Final Report: Assessing Recreational Haddock Discard Mortality On

Total Page:16

File Type:pdf, Size:1020Kb

Final Report: Assessing Recreational Haddock Discard Mortality On New Hampshire Sea Grant, University of New Hampshire and Eastman’s Fishing Fleet Analysis of Recreational Haddock Discard Mortality: Results and Findings from Year 1 and Year 2. Final Report to the Northeast Consortium Project Title: Assessing Recreational Haddock Discard Mortality on Jeffrey’s Ledge Through an Industry-led Collaborative Mark-Recapture Tagging Program Award Number: 14NE99 Period of Award: March 1, 2015-December 31, 2017 Final Report Submission Date: January 20, 2017 Principal Investigators: Gabriela M. Bradt, Ph.D. New Hampshire Sea Grant University of New Hampshire Cooperative EXtension 164A Morse Hall 8 College Rd. Durham, NH 03824 603-862-2033 [email protected] Lester and Philip Eastman Eastman’s Fishing Fleet LLC 5 River St Seabrook, NH 03874 603-474-3461 Abstract: New Hampshire Sea Grant, UNH Cooperative EXtension and Eastman’s Fishing Fleet LLC administered a cooperative mark-recapture tagging program in which 16,677 Atlantic haddock (Melanogrammus aeglefinus) were tagged and released as part of regular recreational fishing operations in fishing areas 513 and 514 over two fishing seasons (May-Dec 2015, 2016). Tagging these fish was intended to provide a more accurate estimate of recreational fishing mortality of Atlantic haddock. Fish were captured by Eastman’s recreational fishing vessels using hook and line gear (rod and reel) and tagged using yellow t-bar anchor tags. The tagging program used recreational fishing clients to help capture the fish while trained crew members handled, tagged and released the fish. The program attempted to capitalize on recreational fishermen networks, marinas and social media to enlist participation on tag returns. Additionally, four cash lotteries were held to further incentivize fishermen to return tags. Data management and returns infrastructure were performed by New Hampshire Sea Grant, UNH Cooperative EXtension and Eastman’s Fishing Fleet and scientific program oversight was provided by New Hampshire Sea Grant and UNH Cooperative EXtension. As of November 2016, there were 75 reported tag returns, a rate of approXimately 0.5%. Due to the very low rate of return, a statistically robust estimate of recreational discard mortality of Atlantic haddock could not be calculated. Introduction: There is a large recreational fishery for haddock (Melanogrammus aeglefinus) in the Gulf of Maine (GOM). It is estimated that in the last ten years, the recreational haddock fishery has accounted for 29-86% of the total haddock catch (NESFC, 2014b). Estimates for recreational removals have varied annually from a low of 39 mt in 1981 to a high of 618 mt in 2007 (NESFC, 2014b) with an average of 17% of annual removals from between 1977-2013 (NESFC, 2014b). Although there are better estimates of removals attributed to the recreational haddock fishery, it is currently not known how many of these removals are then discarded (NESFC, 2014a). The most current stock assessment for GOM haddock has used a baseline discard or release mortality of 50% based primarily on informal communications with recreational groundfish fishermen (NESFC, 2014a,b). To date, there continue to be no available published scientific studies on discard mortality of haddock released from the recreational fishery (NESFC, 2014a). Because the recreational haddock fishery in the GOM is large, that a recreational discard mortality rate is not known is problematic both for the sustainability of the fishery ecologically but also economically. According to the latest assessment (NESFC, 2014a), the contribution of recreational discards to the total recreational catch has been increasing over time, however, although discards have been reported in the assessment updates (NESFC, 2014a), they have not been included in the catch at age models due to the limited length frequency data on recreational discards (NESFC, 2014a). Therefore, given the large magnitude of recreational releases in recent years, discard mortality is an important metric to have to more accurately assess the status of the GOM haddock stock. The fishery regulations for the recreational haddock fishery for Fishing Year 2014 (FY14) dramatically decreased the number of haddock that anglers could keep per day from an unlimited number to 3 fish per angler per day. This dramatic decrease was placed into effect because according to NOAA, the recreational fishery had eXceeded the catch limit in place for FY 2013 (GARFO, 2014a) and in order to assure that overages didn’t occur again in 2014, regulators felt this was the best course of action. Additionally, and more relevant, fishery managers eXplained that they had arrived at a limit of 3 fish per angler per day based on communications with recreational fishermen indicating that in general, anglers tend to keep >1 haddock /angler and that decreasing the bag limit to 10 fish per angler would not reduce the catch by any significant amount (GARFO, 2014a). Thus, because anglers keep so few haddock, the number of fish that are released back into the