Marine Chapter.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Marine Chapter.Indd STATUS OF THE WORLD’S MARINE SPECIES Beth A. Polidoro, Suzanne R. Livingstone, Kent E. Carpenter, Brian Hutchinson, Roderic B. Mast, Nicolas Pilcher, Yvonne Sadovy de Mitcheson, Sarah Valenti The IUCN Red List of Threatened Species™ Acknowledgements: This publication is part of The 2008 Review of The IUCN Red List of Threatened Species. The IUCN Red List is compiled and produced by the IUCN Species Programme based on contributions from a network of thousands of scientifi c experts around the world. These include members of the IUCN Species Survival Commission Specialist Groups, Red List Partners (currently Conservation International, BirdLife International, NatureServe and the Zoological Society of London), and many others including experts from universities, museums, research institutes and non-governmental organizations. The long list of people, partners and donors who made this review possible can be found at the following address: www.iucn.org/redlist/ Citation: Polidoro, B.A., Livingstone, S.R., Carpenter, K.E., Hutchinson, B., Mast, R.B., Pilcher, N., Sadovy de Mitcheson, Y. and Valenti, S. 2008. Status of the world’s marine species. In: J.-C. Vié, C., Hilton-Taylor, and S.N. Stuart (eds.). The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland. Switzerland. Credits: Published by IUCN, Gland, Switzerland Chief Editor: Jean-Christophe Vié Editors: Craig Hilton-Taylor and Simon N. Stuart ISBN (The 2008 Review of The IUCN Red List of Threatened): 978-2-8317-1063-1 Layout: Lynx Edicions, Barcelona, Spain © 2008 International Union for Conservation of Nature and Natural Resources Cover photo: The loss of coral reef ecosystems will have devasting effects on a wide spectrum of marine species, as well as for people and nations that depend on reef resources for their livelihoods and economic security. © Jean-Christophe Vié Status of the World’s Marine Species Beth A. Polidoro, Suzanne R. Livingstone, Kent E. Carpenter, Brian Hutchinson, Roderic B. Mast, Nicolas Pilcher, Yvonne Sadovy de Mitcheson, Sarah Valenti Introduction their probability of extinction lagged far against the IUCN Red List Categories and The oceans are home to a large behind that of the terrestrial realm; out Criteria. As of 2008, six major groups of percentage of Earth’s biodiversity, of more than 41,500 plants and animals marine species have been completed, and occupying 70 percent of its surface and, currently assessed under the IUCN Red include all the world’s known species of when volume is considered, an even larger List Criteria, only approximately 1,500 were sharks and rays, groupers, reef-building percentage of habitable space. The oceans marine species. In many regions around corals, seabirds, marine mammals, and drive weather, shape planetary chemistry, the world, biodiversity conservation in the marine turtles (Figure 1). generate 70 percent of atmospheric seas is currently taking place without the oxygen, absorb most of the planet’s carbon essential species-specifi c data needed Sharks and their relatives dioxide, and are the ultimate reservoir to inform robust and comprehensive Of the 1,046 species of sharks and for replenishment of fresh water to land conservation actions. their relatives (class Chondrichthyes), a through cloud formation. Trouble for the high proportion (47%) are listed as Data oceans means trouble for humankind. Protection of our rapidly declining ocean ecosystems and species is one of the In recent years, there has been growing greatest challenges we face as stewards concern in the scientifi c community that a of our planet. In 2006, IUCN, Conservation Figure 1. Summary of 2008 Red List Categories for completed clades of marine species. Number of broad range of marine species could be International and Old Dominion University species assessed in each group in parentheses. under threat of extinction and that marine joined forces to address this gap % of biodiversity is experiencing potentially and initiated an ambitious project (the species irreversible loss due to over-fi shing, climate Global Marine Species Assessment) to 100% change, invasive species and coastal complete IUCN Red List assessments development (Dulvy et al. 2003; Roberts for a greatly expanded number of marine 80% and Hawkins 1999). Governmental and species. It is planned to complete Red public interest in marine conservation is List assessments for over 20,000 marine increasing, but the information needed to species by 2012. A great deal of progress 60% guide marine conservation planning and has already been made, and approximately policy is seriously defi cient. The IUCN 1,500 marine species have been added Red List of Threatened Species™ is the to the 2008 Red List, including all of the 40% most commonly used global dataset world’s known species of sharks and rays, for identifying the types of threat, and groupers, and reef-building corals. These 20% the levels of extinction risk to marine groups were completed in collaboration species (Hoffmann et al. 2008; Rodrigues with a number of Red List Partners et al. 2006). It forms the foundation including the IUCN SSC Shark Specialist 0% for determining and validating marine Group, the IUCN SSC Grouper and Corals(845) (161) (349) conservation priorities, for example Wrasse Specialist Group, the IUCN SSC Seabirds (7) Groupers (134) Marine turtles through the planning and management Marine Turtle Specialist Group. (1046) of protected area systems designed to Marine mammals Sharks and relatives reduce extinction risk in the sea (Edgar Results EX LC et al. 2008). However, as of 2007, the For the fi rst time, every species in selected CR/EN/VU DD NT number of marine species assessed for taxonomic groups is being assessed 1 response to increasing demand for shark snouts (or saws) edged