Living Fossil: the Story of the Coelacanth

Total Page:16

File Type:pdf, Size:1020Kb

Living Fossil: the Story of the Coelacanth Book Reviews Michael Emsley Department Editor materialpresented in the essays. A few essays were more | HUMANGENOME PROJECT | personal accounts, such as those of Nobel laureatesWalter Gilbert and James D. Watson, and did not include such The Code of Codes: Scientific and Social Issues in the references. These references will be of great value to the Human Genome Project. Edited by Daniel J. Kevles reader. The book also includes a 10-page selected bibliog- & Leroy Hood, 1992. HarvardUniversity Press. (79 Garden raphy, a glossary of terms helpful for the lay reader, and a St., Cambridge,MA. 02138). 397 pp. Hardcover$29.95. brief curriculumvitae of each of the contributors. The Code of Codes is an interesting book that clearly Z2gyJ~ The Code of Codes, is an exciting collection of essays >ZBgy exploring the human genome project and its possi- presents the science and technology of the human genome Downloaded from http://online.ucpress.edu/abt/article-pdf/55/7/446/46208/4449708.pdf by guest on 29 September 2021 ble social consequences. The essays present the project. The many different voices of these essays raise history of the project, the development of the essential stimulating questions about the social impact of these science and technologies, the medical applications,and the advances. This book will be an importantresource for the ethical and legal implications. high school and college biology teacher for the science and The book is an expansion of a series of seven lectures the social aspects of the human genome project. presented at The California Institute of Technology in Susan J. Karcher 1989-1990. The 14 chapters of the book are written by an PurdueUniversity impressive group of 13 experts in science, history of sci- WestLafayette, IN 47907-1392 ence, and law. The book is divided into three parts: the history, the science and the social aspects of the project, although there is much overlap. Daniel Kevles begins TheCode of Codeswith a chapterthat presents the early history of genetics, including the infa- mous eugenics of the 1920s and 1930s. The chapter then gives the history of the beginnings of the human genome | EVOLUTION project with Sinsheimer and DeLisi's founding efforts. Kevles includes an overview of concerns about the project Living Fossil: The Story of the Coelacanth. By Keith and covers work on the human genome project in Europe StewartThomson. 1991.W. W. Norton & Co. Inc. (500Fifth and Japan. The second chapter, written by history of Ave., New York, NY 10110). 252 pp. Hardcover$19.95. science professor Horace F. Judson, gives the scientific v Keith Stewart Thomson, president of the Academy background for all the relevant techniques and methods. Bi0,Igr of Natural Sciences, is a born storyteller, a paleon- The second section of the book includes a fascinatingchap- --- tologist with a fondness for collecting clues and ter on DNA-based medicine by C. Thomas Caskey and a then sorting out the bits and pieces of evidence into a chapterby Leroy Hood that describes advances in automa- sense-making narrative.In the LivingFossil, he has pulled tion that will make the project progress more rapidly. together a marvelous tale of biologicalsignificance and has The third section of TheCode of Codesfocuses on the social imbued the scientific text with the enriching flavors of implications of this genetic information. Issues such as narrative that includes mystery, intrigue and adventure problems of the "pre-symptomaticill," health insurance spiced with sketches of human personalities that influence coverage, and implications of prenatal diagnosis are dis- research. cussed. This last section includes an interesting chapteron Years back, when news headlines communicated the DNA fingerprinting by Eric Lander and a chapter about "important"events of the world, I was impressed by the Huntington's disease by Nancy Wexler.The social issues of "sensational"announcements relating to fossil fish discov- law are presented by Henry T. Greely. eries by a group of fishermen. I was delighted to learn The book ends with detailed notes, listed by page num- through the popular medium that dogmatic preconcep- ber, that provide an excellent list of references for the tions, even when embedded in encyclopedic text, need not be correct.The news shatteredmy conception of science as a body of fixed knowledge and delighted me with the view Michael Emsleyis editor of the BookReviews section of ABT.He that there is always something new under the sun. is professorof biology at George Mason Universilyand sits on Coelocanths were considered fish indigenous to Meso- the editorialboard of the George Mason UniversityPress. Emsley, zoic times and were known from fossil remains from 60 who holds a B.S.and Ph.D.in zoology from the Universityof million years ago, thus they were long believed to be