water is significant enough that a more accurate release discard rate needs to be calculated. If, in fact, more released fish survive than is estimated, then the assumption would be that catch limits for the haddock recreational fishery should be increased as well as bag limits. While this study was underway, the regulations for Fishing Year 2015 (FY15) increased the number of haddock that anglers could keep to 15 per day as a result of an updated stock assessment, however, the discard mortality rate for the recreational fishery that was used was 50% and it was again, not based on any scientific estimates. Therefore, the current study was of utmost relevance and while the bag limit did increase during this time period, estimating a discard mortality rate for the recreational haddock fishery is still important. This tagging study was designed to leverage recreational fishing operations “in real time” using anglers and trained crew to catch and tag 20,000 haddock. By tagging fish under normal recreational fishing trip conditions we anticipated the ability to estimate an accurate discard mortality rate Figure 1. Overview of the Northeast Statistical Fishing Areas. Red asterisks indicate fishing areas where this study took place. Project Objectives: • Conduct an intensive mark-recapture effort of 20,000 haddock on Jeffrey’s Ledge in the Gulf of Maine over a 24-month period to get a better understanding and assessment of recreational discard/release mortality of this species. • Develop and maintain a tagged haddock database • Calculate an accurate recreational discard mortality rate for haddock • Develop a collaborative haddock tagging program involving recreational fishermen Participants Scientific Partners (primary contacts) NH Sea Grant UNH Cooperative EXtension Gabriela Bradt Phone: 603-862-3033 Fisheries Specialist email: [email protected] University of New Hampshire 164A Morse Hall 8 College Rd Durham, NH 03824 Eastman’s Fishing Fleet, LLC 5 River St Seabrook, NH 03874 Lester Eastman Phone: 603-772-7839 email: [email protected] Phillip Eastman Phone: 603-929-0291 email: [email protected] Elizabeth Geis Eastman’s Fishing Fleet, LLC Business Manager Phone: (603) 474-3461 Table 1: Fishing Vessel Participation (Vessel and Captain) Lady Merrilee Ann III Philip Eastman Lady Audrey Mae Tory O’Byrne Table 2: Fishing Vessel Crew/Technicians Philip Eastman Curran Flanagan Nicole Gagnon Matt Day Zach Eastman Les Eastman, Sr. Nathaniel Ribblett Jake Wiser Methods Proposed Tagging Leveraging already scheduled recreational fishing trips, clients and crew on the largest vessel in their fleet, the Lady Merrilee Ann III, our goal was to tag 20,000 haddock caught by hook and line during an 18-month period, using T-bar style Floy tags. All tagging of haddock occurred in Fishing areas 513 and 514 around Jeffrey’s ledge (Figure 1) and took place as part of normal charter business operations. Trained crew members were deployed on all trips to ensure that accurate tagging, fish measurement and data recording occurred. Actual Tagging and Fish Release Tagging began in May 2015, a month later than anticipated due to the haddock season remaining closed until May 1st of that year. Tagging for the first year continued until December 26th, although effort was significantly reduced (only occasional trips from November through December). During this first year a total 134 scheduled recreational fishing trips were made. During the second year of tagging, tagging began on April 2, 2016 and continued until December 2, 2016. A total of 185 trips were made. During this time, a total of 339 recreational fishing trips during which tagging occurred took place and a total of 16,677 fish were tagged. Tagging Protocol Haddock were captured during normal recreational fishing operations by anglers using rod and reel. Haddock were gently removed from the hook by either the captain or by trained crew and minimally handled to ensure that the slime coat was not removed. Fish were placed into a live well for 30 seconds – 1 minute to let the fish equilibrate and then they were measured, condition scored, tagged and released (a total of 20 seconds for the entire tagging procedure). If it was not possible to tag the fish immediately, fish were left in the live well for up to two minutes before being tagged. If fish were not tagged after two minutes, they were released. As part of the training, crew were trained how to handle the haddock to cause minimal stress and damage which included not touching gills and eyes. Additionally, crew were trained to score fish condition based on the degree of severity of injuries (if any) the fish had or level of resistance to being handled (See Scoring table below). Prior to tagging, every fish to be tagged, was measured and its condition evaluated, scored and recorded as either Good, Fair, Poor or Dead following the criteria in the table below. Table 3. Fish Condition Scoring G Good strong resistance to being handled and uninjured F Fair moderate resistance to being handled and /or minor injuries P Poor weak, little resistance to being handled and/or significant injuries D Dead Not viable Only fish that were in releasable condition (i.e.
