2008 JIMAR Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

2008 JIMAR Annual Report INE AND A AR TM M O R S P O H F E E R T I C U T R I E T S S E N I A T R N C I H O J ~ UH-NOAA~ JIMAR Annual Report for Fiscal Year 2008 For Cooperative Agreement NA17RJ1230 Thomas A. Schroeder, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawai’i at Manoa 1000 Pope Road, MSB 312 Honolulu, HI 96822 USA www.soest.hawaii.edu/jimar INE AND A AR TM M O R S P O H F E E R T I C U T R I E T S S E N I A T R N C I H O J ~ UH-NOAA~ Annual Report for Fiscal Year 2008 Thomas A. Schroeder, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawaii at Manoa 1000 Pope Road, MSB 312 Honolulu, HI 96822 http://www.soest.hawaii.edu/jimar JIMAR 2008 Annual Report ii Table of Contents Introduction ______________________________________________________________________________v Accomplishments for Fiscal Year 2008 Equatorial Oceanography ___________________________________________________________________1 Tsunami Research _________________________________________________________________________3 Climate Research _________________________________________________________________________6 Tropical Meteorology _____________________________________________________________________14 Fisheries Oceanography ___________________________________________________________________16 Coastal Research ________________________________________________________________________81 JIMAR Senior Fellow Contributions ____________________________________________________________95 JIMAR Scientist Contributions ______________________________________________________________101 Appendices Appendix I List of Acronyms _____________________________________________________________109 Appendix II Visiting Scientists ___________________________________________________________115 Appendix III Workshops and Meetings Hosted by JIMAR _______________________________________119 Appendix IV JIMAR Personnel ____________________________________________________________120 Appendix V Awards _____________________________________________________________________121 Appendix VI Publication Summary _________________________________________________________122 iii JIMAR 2008 Annual Report iv Introduction The Joint Institute for Marine and Atmospheric Research (JIMAR) is a cooperative enterprise between the National Oceanic and Atmospheric Administration (NOAA) and the University of Hawaii (UH). JIMAR research covers six themes, all aligned with the NOAA strategic plan and the Universityʼs Indo-Pacific mission. The themes are equatorial oceanography, tsunamis and other long-period ocean waves, climate, tropical meteorology, fisheries oceanography, and coastal research. The scope of these efforts spans the US affiliated Pacific Islands as well as the broader Pacific and Indian Ocean basins. JIMAR brings together research scientists from NOAA line offices, UH, and the global community to conduct research in the broad interests of NOAA. NOAA line offices collaborating in the JIMAR program include the Environmental Research Laboratories (especially the Pacific Marine Environmental Laboratory [PMEL], Atlantic Oceanic and Meteorological Laboratory [AOML], and the Earth System Research Laboratory [ESRL]), National Marine Fisheries Service (NMFS), National Weather Service (NWS), National Environmental Satellite and Thomas Schroeder, Director Data Information Service (NESDIS), and National Ocean Service (NOS). JIMAR also promotes student development, outreach, and supports special training programs. JIMAR intends to be the lead agent for all NOAA research in the Indo-Pacific region and to maintain standards of accomplishment expected of the School of Ocean and Earth Science and Technology (SOEST) at the UH. Our mission and vision statements are: Mission: To conduct research that is necessary to properly understand and predict the changes in the Indo- Pacific environment and to conserve and manage coastal and marine resources in the U.S.-affiliated Pacific Islands with a special emphasis on the Hawaiian Islands, for purposes of meeting the Nationʼs economic, social, and environmental needs in these regions. Vision: To support NOAAʼs operational and scientific move into the 21st century while recognizing the special character, vulnerabilities, and the role of the Pacific Islands in demonstrating the link between our planetʼs environment and the global and regional economies. During FY 2008 JIMAR continued to expand its role in fisheries and coastal research related to the development of the Northwestern Hawaiian Islands Marine National Monument. JIMAR has also continued to support the nascent interdisciplinary effort for developing management tools for insular urban water supplies in a changing climate. In addition to the economists, planners, and hydrologists previously involved in the effort, JIMAR is also supporting colleagues at the International