London,is an insect taxonomistcurrently working on a projectto extinct. Thereforeit was startling for MarjorieCourtenay- identifyand classifya genus of katydidsfound only in Central Latimer, a museum curator, to note this incongruous big and SouthAmerica. The project,begun in 1958, includesexam- iningthe sound producing mechanism of the insects. Emsleyis blue fish amongst a mess of sea trawl dumped on a pier in the author of Bufferfly Magic, Insect Magic and Cloudforests Cape Province, South Africa. Professor J.L.B. Smith, a and Rainforests.His address is: Biology Department, George dedicated ichthyologist, confirmedthe novel specimen as a Mason University,Fairfax, VA 22030. coelacanth and named it Latimeriachalumnae, in honor of the discoverer and for the river in which it was found. In 446 THEAMERICAN BIOLOGY TEACHER, VOLUME 55, NO. 7, OCTOBER1993 this book, Dr. Thomson engagingly describes the tale caused by a large meteor crashing into the Earth 65 million behind finding the living Coelocanths and relatives while years ago at the end of the Cretaceous Period. he unwinds their biological mysteries and ponders their Findings of the last few years have added weight to the endangered status. argument that, indeed, the dinosaurs did die because of an After this first find in 1939, other specimens were anx- impact that caused the Chixulub crater in the Yucatan iously sought. Fishermen along Africa and Madagascar Peninsula of Mexico. This enormous crater, 180 km in were conscripted into the hunt. Wanted posters, with huge diameter, has been dated at 65 million years which is the rewards, featuring illustrations of the five-foot, approxi- time of the Cretaceous extinction. mately 100-pound bony fish with the unusual fins were Raup's book discusses, in a compelling way, that extra- sent out to all fish stations along the mainland and through- terrestrial objects (meteors, comets etc.) hit the Earth with out the islands. With this publicity, subsequent catches great regularity, and may be the cause of most, if not all of, were made along the Comoro Islands located between the the mass extinctions which are scattered throughout the northern tip of Madagascar and the African Mainland. fossil record. Specimens were sought by museums in major world cities, Raup also discusses some of the statistical methods he and national politics finally played its role in determining uses to come to his conclusions. These explanations are the site for study. Recently, a diver in the coral waters off excellent and could easily inspire a student to go into such the Comoro Islands observed and recorded groups of a field of study. For example, we are used to thinking of active, living and undisturbed coelocanths. events fitting a bell-shaped curve. This idea would predict Due to the hollow spines found in the first dorsal fin, that most meteors which hit the Earth are medium sized, Downloaded from http://online.ucpress.edu/abt/article-pdf/55/7/446/46208/4449708.pdf by guest on 29 September 2021 Louis Agassiz first named this group coelacanths by com- with a few very small ones and a few very large ones. This bining the Greek coel = space with acanthus = spine. distribution, in fact, is not what happens. It is much more Never quite as appealing as dinosaurs to the general public, likely that a small meteor will hit the Earth because there biologists regard Latimeriawith special reverence. Because are so many more small meteors than large ones, and the coelacanths fall within the superorder of Crossopeter- conversely, fewer large meteors. Therefore, if you plot the ygii-the lobe-finned fish-they are a close relative to size of the meteor vs. the frequency of its hitting the Earth, ancestral forms of land-dwelling vertebrates. Their limblike you come up with a curve that shows many small, some fins hint of a special relationship to tetrapods, and they medium-sized and very few large meteors. have been described as a missing link between fish and Raup then discusses some of the smaller meteors which man. have hit the Earth. For example, in 1908 in Tunguska, an This narrative tells the extraordinary story regarding the uninhabited region of Siberia, a meteor exploded in the find of a living form thought to have been extinct for atmosphere and leveled trees for thousands of square millions of years and of the efforts to learn the biology and miles. The explosion was heard by passengers on the behavior of this species, its connections along the evolu- trans-Siberian railway several hundreds of miles away. tionary trail, and human pursuits to get the specimens first Fortunately, nobody was killed because the region was hand. The danger now exists that man's curiosity may uninhabited. He also points to the many craters around the cause the fossil fish to truly become extinct. The sense of world that were formed by larger meteors which have discovery and reassessment of understanding flows crashed into the Earth. through this tale.
