GC-C-IRMS), 6 Allyl phenols in Combination with GC-MS and GC Other Constituents 7 Flame Ionization Detector (FID) for Use of Essential Oils 7 Rosa damascene Essential Oil 14 Cosmetics 8 Headspace-Solid Phase Microextraction Medicine and Pharmaceutics 8 Coupled to GC-C-IRMS for Food 9 Citrus Oils 14 References 9 Multi Dimensional Gas Chromatography (MDGC) and GC-C-IRMS for Bitter Orange 2.
    [Show full text]
  • Biodiversity Development Assessment Report Tweed Valley Hospital
    81 Biodiversity Development Assessment Report Tweed Valley Hospital APPENDIX B. FLORISTIC AND VEGETATION INTEGRITY PLOT SURVEY FIELD RECORDS greencap.com.au Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong -This document has not been endorsed or approved by Office of Environment and Heritage or Muddy Boots Environmental Training- BAM Site Field Survey Form Site Sheet no: 1 of _____2 Survey Name Zone ID Recorders Date 1_ 5_ / 0_ 6_ / 1_ 8_ TVH Veg Zone 1 Damian Licari and Gina Minatel Zone Datum Plot Plot ID Photo # _5 _6 GDA 1994 19 dimensions 20m X 50m Easting Northing Midline IBRA region Burringbar-ConondaleIn m Ranges bearing 350 Magnetic o 5_ _55 _ _890 _ _ 687_ _ _ 39_ _ 27_ _ from 0 m Confidence: Vegetation Class Coastal Swamp Forest H M L Confidence: Plant Community Type EEC: tick 1064 Yes H M L Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot. BAM Attribute 2 Sum values BAM Attribute (1000 m plot) (400 m2 plot) DBH # Tree Stems Count # Stems with Hollows Trees 4 80 + cm 0 Shrubs 1 Count of Grasses etc. 2 50 79 cm 0 Native Richness Forbs 5 30 49 cm Present Ferns 3 0 20 29 cm present Other 1 10 19 cm Trees 30.3 present Sum of Shrubs 0.2 5 9 cm absent Cover of native Grasses etc. 10.5 < 5 cm n/a vascular present plants by Forbs 30.3 growth Length of logs (m) Tally space form group Ferns 253.50 50.4 >50 cm in length) Other 15 Counts apply when the number of tree stems within a when > 10 (eg.
    [Show full text]
  • Anti–Oxidative and Anti–Inflammatory Effects of Tagetes Minuta Essential Oil in Activated Macrophages
    Asian Pac J Trop Biomed 2014; 4(3): 219-227 219 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Document heading doi:10.1016/S2221-1691(14)60235-5 2014 by the Asian Pacific Journal of Tropical Biomedicine. All rights reserved. 襃 Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages 1 1 2 Parastoo Karimian , Gholamreza Kavoosi *, Zahra Amirghofran 1Biotechnology Institute, Shiraz University, Shiraz, 71441-65186, Iran 2Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran PEER REVIEW ABSTRACT Peer reviewer Objective: Tagetes minuta T. minuta To investigate antioxidant and anti-inflammatory effects of ( ) Hasan Salehi, University of Shiraz, essentialMethods: oil. T. minuta T. minuta Shiraz, Iran. In the present study essential oil was obtained from leaves of via E-mail: [email protected] hydro-distillation andT. minutathen was analyzed by gas chromatography-mass spectrometry. The anti- Comments oxidant capacity of essential oil was examined by measuring reactive oxygen,T. reactive minuta nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of TMO displayed an anti-oxidant essential αoil was determined through measuring NADH oxidase, inducible nitric oxide synthase property by scavenging superoxide, and TNF- mRNA expression in lipopolysacharide-stimulated murine macrophages using real- H2O2 and NO radicals, and reduced Results:time PCR. G oxidative stress. The decreased T. minutaas chromatography-mass spectrometry analysis indicated that the main components in ROS NOS (33 86%) E (19 92%) (16 15%) formation of and radicals in the β essential oil were dihydrotagetone .