with tooth-like products and as traditional fi sheries serrations. This saw makes them extremely come under stronger management. susceptible to bycatch in almost any Millions of sharks are caught each year fi shing gear and they are also targeted for for their fi ns which are used to make the their very high value saws and fi ns. The 21 Asian delicacy shark fi n soup. Sharks species of angel sharks face similar threats are being increasingly targeted for this and are among the most threatened purpose. Mortality from accidental catch families of sharks. Of the species of angel (or ‘bycatch’) in fi sheries targeting other sharks with suffi cient data for assessment, species is just as much of a threat, if not 78% are threatened and 21% are Critically more so, for many species. Populations Endangered. of intrinsically threatened sharks can be driven to collapse un-noticed, whilst Endemic sharks and rays with restricted fi sheries continue to be supported habitats and geographic distributions economically by more productive and also feature prominently among those plentiful target species, such as bony most threatened. The endemic Brazilian fi shes, crustaceans and squid. The life Guitarfi sh Rhinobatos horkelii, Maltese history characteristics of these species Skate Leucoraja melitensis and Harrison’s demand a precautionary approach to their Dogfi sh Centrophorus harrissoni are all exploitation; however, the lack of adequate listed as Critically Endangered. All have shark fi sheries management remains an undergone signifi cant population declines over-whelming problem, exacerbated by as a result of bycatch and target fi sheries. largely unreported catches. Historically Although unsustainable exploitation Millions of sharks are caught each year for their fi ns, fi sheries managers have given sharks appears to be the greatest threat to most which are used to make the Asian delicacy shark fi n low priority, but they are now receiving sharks globally, endemic species with soup. © John Nightingale increasing international attention with specifi c habitat preferences are also growing concerns over the sustainability of threatened by localized habitat degradation shark fi sheries. and destruction. For example, several Defi cient compared to the fi ve other inshore stingrays endemic to areas of marine groups shown. As many sharks Some species are affected by a Southeast Asia are being impacted by and rays are deep-water pelagic species, combination of all these factors. For large-scale degradation and removal of they are harder to study in the wild, and example, all seven species of sawfi sh are mangroves, acting in combination with less is known about their ecology and listed as Critically Endangered. These large threats from fi sheries activities. population status, including the impact unusual rays (sometimes in excess of 7 m of known and potentially unknown major long) are slow-growing, and populations Many wide-ranging oceanic species are threats. Approximately 17% of shark and are often isolated, with little migration also threatened. Both the Short-fi n Mako ray species are in threatened categories between areas. They have long fl attened Isurus oxyrinchus and the Long-fi n Mako (Critically Endangered, Endangered, and Vulnerable), and 13% are considered Near Threatened and may reach the thresholds for a threatened category in the near future if current threats are not reduced. Much of what is currently known about sharks and rays comes from their capture in nets from both targeted and accidental catch, which is the primary threat to this species group. Sharks grow slowly, mature late, produce few young and have low rates of population increase, making them highly vulnerable to depletion with a low capacity for recovery from over-exploitation. Shark
Recommended publications
  • The MBL Model and Stochastic Paleontology
    216 Chapter seven ised exciting new avenues for research, that insights from biology and ecology could more profi tably be applied to paleontology, and that the future lay in assembling large databases as a foundation for analysis of broad-scale patterns of evolution over geological history. But in compar- ison to other expanding young disciplines—like theoretical ecology— paleobiology lacked a cohesive theoretical and methodological agenda. However, over the next ten years this would change dramatically. Chapter Seven One particular ecological/evolutionary issue emerged as the central unifying problem for paleobiology: the study and modeling of the his- “Towards a Nomothetic tory of diversity over time. This, in turn, motivated a methodological question: how reliable is the fossil record, and how can that reliability be Paleontology”: The MBL Model tested? These problems became the core of analytical paleobiology, and and Stochastic Paleontology represented a continuation and a consolidation of the themes we have examined thus far in the history of paleobiology. Ultimately, this focus led paleobiologists to groundbreaking quantitative studies of the inter- The Roots of Nomotheticism play of rates of origination and extinction of taxa through time, the role of background and mass extinctions in the history of life, the survivor- y the early 1970s, the paleobiology movement had begun to acquire ship of individual taxa, and the modeling of historical patterns of diver- Bconsiderable momentum. A number of paleobiologists began ac- sity. These questions became the central components of an emerging pa- tively building programs of paleobiological research and teaching at ma- leobiological theory of macroevolution, and by the mid 1980s formed the jor universities—Stephen Jay Gould at Harvard, Tom Schopf at the Uni- basis for paleobiologists’ claim to a seat at the “high table” of evolution- versity of Chicago, David Raup at the University of Rochester, James ary theory.