Recommended publications
  • The MBL Model and Stochastic Paleontology
    216 Chapter seven ised exciting new avenues for research, that insights from biology and ecology could more profi tably be applied to paleontology, and that the future lay in assembling large databases as a foundation for analysis of broad-scale patterns of evolution over geological history. But in compar- ison to other expanding young disciplines—like theoretical ecology— paleobiology lacked a cohesive theoretical and methodological agenda. However, over the next ten years this would change dramatically. Chapter Seven One particular ecological/evolutionary issue emerged as the central unifying problem for paleobiology: the study and modeling of the his- “Towards a Nomothetic tory of diversity over time. This, in turn, motivated a methodological question: how reliable is the fossil record, and how can that reliability be Paleontology”: The MBL Model tested? These problems became the core of analytical paleobiology, and and Stochastic Paleontology represented a continuation and a consolidation of the themes we have examined thus far in the history of paleobiology. Ultimately, this focus led paleobiologists to groundbreaking quantitative studies of the inter- The Roots of Nomotheticism play of rates of origination and extinction of taxa through time, the role of background and mass extinctions in the history of life, the survivor- y the early 1970s, the paleobiology movement had begun to acquire ship of individual taxa, and the modeling of historical patterns of diver- Bconsiderable momentum. A number of paleobiologists began ac- sity. These questions became the central components of an emerging pa- tively building programs of paleobiological research and teaching at ma- leobiological theory of macroevolution, and by the mid 1980s formed the jor universities—Stephen Jay Gould at Harvard, Tom Schopf at the Uni- basis for paleobiologists’ claim to a seat at the “high table” of evolution- versity of Chicago, David Raup at the University of Rochester, James ary theory.
    [Show full text]
  • Chordates (Phylum Chordata)
    A short story Leathem Mehaffey, III, Fall 201993 The First Chordates (Phylum Chordata) • Chordates (our phylum) first appeared in the Cambrian, 525MYA. 94 Invertebrates, Chordates and Vertebrates • Invertebrates are all animals not chordates • Generally invertebrates, if they have hearts, have dorsal hearts; if they have a nervous system it is usually ventral. • All vertebrates are chordates, but not all chordates are vertebrates. • Chordates: • Dorsal notochord • Dorsal nerve chord • Ventral heart • Post-anal tail • Vertebrates: Amphioxus: archetypal chordate • Dorsal spinal column (articulated) and skeleton 95 Origin of the Chordates 96 Haikouichthys Myllokunmingia Note the rounded extension to Possibly the oldest the head bearing sensory vertebrate: showed gill organs bars and primitive vertebral elements Early and primitive agnathan vertebrates of the Early Cambrian (530MYA) Pikaia Note: these organisms were less Primitive chordate, than an inch long. similar to Amphioxus 97 The Cambrian/Ordovician Extinction • Somewhere around 488 million years ago something happened to cause a change in the fauna of the earth, heralding the beginning of the Ordovician Period. • Rather than one catastrophe, the late-Cambrian extinction seems to be a series of smaller extinction events. • Historically the change in fauna (mostly trilobites as the index species) was thought to be due to excessive warmth and low oxygen. • But some current findings point to an oxygen spike due perhaps to continental drift into the tropics, driving rapid speciation and consequent replacement of old with new organisms. 98 Welcome to the Ordovician YOU ARE HERE 99 The Ordovician Sea, 488 million years 100 ago The Ordovician Period lasted almost 45 million years, from 489 to 444 MYA.
    [Show full text]
  • Multiple Molecular Evidences for a Living Mammalian Fossil
    Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.