Pacific Research Center in the development of regional downscaled climate models for the Hawaiian Islands. We also continue to support the Hawaiian Regional Ocean Observing System, housed within SOEST. The Director continues to advise the University Administration on emergency preparedness and curriculum development. JIMAR is also an element of a proposed Homeland Security Training Center for first responders to natural disasters. This effort has been authorized but not yet funded. The Director of JIMAR is a regular member of the University of Hawaii faculty and is appointed through joint decisions by leaders of the University and NOAA Research. The Director reports to an Administrative Board composed of University and NOAA officials. As both NOAA Research and University research ventures have grown, both agencies have delegated more responsibilities to the field. The Director of NOAA Research has delegated most decision-making authority to the Director of PMEL. The President of the University has delegated his responsibilities as Chair of the Administrative Board to the Chancellor of the Manoa campus. The Director manages day-to-day operations through the administrative staff (fully-supported by the Cooperative Agreement and returned indirect cost funds), Program Managers (Pelagic Fisheries Research Program [PFRP]), and faculty PI/Directors (University of Hawaii Sea Level Center [UHSLC]). A Council, elected among the Fellows, advises the Director on major expenditures on visiting scientists and the selection of new and renewed Fellows. The list of current Fellows and Council members are provided. Although uncertainty continues over the future of JIMAR under the recompetition of the Cooperative/Joint Institutes, we have proceeded to expand the Fellows roster through the addition of scientists specializing in Ocean climate/chemistry. We renewed the appointments of v JIMAR 2008 Annual Report all current Fellows so that all appointments are synchronized. Owing to the long-distance nature of the NOAA/ JIMAR relationship, no single meeting of all Fellows is possible. Business of both the Fellows and the Council are done via e-mail and by visits of the Director to NOAA facilities and professional meetings. JIMAR Senior Fellows from NOAA are Dr. Eddie Bernard (PMEL), Dr. Steven Bograd (PFEL), Dr. Richard Brill (NMFS), Dr. Richard Feely (PMEL), Dr. Ed Harrison (PMEL), Dr. Gregory Johnson (PMEL), Dr. William Kessler (PMEL), Dr. Frank Marks, Jr. (AOML), Dr. Michael McPhaden (PMEL), Dr. Dennis Moore (PMEL), Dr. Jeffrey Polovina (PIFSC), Dr. Samuel Pooley (PIFSC), Dr. Mark Powell (AOML), and Dr. Frank Schwing (PFEL). JIMAR Senior Fellows from the University of Hawaii are Dr. Gary Barnes, Dr. Steven Businger, Dr. Eric DeCarlo, Dr. Eric Firing, Dr. Charles Fletcher, III, Dr. Kim Holland, Dr. Roger Lukas, Dr. Douglas Luther, Dr. Julian McCreary, Dr. Mark Merrifield, Dr. Thomas Schroeder, Dr. John Sibert, and Dr. Bin Wang. Visiting Senior Fellows are Dr. Gerald Meehl, Dr. Jagadish Shukla, Dr. Akimasa Sumi, and Dr. Michio Yanai. JIMAR Council Members from NOAA are Dr. Michael McPhaden, Dr. Dennis Moore, and Dr. Jeffrey Polovina. JIMAR Council Members from the University of Hawaii are Dr. Eric Firing, Dr. Julian McCreary, Dr. Thomas Schroeder, and Dr. Bin Wang. Task I is the base program of JIMAR. It provides research support for the visiting scientist and postdoctoral programs, and the administrative support for the Institute. The University of Hawaii contributes to this task by bearing all indirect costs, and by paying the salary of the Director. Funding percentages by activity are exhibited in the following chart. Distribution of NOAA Funding by Activity Education/Outreach/ Other Research Support 2% Student Support 5% �������������� Post-Docs/Visiting ����������������� Scientists Administration���������� 39% 54%���������������� ������������������ ����������������������� JIMAR science encompasses several dozen subprograms. In the aftermath of the Boxing Day tsunami, JIMAR has continued to play a leadership role in the development of an Indian Ocean tsunami warning network. The UH Sea Level Center had developed tide gauges that are capable of delivering near-real time high temporal resolution information. The Pacific Tsunami Warning Center has used our Pacific gauges as part of their warning network. NOAA funds for this effort have been supplemented by grants from the Asia Disaster Preparedness Center and the United Nations. A major transition is underway in the Pelagic Fisheries Research Program (PFRP). Program Manager John Sibert is retiring and an international search is underway for his successor. PFRP has been a
Recommended publications
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Merluccius Productus) Distribution and Poleward Sub-Surface Flow in the California Current System