    [Show full text]
  • (Echinoidea, Echinidae) (Belgium) by Joris Geys
    Meded. Werkgr. Tert. Kwart. Geol. 26(1) 3-10 1 fig., 1 tab., 1 pi. Leiden, maart 1989 On the presence of Gracilechinus (Echinoidea, Echinidae) in the Late Miocene of the Antwerp area (Belgium) by Joris Geys University of Antwerp (RUCA), Antwerp, Belgium and Robert Marquet Antwerp, Belgium. Geys, J., & R. Marquet. On the presence of Gracilechinus (Echinoidea, in the of — Echinidae) Late Miocene the Antwerp area (Belgium). Meded. Werkgr. Tert. Kwart. Geol., 26(1): 00-00, 1 fig., 1 tab., 1 pi. Leiden, March 1989. Some well-preserved specimens of the regular echinoid Gracilechinus gracilis nysti (Cotteau, 1880) were collected in a temporary outcrop at Borgerhout-Antwerp, in sandstones reworked from the Deurne Sands (Late Miocene). The systematic status of this subspecies is discussed. The present state of knowledge of the Echinidae from the Neogene of the North Sea Basin is reviewed. Prof. Dr J. Geys, Dept. of Geology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dr R. Marquet, Constitutiestraat 50, B-2008 Antwerp, Belgium, Contents — 3 Introduction, p. 4 Systematic palaeontology, p. 6 Discussion, p. Echinidae in the Neogene of the North Sea Basin—some considerations on 8 systematics, p. 10. References, p. INTRODUCTION extensive excavations the of E17-E18 indicated E3 Because of along western verge motorway (also as ‘Kleine and Ring’) at Borgerhout-Antwerp (Belgium), a remarkable outcrop of Neogene Quaternary beds accessible from The was March to November 1987. outcrop was situated between this motorway and the and extended from the the both ‘Singel’-road, ‘Stenenbrug’ to ‘Zurenborgbrug’, on sides 4 of the exit.
    [Show full text]
  • Chordates (Phylum Chordata)
    A short story Leathem Mehaffey, III, Fall 201993 The First Chordates (Phylum Chordata) • Chordates (our phylum) first appeared in the Cambrian, 525MYA. 94 Invertebrates, Chordates and Vertebrates • Invertebrates are all animals not chordates • Generally invertebrates, if they have hearts, have dorsal hearts; if they have a nervous system it is usually ventral. • All vertebrates are chordates, but not all chordates are vertebrates. • Chordates: • Dorsal notochord • Dorsal nerve chord • Ventral heart • Post-anal tail • Vertebrates: Amphioxus: archetypal chordate • Dorsal spinal column (articulated) and skeleton 95 Origin of the Chordates 96 Haikouichthys Myllokunmingia Note the rounded extension to Possibly the oldest the head bearing sensory vertebrate: showed gill organs bars and primitive vertebral elements Early and primitive agnathan vertebrates of the Early Cambrian (530MYA) Pikaia Note: these organisms were less Primitive chordate, than an inch long. similar to Amphioxus 97 The Cambrian/Ordovician Extinction • Somewhere around 488 million years ago something happened to cause a change in the fauna of the earth, heralding the beginning of the Ordovician Period. • Rather than one catastrophe, the late-Cambrian extinction seems to be a series of smaller extinction events. • Historically the change in fauna (mostly trilobites as the index species) was thought to be due to excessive warmth and low oxygen. • But some current findings point to an oxygen spike due perhaps to continental drift into the tropics, driving rapid speciation and consequent replacement of old with new organisms. 98 Welcome to the Ordovician YOU ARE HERE 99 The Ordovician Sea, 488 million years 100 ago The Ordovician Period lasted almost 45 million years, from 489 to 444 MYA.