    [Show full text]
  • New York Ocean Action Plan 2016 – 2026
    NEW YORK OCEAN ACTION PLAN 2016 – 2026 In collaboration with state and federal agencies, municipalities, tribal partners, academic institutions, non- profits, and ocean-based industry and tourism groups. Acknowledgments The preparation of the content within this document was developed by Debra Abercrombie and Karen Chytalo from the New York State Department of Environmental Conservation and in cooperation and coordination with staff from the New York State Department of State. Funding was provided by the New York State Environmental Protection Fund’s Ocean & Great Lakes Program. Other New York state agencies, federal agencies, estuary programs, the New York Ocean and Great Lakes Coalition, the Shinnecock Indian Nation and ocean-based industry and user groups provided numerous revisions to draft versions of this document which were invaluable. The New York Marine Sciences Consortium provided vital recommendations concerning data and research needs, as well as detailed revisions to earlier drafts. Thank you to all of the members of the public and who participated in the stakeholder focal groups and for also providing comments and revisions. For more information, please contact: Karen Chytalo New York State Department of Environmental Conservation [email protected] 631-444-0430 Cover Page Photo credits, Top row: E. Burke, SBU SoMAS, M. Gove; Bottom row: Wolcott Henry- 2005/Marine Photo Bank, Eleanor Partridge/Marine Photo Bank, Brandon Puckett/Marine Photo Bank. NEW YORK OCEAN ACTION PLAN | 2016 – 2026 i MESSAGE FROM COMMISSIONER AND SECRETARY The ocean and its significant resources have been at the heart of New York’s richness and economic vitality, since our founding in the 17th Century and continues today.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE OCEANOGRAPHY Copyright © 2020 The Authors, some rights reserved; Algal plankton turn to hunting to survive and recover exclusive licensee American Association from end-Cretaceous impact darkness for the Advancement Samantha J. Gibbs1*†, Paul R. Bown2†, Ben A. Ward1†, Sarah A. Alvarez3,2, Hojung Kim2, of Science. No claim to 2‡ 4 5 6 7 original U.S. Government Odysseas A. Archontikis , Boris Sauterey , Alex J. Poulton , Jamie Wilson , Andy Ridgwell Works. Distributed under a Creative The end-Cretaceous bolide impact triggered the devastation of marine ecosystems. However, the specific kill Commons Attribution mechanism(s) are still debated, and how primary production subsequently recovered remains elusive. We used NonCommercial marine plankton microfossils and eco-evolutionary modeling to determine strategies for survival and recovery, License 4.0 (CC BY-NC). finding that widespread phagotrophy (prey ingestion) was fundamental to plankton surviving the impact and also for the subsequent reestablishment of primary production. Ecological selectivity points to extreme post- impact light inhibition as the principal kill mechanism, with the marine food chain temporarily reset to a bacteria- dominated state. Subsequently, in a sunlit ocean inhabited by only rare survivor grazers but abundant small prey, it was mixotrophic nutrition (autotrophy and heterotrophy) and increasing cell sizes that enabled the eventual reestablishment of marine food webs some 2 million years later. Downloaded from INTRODUCTION evidence suggest that at least partial recovery occurred quickly The asteroid impact at the Cretaceous-Paleogene (K/Pg) boundary (years to tens of years), with ubiquitous, prokaryotic cyanobacteria 66 million years (Ma) ago triggered a cascading mass extinction through likely being the main primary producers as light levels improved http://advances.sciencemag.org/ the entirety of the global food web that occurred in a geological in- (4, 12–14).