Recommended publications
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Merluccius Productus) Distribution and Poleward Sub-Surface Flow in the California Current System
    The relationship between hake (Merluccius productus) distribution and poleward sub-surface flow in the California Current System Vera N. Agostini1*, Robert C. Francis1, Anne B. Hollowed2, Stephen D. Pierce3, Chris Wilson2, Albert N. Hendrix1. 1. School of Aquatic and Fishery Science, University of Washington, Box 355020, Seattle WA 98149 [email protected] [email protected] 2. National Marine Fisheries Service-AFSC, Sand Point Way, Seattle, WA 98143 [email protected] [email protected] 3. Oregon State University-COAS, 104 COAS Admin Bldg, Corvallis, OR 97331 4. [email protected] *Present address: Pew Institute for Ocean Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker way, Miami, FL 33133 ([email protected]) Phone: 305.421.4165 Fax: 305.421.4077 1 Abstract In a search for ocean conditions potentially affecting the extent of Pacific hake (Merluccius productus) feeding migrations, we analyzed data collected in 1995 and 1998 by the National Marine Fishery Service on abundance and distribution of hake (by echo- integration), intensity and distribution of alongshore flow (from acoustic Doppler current profiler) and temperature (CTD profiles). Our results show that Pacific hake are associated with subsurface poleward flow and not a specific temperature range. Temporal and spatial patterns characterize both hake distribution and undercurrent characteristics during the two years of this study. We suggest that poleward flow in this area defines adult hake habitat, with flow properties aiding or impeding the poleward migration of the population. We conclude that while physical processes may not directly affect fish production, they may be the link between large scale ocean-atmosphere variability and pelagic fish distribution.
    [Show full text]
  • 2008 JIMAR Annual Report
    INE AND A AR TM M O R S P O H F E E R T I C U T R I E T S S E N I A T R N C I H O J ~ UH-NOAA~ JIMAR Annual Report for Fiscal Year 2008 For Cooperative Agreement NA17RJ1230 Thomas A. Schroeder, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawai’i at Manoa 1000 Pope Road, MSB 312 Honolulu, HI 96822 USA www.soest.hawaii.edu/jimar INE AND A AR TM M O R S P O H F E E R T I C U T R I E T S S E N I A T R N C I H O J ~ UH-NOAA~ Annual Report for Fiscal Year 2008 Thomas A. Schroeder, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawaii at Manoa 1000 Pope Road, MSB 312 Honolulu, HI 96822 http://www.soest.hawaii.edu/jimar JIMAR 2008 Annual Report ii Table of Contents Introduction ______________________________________________________________________________v Accomplishments for Fiscal Year 2008 Equatorial Oceanography ___________________________________________________________________1 Tsunami Research _________________________________________________________________________3 Climate Research _________________________________________________________________________6 Tropical Meteorology _____________________________________________________________________14 Fisheries Oceanography ___________________________________________________________________16 Coastal Research ________________________________________________________________________81 JIMAR Senior Fellow Contributions ____________________________________________________________95 JIMAR Scientist Contributions ______________________________________________________________101
    [Show full text]
  • Information Report Number 2018-06
    INFORMATION REPORTS NUMBER 2018-06 FISH DIVISION Oregon Department of Fish and Wildlife A stereo video system for monitoring Oregon’s Marine Reserves: Construction, testing, and pilot study of a convertible stereo system for lander and SCUBA surveys Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 4034 Fairview Industrial Drive SE, Salem, OR 97302 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request A stereo video system for monitoring Oregon’s Marine Reserves: Construction, testing, and pilot study of a convertible stereo system for lander and SCUBA surveys Ashley Knight, Oregon State University, ODFW Marine Reserves Fellow Jessica Watson, ODFW Marine Reserves Program Jaqueline Dixon, Oregon State University Lindsay Aylesworth, ODFW Marine Reserves Program Cristen Don, ODFW Marine Reserves Program David Fox, ODFW Marine Resources Program CONTENTS I. Introduction II. Methods 1. Construction 1.1 Assembly of stereo systems 1.2 Scuba diver operated video (DOV) platform 1.3 Double Stereo Lander (SteLa) platform 1.4 Lighting for the DOV and SteLa 2. Digital settings and software 2.1 GoPro settings and related equipment 2.2 Measurement and calibration software 2.3 Calibration protocols 2.3.1 Collecting calibration imagery 2.3.2 Maintaining and testing the integrity of the calibration 3.