    The relationship between hake (Merluccius productus) distribution and poleward sub-surface flow in the California Current System Vera N. Agostini1*, Robert C. Francis1, Anne B. Hollowed2, Stephen D. Pierce3, Chris Wilson2, Albert N. Hendrix1. 1. School of Aquatic and Fishery Science, University of Washington, Box 355020, Seattle WA 98149 [email protected] [email protected] 2. National Marine Fisheries Service-AFSC, Sand Point Way, Seattle, WA 98143 [email protected] [email protected] 3. Oregon State University-COAS, 104 COAS Admin Bldg, Corvallis, OR 97331 4. [email protected] *Present address: Pew Institute for Ocean Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker way, Miami, FL 33133 ([email protected]) Phone: 305.421.4165 Fax: 305.421.4077 1 Abstract In a search for ocean conditions potentially affecting the extent of Pacific hake (Merluccius productus) feeding migrations, we analyzed data collected in 1995 and 1998 by the National Marine Fishery Service on abundance and distribution of hake (by echo- integration), intensity and distribution of alongshore flow (from acoustic Doppler current profiler) and temperature (CTD profiles). Our results show that Pacific hake are associated with subsurface poleward flow and not a specific temperature range. Temporal and spatial patterns characterize both hake distribution and undercurrent characteristics during the two years of this study. We suggest that poleward flow in this area defines adult hake habitat, with flow properties aiding or impeding the poleward migration of the population. We conclude that while physical processes may not directly affect fish production, they may be the link between large scale ocean-atmosphere variability and pelagic fish distribution.
    [Show full text]
  • Information Report Number 2018-06
    INFORMATION REPORTS NUMBER 2018-06 FISH DIVISION Oregon Department of Fish and Wildlife A stereo video system for monitoring Oregon’s Marine Reserves: Construction, testing, and pilot study of a convertible stereo system for lander and SCUBA surveys Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 4034 Fairview Industrial Drive SE, Salem, OR 97302 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request A stereo video system for monitoring Oregon’s Marine Reserves: Construction, testing, and pilot study of a convertible stereo system for lander and SCUBA surveys Ashley Knight, Oregon State University, ODFW Marine Reserves Fellow Jessica Watson, ODFW Marine Reserves Program Jaqueline Dixon, Oregon State University Lindsay Aylesworth, ODFW Marine Reserves Program Cristen Don, ODFW Marine Reserves Program David Fox, ODFW Marine Resources Program CONTENTS I. Introduction II. Methods 1. Construction 1.1 Assembly of stereo systems 1.2 Scuba diver operated video (DOV) platform 1.3 Double Stereo Lander (SteLa) platform 1.4 Lighting for the DOV and SteLa 2. Digital settings and software 2.1 GoPro settings and related equipment 2.2 Measurement and calibration software 2.3 Calibration protocols 2.3.1 Collecting calibration imagery 2.3.2 Maintaining and testing the integrity of the calibration 3.
    [Show full text]
  • LTRMP Fish Monitoring Procedures
    Long Term Resource Monitoring Program Program Report 95-P002-1 Long Term Resource Monitoring Program Procedures: Fish Monitoring This PDF file may appear different from the printed report because of slight variations incurred by electronic transmission. The substance of the report remains unchanged. July 1995 Long Term Resource Monitoring Program Procedures: Fish Monitoring by Steve Gutreuter, Randy Burkhardt, and Kenneth Lubinski National Biological Service Environmental Management Technical Center 575 Lester Avenue Onalaska, Wisconsin 54650 July 1995 The Environmental Management Technical Center issues LTRMP Program Reports to provide Long Term Resource Monitoring Program partners with programmatic documentation, procedures manuals, training manuals, and geospatial applications. National Biological Service Environmental Management Technical Center CENTER DIRECTOR Robert L. Delaney SCIENCE ADVISOR John W. Barko INFORMATION AND TECHNOLOGY SERVICES DIRECTOR Norman W. Hildrum ECOLOGICAL MONITORING AND RESEARCH DIRECTOR Steve Gutreuter MANAGEMENT APPLICATIONS AND INTEGRATION DIRECTOR Kenneth Lubinski INFORMATION TRANSFER AND MEDIA SERVICES MANAGER Terry D'Erchia Cover graphic by Mi Ae Lipe-Butterbrodt Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Biological Service, U.S. Department of the Interior. The National Biological Service . gathering, analyzing, and sharing the biological information necessary to support the wise stewardship of the Nation's natural resources. Printed on recycled paper Preface The Long Term Resource Monitoring Program (LTRMP) was authorized under the Water Resources Development Act of 1986 (Public Law 99-662) as an element of the U.S. Army Corps of Engineers' (Corps) Environmental Management Program. The original authorization for the LTRMP was for 10 years, starting in 1987.