    [Show full text]
  • INTRODUCTION to PALEOBIOLOGY and the FOSSIL RECORD Died out During Normal Times Than During the MASS EXTINCTIONS More Spectacular Mass Extinctions
    Chapter 7 Mass extinctions and biodiversity loss Key points • During mass extinctions, 20–90% of species were wiped out; these include a broad range of organisms, and the events appear to have happened rapidly. • It is diffi cult to study mass extinctions in the Precambrian, but there seems to have been a Neoproterozoic event between the Ediacaran and Early Cambrian faunas. • The “big fi ve” Phanerozoic mass extinctions occurred in the end-Ordovician, the Late Devonian, the end of the Permian, the end of the Triassic and the end of the Cretaceous. Of these, the Late Devonian and end-Triassic events seem to have lasted some time and involved depressed origination as much as heightened extinction. • The end-Permian mass extinction was the largest of all time, and probably caused by a series of Earth-bound causes that began with massive volcanic eruptions, leading to acid rain and global anoxia. • The end-Cretaceous mass extinction has been most studied, and it was probably caused by a major impact on the Earth. • Smaller-scale extinction events include the loss of mammals at the end of the Pleistocene, perhaps the result of climate change and human hunting. • Recovery from mass extinctions can take a long time; fi rst on the scene may be some unusual disaster taxa that cope well in harsh conditions; they give way to the longer- lived taxa that rebuild normal ecosystems. • Extinction is a major concern today, with calculated species loss as high as during any mass extinction of the past. The severity of the current extinction episode is still debated.
    [Show full text]
  • Assessing the Record and Causes of Late Triassic Extinctions
    Earth-Science Reviews 65 (2004) 103–139 www.elsevier.com/locate/earscirev Assessing the record and causes of Late Triassic extinctions L.H. Tannera,*, S.G. Lucasb, M.G. Chapmanc a Departments of Geography and Geoscience, Bloomsburg University, Bloomsburg, PA 17815, USA b New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104, USA c Astrogeology Team, U.S. Geological Survey, 2255 N. Gemini Rd., Flagstaff, AZ 86001, USA Abstract Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the ‘‘big five’’ extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved.
    [Show full text]
  • Punctuated Equilibrium Vs. Phyletic Gradualism
    International Journal of Bio-Science and Bio-Technology Vol. 3, No. 4, December, 2011 Punctuated Equilibrium vs. Phyletic Gradualism Monalie C. Saylo1, Cheryl C. Escoton1 and Micah M. Saylo2 1 University of Antique, Sibalom, Antique, Philippines 2 DepEd Sibalom North District, Sibalom, Antique, Philippines [email protected] Abstract Both phyletic gradualism and punctuated equilibrium are speciation theory and are valid models for understanding macroevolution. Both theories describe the rates of speciation. For Gradualism, changes in species is slow and gradual, occurring in small periodic changes in the gene pool, whereas for Punctuated Equilibrium, evolution occurs in spurts of relatively rapid change with long periods of non-change. The gradualism model depicts evolution as a slow steady process in which organisms change and develop slowly over time. In contrast, the punctuated equilibrium model depicts evolution as long periods of no evolutionary change followed by rapid periods of change. Both are models for describing successive evolutionary changes due to the mechanisms of evolution in a time frame. Keywords: macroevolution, phyletic gradualism, punctuated equilibrium, speciation, evolutionary change 1. Introduction Has the evolution of life proceeded as a gradual stepwise process, or through relatively long periods of stasis punctuated by short periods of rapid evolution? To date, what is clear is that both evolutionary patterns – phyletic gradualism and punctuated equilibrium have played at least some role in the evolution of life. Gradualism and punctuated equilibrium are two ways in which the evolution of a species can occur. A species can evolve by only one of these, or by both. Scientists think that species with a shorter evolution evolved mostly by punctuated equilibrium, and those with a longer evolution evolved mostly by gradualism.