    [Show full text]
  • LTRMP Fish Monitoring Procedures
    Long Term Resource Monitoring Program Program Report 95-P002-1 Long Term Resource Monitoring Program Procedures: Fish Monitoring This PDF file may appear different from the printed report because of slight variations incurred by electronic transmission. The substance of the report remains unchanged. July 1995 Long Term Resource Monitoring Program Procedures: Fish Monitoring by Steve Gutreuter, Randy Burkhardt, and Kenneth Lubinski National Biological Service Environmental Management Technical Center 575 Lester Avenue Onalaska, Wisconsin 54650 July 1995 The Environmental Management Technical Center issues LTRMP Program Reports to provide Long Term Resource Monitoring Program partners with programmatic documentation, procedures manuals, training manuals, and geospatial applications. National Biological Service Environmental Management Technical Center CENTER DIRECTOR Robert L. Delaney SCIENCE ADVISOR John W. Barko INFORMATION AND TECHNOLOGY SERVICES DIRECTOR Norman W. Hildrum ECOLOGICAL MONITORING AND RESEARCH DIRECTOR Steve Gutreuter MANAGEMENT APPLICATIONS AND INTEGRATION DIRECTOR Kenneth Lubinski INFORMATION TRANSFER AND MEDIA SERVICES MANAGER Terry D'Erchia Cover graphic by Mi Ae Lipe-Butterbrodt Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Biological Service, U.S. Department of the Interior. The National Biological Service . gathering, analyzing, and sharing the biological information necessary to support the wise stewardship of the Nation's natural resources. Printed on recycled paper Preface The Long Term Resource Monitoring Program (LTRMP) was authorized under the Water Resources Development Act of 1986 (Public Law 99-662) as an element of the U.S. Army Corps of Engineers' (Corps) Environmental Management Program. The original authorization for the LTRMP was for 10 years, starting in 1987.
    [Show full text]
  • Innovative Camera Applications for Electronic Monitoring
    Wallace, F., K. Williams, R. Towler, and K. McGauley. 2015. Innovative Camera Applications 105 for Electronic Monitoring. In: G.H. Kruse, H.C. An, J. DiCosimo, C.A. Eischens, G.S. Gislason, D.N. McBride, C.S. Rose, and C.E. Siddon (eds.), Fisheries Bycatch: Global Issues and Creative Solutions. Alaska Sea Grant, University of Alaska Fairbanks. http://doi. org/10.4027/fbgics.2015.06 © Alaska Sea Grant, University of Alaska Fairbanks Innovative Camera Applications for Electronic Monitoring Farron Wallace, Kresimir Williams, and Rick Towler NOAA Fisheries, Alaska Fisheries Science Center, Seattle, Washington, USA, [email protected] Katy McGauley Alaska Groundfish Data Bank, Anchorage, Alaska, USA Abstract Electronic monitoring has been shown to be an effective tool to meet a variety of fisheries monitoring objectives in compliance-based pro- grams. However, these systems have not been effective in delivering individual fish data similar to information collected by an observer. Development of new camera-based systems, methods, and tools is critical for collecting scientific data to inform management. A camera system being developed at the Alaska Fisheries Science Center greatly improves the functionality and addresses many of the limitations of electronic monitoring systems. This system provides the ability to automatically collect length measurements in addition to monitoring for compliance. System capacity to identify and automatically capture high quality (HD) stereo images of catch events, for efficient identification of fish to species or species group, is being actively developed. Because only images of individual catch events are stored and reviewed, post- processing and storage costs are reduced, facilitating data transfer and data management.