    [Show full text]
  • Innovative Camera Applications for Electronic Monitoring
    Wallace, F., K. Williams, R. Towler, and K. McGauley. 2015. Innovative Camera Applications 105 for Electronic Monitoring. In: G.H. Kruse, H.C. An, J. DiCosimo, C.A. Eischens, G.S. Gislason, D.N. McBride, C.S. Rose, and C.E. Siddon (eds.), Fisheries Bycatch: Global Issues and Creative Solutions. Alaska Sea Grant, University of Alaska Fairbanks. http://doi. org/10.4027/fbgics.2015.06 © Alaska Sea Grant, University of Alaska Fairbanks Innovative Camera Applications for Electronic Monitoring Farron Wallace, Kresimir Williams, and Rick Towler NOAA Fisheries, Alaska Fisheries Science Center, Seattle, Washington, USA, [email protected] Katy McGauley Alaska Groundfish Data Bank, Anchorage, Alaska, USA Abstract Electronic monitoring has been shown to be an effective tool to meet a variety of fisheries monitoring objectives in compliance-based pro- grams. However, these systems have not been effective in delivering individual fish data similar to information collected by an observer. Development of new camera-based systems, methods, and tools is critical for collecting scientific data to inform management. A camera system being developed at the Alaska Fisheries Science Center greatly improves the functionality and addresses many of the limitations of electronic monitoring systems. This system provides the ability to automatically collect length measurements in addition to monitoring for compliance. System capacity to identify and automatically capture high quality (HD) stereo images of catch events, for efficient identification of fish to species or species group, is being actively developed. Because only images of individual catch events are stored and reviewed, post- processing and storage costs are reduced, facilitating data transfer and data management.
    [Show full text]
  • Filedi Framework for Measuring Fish Length from Digital Images
    International Journal of the Physical Sciences Vol. 7(4), pp. 607 - 618, 23 January, 2012 Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS11.1581 ISSN 1992 - 1950 © 2012 Academic Journals Full Length Research Paper FiLeDI Framework for Measuring Fish Length from Digital Images Mohd Rahim Mohd Shafry, Amjad Rehman, Rosely Kumoi, Norhaida Abdullah and Tanzila Saba* Faculty of Computer Science and Information System, Universiti Teknologi, Malaysia. Accepted 15 December, 2011 Fish is an important source of protein in most countries in the world. The need to know the reproduction and population of fish is crucial for optimum exploitation of fish resources in maintaining the requirement of mankind in the future. In fisheries research, the length of a fish is the main parameter needed to identify fish reproduction, recruitment, growth and mortality. Current method used to acquire these length samples could be problematic as it is manually done; the fish need to be purchased in large quantities and then measuring one by one is time consuming and imprecise. The manual process may lead to overflowing cost. The fish length from digital images (FileDI) framework attempts to avoid this problem using a combination of optical theory and image processing techniques that automatically measures the length of the fish. It reduces cost, faster than previous method and yields accurate length measurement. Preliminary test has shown that the confident level of the FiLeDI framework accuracy is as high as 95% for fish length measurement. Key words: Fish length, image processing, optical theory. INTRODUCTION In fisheries research, the length of a fish is an important to huge amount of cost.