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Capitulo 3 Tesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Flowering phenology of invasive alien plant species compared to native 2 species in three mediterranean-type ecosystems 3 4 Oscar Godoy*1,4, David M. Richardson2, Fernando Valladares1,3 & Pilar Castro-Díez4 5 6 1 Laboratorio Internacional de Cambio Global (Linc-Global). Instituto de los Recursos 7 Naturales, Centro de Ciencias Medioambientales. CSIC. Serrano 115 dpdo E-28006 8 Madrid Spain. ! 9 2 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch 10 University, Private Bag X1, Matieland 7602, South Africa. 11 3 Departamento de Biología y Geología. Área de Biodiversidad & Conservación, 12 Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain. 13 4 Departamento Interuniversitario de Ecología. Sección de Alcalá. Edificio de Ciencias. 14 Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain. 15 16 *Correspondence author: [email protected] 17 18 19 20 21 22 23 24 25 26 27 28 29 1 1 Fenología de floración de las especies de plantas exóticas invasoras en 2 tres ecosistemas mediterráneos en comparación con las especies 3 nativas. 4 5 Resumen 6 • Antecedentes y Objetivos: La fenología de floración es un componente esencial 7 del éxito de las especies invasoras, ya que una elevada fecundidad incrementa su 8 potencial invasor. Por tanto, estudiamos la relación existente entre los patrones 9 de floración de las especies invasoras y nativas en tres regiones con clima 10 mediterráneo: California, España y la Región Sudafricana de El Cabo 11 • Métodos: 227 pares de especies invasoras-nativas fueron utilizados 12 • Resultados clave: Las especies invasoras tienen diferentes patrones de floración 13 en comparación con las especies nativas en las tres regiones.
    [Show full text]
  • Plants for the Coast
    PLANTS FOR THE COAST WE CARRY THESE SPECIES FOR THE COAST. WE DID NOT LIST ALL VARIETIES AS THEY MAY VARY. N=NATIVE LATIN NAME COMMON NAME ACTAEA BUGBANE AESCULUS CARNEA RED HORSE-CHESTNUT N AMELANCHIER CANADENSIS SHADBLOW SERVICEBERRY N AMMOPHILIA BREVILIGULATA DUNE GRASS ANDROMEDA POLIFOLIA BOG ROSEMARY N ARCTOSTAPHYLOS UVA-URSI MASSACHUSETTS BEARBERRY N ARONIA ARBUTIFOLIA RED CHOKEBERRY BAPTISIA AUSTRALIS BLUE FALSE INDIGO BUDDLEIA BUTTERFLY BUSH CALAMAGROSTIS FEATHER REED GRASS CALLUNA VULGARIS HEATHER CAMPSIS TRUMPET VINE N CLETHRA SUMMERSWEET N COMPTONIA SWEETFERN N CORNUS RACEMOSA GRAY DOGWOOD N CORNUS SERICEA RED TWIG DOGWOOD COTONEASTER COTONEASTER N CRATAEGUS HAWTHORN DIERVILLA LONICERA HONEYSUCKLE N FRAXINUS PENNSYLVANICA GREEN ASH GINGKO BILOBA MAIDENHAIR TREE HYDRANGEA HYDRANGEA N ILEX GLABRA INKBERRY HOLLY N JUNIPERUS COMMUNIS COMMON JUNIPER JUNIPERUS HORZONTALIS GROUNDCOVER JUNIPER N LATHYRUS JAPONICUS BEACH PEA LIGUSTRUM PRIVET N LIMONIUM CAROLINIANUM SEA LAVENDER MICROBIOTA DECUSSATA SIBERIAN CYPRESS N MYRICA PENNSYLVANICA NORTHERN BAYBERRY N NYSSA SYLVATICA BLACK GUM PACHYSTIMA CANBYI MOUNTAIN JADE N PANICUM VIRGATUM SWITCH GRASS N PICEA GLAUCA WHITE SPRUCE PICEA GLAUCA CONICA DWARF ALBERTA SPRUCE PINUS CEMBRA SWISS STONE PINE PINUS MUGO DWARF MUGHO PINE PINUS NIGRA AUSTRIAN PINE PINUS PARVIFLORA JAPANESE WHITE PINE N PINUS RIGIDA PITCH PINE PINUS SYLVESTRIS SCOTCH PINE PRUNUS CISTENA PURPLE LEAF SAND CHERRY N PRUNUS MARITIMA BEACH PLUM N QUERCUS OAK N RHUS SUMAC N ROSA ROSE N SALIX WILLOW N SOLIDAGO SEMPERVIRENS SEASIDE GOLDENROD N SPIREA SPIREA STEPHANANDRA INCISA CUTLEAF STEPHANANDRA N THUJA OCCIDENTALIS AMERICAN ARBORVITAE TILIA CORDATA LITTELLEAF LINDEN N VACCINIUM CORYMBOSUM HIGHBUSH BLUEBERRY VINCA MINOR PERIWINKLE PIERSON NURSERIES INC. 24 BUZZELL RD BIDDEFORD, MAINE 04005 PH 207-499-4992 FX 207-499-2912 EMAIL [email protected] WEBSITE WWW.piersonnurseries.com.