    [Show full text]
  • Filedi Framework for Measuring Fish Length from Digital Images
    International Journal of the Physical Sciences Vol. 7(4), pp. 607 - 618, 23 January, 2012 Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS11.1581 ISSN 1992 - 1950 © 2012 Academic Journals Full Length Research Paper FiLeDI Framework for Measuring Fish Length from Digital Images Mohd Rahim Mohd Shafry, Amjad Rehman, Rosely Kumoi, Norhaida Abdullah and Tanzila Saba* Faculty of Computer Science and Information System, Universiti Teknologi, Malaysia. Accepted 15 December, 2011 Fish is an important source of protein in most countries in the world. The need to know the reproduction and population of fish is crucial for optimum exploitation of fish resources in maintaining the requirement of mankind in the future. In fisheries research, the length of a fish is the main parameter needed to identify fish reproduction, recruitment, growth and mortality. Current method used to acquire these length samples could be problematic as it is manually done; the fish need to be purchased in large quantities and then measuring one by one is time consuming and imprecise. The manual process may lead to overflowing cost. The fish length from digital images (FileDI) framework attempts to avoid this problem using a combination of optical theory and image processing techniques that automatically measures the length of the fish. It reduces cost, faster than previous method and yields accurate length measurement. Preliminary test has shown that the confident level of the FiLeDI framework accuracy is as high as 95% for fish length measurement. Key words: Fish length, image processing, optical theory. INTRODUCTION In fisheries research, the length of a fish is an important to huge amount of cost.
    [Show full text]
  • Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment Robert E
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-12-2018 Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment Robert E. Boenish University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons, Biostatistics Commons, Longitudinal Data Analysis and Time Series Commons, Marine Biology Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Population Biology Commons, Statistical Methodology Commons, Statistical Models Commons, and the Zoology Commons Recommended Citation Boenish, Robert E., "Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment" (2018). Electronic Theses and Dissertations. 2829. https://digitalcommons.library.umaine.edu/etd/2829 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SPATIO-TEMPORAL DYNAMICS OF ATLANTIC COD BYCATCH IN THE MAINE LOBSTER FISHERY AND ITS IMPACTS ON STOCK ASSESSMENT By Robert E. Boenish B.S. Western Washington University, 2013 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor
    [Show full text]
  • 2021 Marine Digest
    2021 Marine Fishing Season Dates and Limits • FREE New Jersey May 2021 Shell Recycling page 20 Size and Possession Limits page 17 A Summary of Recreational Regulations and Marine Fish and Shellfish Management Information NJFishandWildlife.com Get a GEICO quote for your boat and, in just 15 minutes, you’ll know how much you could be saving. If you like what you hear, you can buy your policy right on the spot. Then let us do the rest while you enjoy your free time with peace of mind. geico.com/boat | 1-800-865-4846 Some discounts, coverages, payment plans, and features are not available in all states, in all GEICO companies, or in all situations. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. In the state of CA, program provided through Boat Association Insurance Services, license #0H87086. GEICO is a registered service mark of Government Employees Insurance Company, Washington, DC 20076; a Berkshire Hathaway Inc. subsidiary. © 2020 GEICO 20_206641 Feature Articles Contents 4 Governor’s Surf Fishing Tournament 10 Marine Regulations — Finfish 14 Marine Species Identification 16 Marine Regulations — Mollusks and Crustaceans 17 State Seasons, Minimum Size and Possession Limits Chart 18 Federal Recreational Fishing Regulations Ocean Oddities 19 Shellfish and Non-Commercial Crab Pot License Information 6 21 New Online Map Services 22 Skillful Angler Recognition Program 24 New Jersey State Record Marine Sport Fish 26 Health Advisories / Gills to Grills Recipe Corner Hotlines New Jersey Fish and Wildlife Report Marine, Shellfish and Finfish Violations (609) 748-2050 or call the 24-hour DEP Hotline: 877-WARNDEP Violators of the Marine Fisheries laws are subject to a $30–$100 per fish or $300 to $3,000 fine.
    [Show full text]
  • EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life AWQ Chronic Criterion for Selenium-Freshwate
    EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium-Freshwater EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium-Freshwater In May 2014, EPA released an External Peer Review Draft national recommended aquatic life criterion for the pollutant selenium in freshwater and provided in total a 75-day public comment period on the draft document (ending July 28, 2014). The 2014 draft document was then subjected to an independent, contractor- led, external expert peer review, and peer reviewers were provided the 2014 public comments for their information. In July 2015, EPA released a revised draft selenium criterion document that reflected consideration of: a) the external expert peer review feedback on the 2014 draft criterion, b) the external expert peer reviewers’ feedback on the 2014 public comments provided to the peer reviewers, and; c) EPA’s own consideration of comments from the 2014 public comments on the draft criterion. The following is a summary of public comments received on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium - Freshwater and EPA responses reflecting the science as presented in the 2016 final document. The 2014 public comments listed in this document were arranged into major categories. For each comment category a summary of overarching public comments is provided and comments from individual commenters were divided across identified categories. For the full individual public comments, the reader is directed to the public docket at regulations.gov (Docket ID: EPA-HQ-OW-2004-0019) https://www.regulations.gov/docket?D=EPA-HQ-OW-2004-0019.