    [Show full text]
  • Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment Robert E
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-12-2018 Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment Robert E. Boenish University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons, Biostatistics Commons, Longitudinal Data Analysis and Time Series Commons, Marine Biology Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Population Biology Commons, Statistical Methodology Commons, Statistical Models Commons, and the Zoology Commons Recommended Citation Boenish, Robert E., "Spatio-Temporal Dynamics of Atlantic Cod Bycatch in the Maine Lobster Fishery and Its Impacts on Stock Assessment" (2018). Electronic Theses and Dissertations. 2829. https://digitalcommons.library.umaine.edu/etd/2829 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SPATIO-TEMPORAL DYNAMICS OF ATLANTIC COD BYCATCH IN THE MAINE LOBSTER FISHERY AND ITS IMPACTS ON STOCK ASSESSMENT By Robert E. Boenish B.S. Western Washington University, 2013 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor
    [Show full text]
  • 2021 Marine Digest
    2021 Marine Fishing Season Dates and Limits • FREE New Jersey May 2021 Shell Recycling page 20 Size and Possession Limits page 17 A Summary of Recreational Regulations and Marine Fish and Shellfish Management Information NJFishandWildlife.com Get a GEICO quote for your boat and, in just 15 minutes, you’ll know how much you could be saving. If you like what you hear, you can buy your policy right on the spot. Then let us do the rest while you enjoy your free time with peace of mind. geico.com/boat | 1-800-865-4846 Some discounts, coverages, payment plans, and features are not available in all states, in all GEICO companies, or in all situations. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. In the state of CA, program provided through Boat Association Insurance Services, license #0H87086. GEICO is a registered service mark of Government Employees Insurance Company, Washington, DC 20076; a Berkshire Hathaway Inc. subsidiary. © 2020 GEICO 20_206641 Feature Articles Contents 4 Governor’s Surf Fishing Tournament 10 Marine Regulations — Finfish 14 Marine Species Identification 16 Marine Regulations — Mollusks and Crustaceans 17 State Seasons, Minimum Size and Possession Limits Chart 18 Federal Recreational Fishing Regulations Ocean Oddities 19 Shellfish and Non-Commercial Crab Pot License Information 6 21 New Online Map Services 22 Skillful Angler Recognition Program 24 New Jersey State Record Marine Sport Fish 26 Health Advisories / Gills to Grills Recipe Corner Hotlines New Jersey Fish and Wildlife Report Marine, Shellfish and Finfish Violations (609) 748-2050 or call the 24-hour DEP Hotline: 877-WARNDEP Violators of the Marine Fisheries laws are subject to a $30–$100 per fish or $300 to $3,000 fine.
    [Show full text]
  • EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life AWQ Chronic Criterion for Selenium-Freshwate
    EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium-Freshwater EPA Response to Public Comments on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium-Freshwater In May 2014, EPA released an External Peer Review Draft national recommended aquatic life criterion for the pollutant selenium in freshwater and provided in total a 75-day public comment period on the draft document (ending July 28, 2014). The 2014 draft document was then subjected to an independent, contractor- led, external expert peer review, and peer reviewers were provided the 2014 public comments for their information. In July 2015, EPA released a revised draft selenium criterion document that reflected consideration of: a) the external expert peer review feedback on the 2014 draft criterion, b) the external expert peer reviewers’ feedback on the 2014 public comments provided to the peer reviewers, and; c) EPA’s own consideration of comments from the 2014 public comments on the draft criterion. The following is a summary of public comments received on the 2014 External Peer Review Draft Aquatic Life Ambient Water Quality Chronic Criterion for Selenium - Freshwater and EPA responses reflecting the science as presented in the 2016 final document. The 2014 public comments listed in this document were arranged into major categories. For each comment category a summary of overarching public comments is provided and comments from individual commenters were divided across identified categories. For the full individual public comments, the reader is directed to the public docket at regulations.gov (Docket ID: EPA-HQ-OW-2004-0019) https://www.regulations.gov/docket?D=EPA-HQ-OW-2004-0019.
    [Show full text]
  • Bycatch Reduction Device Testing Protocol Manual
    FINAL BYCATCH REDUCTION DEVICE TESTING PROTOCOL MANUAL MARCH 1997 South Atlantic Fishery Management Council 1 Southpark Circle, Suite 306 Charleston, South Carolina 29407-4699 (803) 571-4366 FAX (803) 769-4520 email: [email protected] A publication of the South Atlantic Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA67FC0003. The Protocol Was Developed Through the Cooperative Effort of the South Atlantic Fishery Management Council’s Ad Hoc Bycatch Reduction Advisory Panel, Scientific and Statistical Committee and Staff. SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL AD HOC BRD ADVISORY PANEL John W. Watson NMFS Pascagoula Laboratory Dr. Arvind Shah University of South Alabama Sean McKenna NCDEHNR Larry Delancey SCDNR James L. Music Jr. GDNR William H. Teehan FMFC Dr. James Murray University of North Carolina, Sea Grant Dr. Steven Branstetter GSAFDF Richard Vendetti University of Georgia, Marine Extension Service SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL Roger Pugliese Fishery Biologist This document is based on the Evaluation of BRDs Sampling Protocol Manual for Data Collection (NMFS 1992) developed for the Cooperative Program Addressing Finfish Bycatch. The NMFS requires this information to minimize the bycatch of Spanish mackerel and weakfish in the penaeid shrimp fishery. The data and testing will be used to develop improved bycatch reduction devices (BRDs). Responses are required under the Magnuson-Stevens Act to obtain certification that allows use of a BRD in the shrimp fishery of the South Atlantic Region. All data submitted will be shared with industry, fishery management agencies, and the scientific community. Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with, a collection of information subject to the requirements of the Paperwork Reduction Act, unless that collection of information displays a currently valid OMB Control Number.