    [Show full text]
  • Water-Wise Plants …Suitable for the Willamette Valley
    Water-Wise Plants …suitable for the Willamette Valley ANNUALS and PERENNIALS Botanical Name Common Name Botanical Name Common Name Achillea sp. Yarrow Limonium sp. Sea Lavender Alcea rosea Hollyhock Linum sp. Flax Alyssum sp. Alyssum Lithodora diffusa Lithodora Aquilegia sp. Columbine Lobularia maritima Sweet Alyssum Arctotis sp. African Daisy Narcissus sp. Daffodil Armeria sp. Trift, Sea Pink Oenothera sp. Evening Primrose Artemesia sp. Wormwoods Origanum sp. Marjoram/Oregano Chrysanthemum Marguerite, Shasta Daisy Osteospermum sp. African Daisy Coreopsis sp. Coreopsis Papaver sp. Poppy Cosmos Cosmos Phlox sp. Phlox Dianthus sp. Pink or Sweet William Polystichum munitum Sword fern * Erysimum sp. Wallflowers Portulaca grandiflora Moss Rose Eschscholzia californica California Poppy Rudbeckia sp. Black-Eyed Susan, Coneflowers Gaillardia sp. Blanket Flowers Salvia sp. Sage Gypsophilia paniculata Baby’s Breath Senecio cineraria Dusty Miller Helichrysum Strawflower Sisyrinchium sp. Blue & Yellow-Eyed Grasses Hemerocallis sp. Daylily Thymus sp. Thyme Kniphofia uvaria Red Hot Poker Verbascum sp. Mullein Lavandula sp. Lavender Verbena sp. Verbena Liatris sp. Gayfeather Yucca sp. Yucca For water conservation information, call the Water Quality Hotline, 503-588-6323. For information or presentations on native plants, call 503-588-6211, ext. 7388. * Native to Oregon TREES Botanical Name Common Name Botanical Name Common Name Acer ginnala Amur Maple Laurus nobilis Sweet Bay, Grecian Laurel Arbutus menziesii Madrone * Lithocarpus densiflorus Tanbark Oak ** Albizzia julibrissin Silktree Malus sargentii Sargent Crabapple London Plane Tree, Platanus acerifolia Calocedrus decurrens Incense Cedar ** Sycamore Pinus sp. Pine Castanea mollisima Chinese Chestnut Pseudotsuga menziesii Douglas Fir * Cedrus atlantica Atlas Cedar Quercus garryana. Oregon White Oak * Cedrus deodora Deodora Cedar Sequoiadendron giganteum Giant Sequoia Cercis occidentalis Western Redbud ** Sophora japonica Japanese Pagoda Tree Cornus nutallii Western Dogwood * Taxus sp.
    [Show full text]
  • The Black Sea Region — Shores and Delta
    Black Sea region. page 1 European Environment Agency Europe’s biodiversity — biogeographical regions and seas Biogeographical regions in Europe The Black Sea Region — shores and delta Original contributions from ETC/NPB: Sophie Condé, Dominique Richard (coordinators) Nathalie Liamine (editor) Anne-Sophie Leclère (data collection and processing) Barbara Sotolargo (drafting) Ulla Pinborg (final co-editor) Map production: UNEP/GRID Warsaw (final production) Project manager: Tor-Björn Larsson, EEA ZooBoTech HB, Sweden, Linus Svensson (final edition) Black Sea region. page 2 Summary ............................................................................................................ 3 1. What are the main characteristics and trends of the Black Sea biogeographical region? ..................................................................................... 3 1.1 General characteristics.............................................................................. 3 1.1.1 Extent and limitations ............................................................................ 3 1.1.2 Geomorphological and topography ........................................................... 3 1.1.3 Soils .................................................................................................... 4 1.1.4 Climate ................................................................................................ 4 1.2 Present biodiversity status and trends: habitats, fauna and flora ............. 5 1.2.1 Habitats ..............................................................................................
    [Show full text]