    [Show full text]
  • Bycatch Reduction Device Testing Protocol Manual
    FINAL BYCATCH REDUCTION DEVICE TESTING PROTOCOL MANUAL MARCH 1997 South Atlantic Fishery Management Council 1 Southpark Circle, Suite 306 Charleston, South Carolina 29407-4699 (803) 571-4366 FAX (803) 769-4520 email: [email protected] A publication of the South Atlantic Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA67FC0003. The Protocol Was Developed Through the Cooperative Effort of the South Atlantic Fishery Management Council’s Ad Hoc Bycatch Reduction Advisory Panel, Scientific and Statistical Committee and Staff. SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL AD HOC BRD ADVISORY PANEL John W. Watson NMFS Pascagoula Laboratory Dr. Arvind Shah University of South Alabama Sean McKenna NCDEHNR Larry Delancey SCDNR James L. Music Jr. GDNR William H. Teehan FMFC Dr. James Murray University of North Carolina, Sea Grant Dr. Steven Branstetter GSAFDF Richard Vendetti University of Georgia, Marine Extension Service SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL Roger Pugliese Fishery Biologist This document is based on the Evaluation of BRDs Sampling Protocol Manual for Data Collection (NMFS 1992) developed for the Cooperative Program Addressing Finfish Bycatch. The NMFS requires this information to minimize the bycatch of Spanish mackerel and weakfish in the penaeid shrimp fishery. The data and testing will be used to develop improved bycatch reduction devices (BRDs). Responses are required under the Magnuson-Stevens Act to obtain certification that allows use of a BRD in the shrimp fishery of the South Atlantic Region. All data submitted will be shared with industry, fishery management agencies, and the scientific community. Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with, a collection of information subject to the requirements of the Paperwork Reduction Act, unless that collection of information displays a currently valid OMB Control Number.
    [Show full text]
  • A Review of Studies of Fishing Gear Selectivity in the Mediterranean
    COPEMED A REVIEW OF STUDIES OF FISHING GEAR SELECTIVITY IN THE MEDITERRANEAN by Peter A M Stewart Aberdeen, Scotland December 2001 Contents Page Contents 1 Summary 2 Introduction 4 Reviewing the Literature 5 Studies on Gear Selectivity in the Mediterranean 6 a) General documents and papers (5) 6 b) Gear selectivity for demersal fish species (27) 6 c) Gear selectivity for shellfish species (9) 7 d) Selectivity of novel cod-ends (18) 7 e) Selectivity of set gear (nets, traps, lines) and artisanal fisheries (15) 8 f) Stock assessment, surveys and selectivity of survey gear (15) 8 g) Gear performance and catch composition (9) 9 h) Techniques for the measurement and analysis of selectivity data (7+3) 9 i) By-catches of marine mammals and reptiles (11) 10 Gear Selectivity Studies outwith the Mediterranean 10 Priorities for Future Research Work on Fishing Gear Selectivity in the Western Mediterranean 13 1 Summary There is considerable interest throughout the world in methods of improving the size and species selectivity of commercial fishing gears, to reduce fishing mortality and to conserve fish stocks. Recent work in several Mediterranean fisheries suggests that the techniques developed elsewhere might be useful, even in multi-species fisheries, to reduce discarding, particularly of non-target species. This study was commissioned to review past and present work on gear selectivity in the Mediterranean, to assess the relevance of work done elsewhere and to advise on experimental methods. By restricting the search to marine fisheries within the western and eastern Mediterranean, 116 relevant papers were found. A bibliography was compiled with nine categories: reviews, demersal fish selectivity, shellfish selectivity, novel cod-end selectivity, selectivity of set gear and artisanal fisheries, stock assessment surveys, gear performance and catch composition, techniques of measurement and analysis and by- catches of large sea creatures.
    [Show full text]