    [Show full text]
  • A Review of Studies of Fishing Gear Selectivity in the Mediterranean
    COPEMED A REVIEW OF STUDIES OF FISHING GEAR SELECTIVITY IN THE MEDITERRANEAN by Peter A M Stewart Aberdeen, Scotland December 2001 Contents Page Contents 1 Summary 2 Introduction 4 Reviewing the Literature 5 Studies on Gear Selectivity in the Mediterranean 6 a) General documents and papers (5) 6 b) Gear selectivity for demersal fish species (27) 6 c) Gear selectivity for shellfish species (9) 7 d) Selectivity of novel cod-ends (18) 7 e) Selectivity of set gear (nets, traps, lines) and artisanal fisheries (15) 8 f) Stock assessment, surveys and selectivity of survey gear (15) 8 g) Gear performance and catch composition (9) 9 h) Techniques for the measurement and analysis of selectivity data (7+3) 9 i) By-catches of marine mammals and reptiles (11) 10 Gear Selectivity Studies outwith the Mediterranean 10 Priorities for Future Research Work on Fishing Gear Selectivity in the Western Mediterranean 13 1 Summary There is considerable interest throughout the world in methods of improving the size and species selectivity of commercial fishing gears, to reduce fishing mortality and to conserve fish stocks. Recent work in several Mediterranean fisheries suggests that the techniques developed elsewhere might be useful, even in multi-species fisheries, to reduce discarding, particularly of non-target species. This study was commissioned to review past and present work on gear selectivity in the Mediterranean, to assess the relevance of work done elsewhere and to advise on experimental methods. By restricting the search to marine fisheries within the western and eastern Mediterranean, 116 relevant papers were found. A bibliography was compiled with nine categories: reviews, demersal fish selectivity, shellfish selectivity, novel cod-end selectivity, selectivity of set gear and artisanal fisheries, stock assessment surveys, gear performance and catch composition, techniques of measurement and analysis and by- catches of large sea creatures.
    [Show full text]
  • Botcam: a Baited Camera System for Nonextractive Monitoring of Bottomfish Species 57
    56 Abstract—A stereo-video baited BotCam: a baited camera system for camera system (BotCam) has been de- veloped as a fishery-independent tool nonextractive monitoring of bottomfish species to monitor and study deepwater fish species and their habitat. During test- 1 3 ing, BotCam was deployed primar- Daniel Merritt (contact author) Michael Parke ily in water depths between 100 and Mary K. Donovan1 Kevin Wong3 300 m for an assessment of its use 2 4 in monitoring and studying Hawai- Christopher Kelley Jeffrey C. Drazen ian bottomfish species. Details of the Lynn Waterhouse2 video analyses and data from the pilot Email address for contact author: [email protected] study with BotCam in Hawai`i are 1 3 presented. Multibeam bathymetry and Joint Institute for Marine and NOAA Pacific Islands Fisheries Science Center backscatter data were used to delin- Atmospheric Research Coral Reef Ecosystem Division eate bottomfish habitat strata, and University of Hawai`i, and 2570 Dole St. a stratified random sampling design NOAA Pacific Islands Fisheries Science Center Honolulu, Hawaii 96822 was used for BotCam deployment loca- Coral Reef Ecosystem Division 4 Department of Oceanography, tions. Video data were analyzed to 1000 Pope Rd., MSB 312 University of Hawai`i assess relative fish abundance and Honolulu, Hawaii 96822 1000 Pope Rd., MSB to measure fish size composition. 2 Hawaii Undersea Research Laboratory (HURL) Honolulu, Hawaii 96822 Results corroborate published depth 1000 Pope Rd., MSB 303 ranges and zones of the target species, Honolulu, Hawaii 96822 as well as their habitat preferences. The results indicate that BotCam is a promising tool for monitoring and studying demersal fish populations associated with deepwater habitats to a depth of 300 m, at mesohabitat The ability to monitor stocks targeted communities, and habitat preferenc- scales.
    [Show full text]