    [Show full text]
  • Post-Triassic Spermatophyta Timetree Adding the Quaternary Radiated Asarum Wild Gingers
    Post-Triassic Spermatophyta Timetree Adding the Quaternary Radiated Asarum Wild Gingers Soichi Osozawa ( [email protected] ) KawaOso Molecular Bio-Geology Institute https://orcid.org/0000-0001-5554-1320 Cunio Nackejima Japanese Society of Plant Systematics John Wakabayashi California State University, Fresno Research article Keywords: BEAST v.1.X, combined gene analysis, fossil and geological event calibrations, APG system, increased base substitution rate toward the Recent, Cretaceous peak, radiation, C4 plants, Quaternary glacier- inter glacier cycle Posted Date: November 3rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-99466/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background Angiospermae radiation was known as the mid-Cretaceous event, but adaptive radiation of Asarum is also expected in the Quaternary. In order to know such the Angiospermae evolutionary history through the time, we constructed a whole Spermatophyta timetree employing BEAST v1. X associated with robust fossil calibration function. Results We successfully and precisely dated the Spermatophyta phylogeny, and the Angiospermae topology was concordant to the APG system. Using another function of BEAST, we discovered the exponential increase in base substitution rate in recent geologic time, and another rise of rate at the mid-Cretaceous time. These increasing events correspond to the Quaternary and mid-Cretaceous Angiospermae radiations. Conclusions A probable cause of the recently increasing rate and the consequent radiation was ultimately generation of C4 grasses, reduction of atomospheric CO2, and the start of the Quaternary glacial period. Mid- Cretaceous event was explained by co-radiation with insect beetles as the food plant.
    [Show full text]
  • Spermatophyta Timetree, Accelerated Base Substitution Rates at Mid
    Spermatophyta timetree, accelerated base substitution rates at mid-Cretaceous and the Recent Soichi Osozawa1, Cunio Nackejima2, and john Wakabayashi3 1KawaOso Molecular Bio-Geology Institute 2Japanese Society for Plant Systematics 3California State University, Fresno September 11, 2020 Abstract We constructed a whole of Spermatophyta timetree by employing BEAST v1. X applying the nuclear ribosomal ITS, and chloroplastic matK and rbcL. Robust multipoint calibrations were done by applying fossil ages up to the Jurassic for 20 genera and a Quaternary geological event age of 1.55 Ma for 6 genera. The resultant topology was concordant to the APG system, and we successfully and precisely dated the phylogeny. Through the BEAST analyses, we discovered the exponential increase in base substitution rate in recent geologic time, and suggested that a potential cause was generation of C4 plants and the triggered Quaternary climatic change. The raised rate might have resulted in the increasing of Spermatophyta diversity including endemic Asarum and Viola species. Another rise of base substitution rate was found around 120 Ma, reflecting the order level radiation and diversification of Angiospermae at the middle Cretaceous time. Introduction A goal of botany may be the correlation of botanical evolutionary events with the timeline of Earth history (Wilf & Escapa, 2015). We prepared a Bayesian inference (BI) tree constructed using the latest and the most advanced version of BEAST (v1. X; Suchard et al ., 2018), because a credible timetree of Spermatophyta have not been constructed to date probably by employing the old version and by the unpractical use of functions (Smith et al ., 2010; Beulieu et al ., 2015).
    [Show full text]
  • WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
    WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C.
    [Show full text]
  • Fossil Lizards and Worm Lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an Overview
    Swiss Journal of Palaeontology (2019) 138:177–211 https://doi.org/10.1007/s13358-018-0172-y (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview 1 1,2 Andrea Villa • Massimo Delfino Received: 16 August 2018 / Accepted: 19 October 2018 / Published online: 29 October 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract Lizards were and still are an important component of the European herpetofauna. The modern European lizard fauna started to set up in the Miocene and a rich fossil record is known from Neogene and Quaternary sites. At least 12 lizard and worm lizard families are represented in the European fossil record of the last 23 Ma. The record comprises more than 3000 occurrences from more than 800 localities, mainly of Miocene and Pleistocene age. By the beginning of the Neogene, a marked faunistic change is detectable compared to the lizard fossil record of Palaeogene Europe. This change is reflected by other squamates as well and might be related to an environmental deterioration occurring roughly at the Oligocene/ Miocene boundary. Nevertheless, the diversity was still rather high in the Neogene and started to decrease with the onset of the Quaternary glacial cycles. This led to the current impoverished lizard fauna, with the southward range shrinking of the most thermophilic taxa (e.g., agamids, amphisbaenians) and the local disappearance of other groups (e.g., varanids). Our overview of the known fossil record of European Neogene and Quaternary lizards and worm lizards highlighted a substantial number of either unpublished or poorly known occurrences often referred to wastebasket taxa.
    [Show full text]