    [Show full text]
  • SNH Commissioned Report
    Scottish Natural Heritage Commissioned Report No. 574 Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches COMMISSIONED REPORT Commissioned Report No. 574 Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches For further information on this report please contact: Laura Steel Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725236 E-mail: [email protected] This report should be quoted as: Moore, C. G. 2013. Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches. Scottish Natural Heritage Commissioned Report No. 574. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2013. COMMISSIONED REPORT Summary Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches Commissioned Report No.: 574 Project no: 13879 Contractor: Dr Colin Moore Year of publication: 2013 Background To help target marine nature conservation in Scotland, SNH and JNCC have generated a focused list of habitats and species of importance in Scottish waters - the Priority Marine Features (PMFs).
    [Show full text]
  • Multiple Molecular Evidences for a Living Mammalian Fossil
    Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.
    [Show full text]
  • New York Ocean Action Plan 2016 – 2026
    NEW YORK OCEAN ACTION PLAN 2016 – 2026 In collaboration with state and federal agencies, municipalities, tribal partners, academic institutions, non- profits, and ocean-based industry and tourism groups. Acknowledgments The preparation of the content within this document was developed by Debra Abercrombie and Karen Chytalo from the New York State Department of Environmental Conservation and in cooperation and coordination with staff from the New York State Department of State. Funding was provided by the New York State Environmental Protection Fund’s Ocean & Great Lakes Program. Other New York state agencies, federal agencies, estuary programs, the New York Ocean and Great Lakes Coalition, the Shinnecock Indian Nation and ocean-based industry and user groups provided numerous revisions to draft versions of this document which were invaluable. The New York Marine Sciences Consortium provided vital recommendations concerning data and research needs, as well as detailed revisions to earlier drafts. Thank you to all of the members of the public and who participated in the stakeholder focal groups and for also providing comments and revisions. For more information, please contact: Karen Chytalo New York State Department of Environmental Conservation [email protected] 631-444-0430 Cover Page Photo credits, Top row: E. Burke, SBU SoMAS, M. Gove; Bottom row: Wolcott Henry- 2005/Marine Photo Bank, Eleanor Partridge/Marine Photo Bank, Brandon Puckett/Marine Photo Bank. NEW YORK OCEAN ACTION PLAN | 2016 – 2026 i MESSAGE FROM COMMISSIONER AND SECRETARY The ocean and its significant resources have been at the heart of New York’s richness and economic vitality, since our founding in the 17th Century and continues today.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Edible sea urchin (Echinus esculentus) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-04-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1311]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Echinus esculentus Edible sea urchin. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1311.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-04-29 Edible sea urchin (Echinus esculentus) - Marine Life Information Network See online review for distribution map Echinus esculentus and hermit crabs on grazed rock.
    [Show full text]
  • Multiple Factors Explain the Covering Behaviour in the Green Sea Urchin, Strongylocentrotus Droebachiensis
    ARTICLE IN PRESS ANIMAL BEHAVIOUR, 2007, --, --e-- doi:10.1016/j.anbehav.2006.11.008 Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis CLE´ MENT P. DUMONT*†,DAVIDDROLET*, ISABELLE DESCHEˆ NES* &JOHNH.HIMMELMAN* *De´partement de Biologie, Que´bec-Oce´an, Universite´ Laval yCEAZA, Departamento de Biologia Marina, Universidad Catolica del Norte (Received 26 March 2006; initial acceptance 29 August 2006; final acceptance 13 November 2006; published online ---; MS. number: A10403) Although numerous species of sea urchins often cover themselves with small rocks, shells and algal fragments, the function of this covering behaviour is poorly understood. Diving observations showed that the degree to which the sea urchin Strongylocentrotus droebachiensis covers itself in the field decreases with size. We performed laboratory experiments to examine how the sea urchin’s covering behaviour is affected by the presence of predators, sea urchin size, wave surge, contact with moving algae blades and sunlight. The presence of two common sea urchin predators did not influence the degree to which sea ur- chins covered themselves. Covering responses of sea urchins that were exposed to a strong wave surge and sweeping algal blades were significantly greater than those of individuals that were maintained under still water conditions. The degree to which sea urchins covered themselves in the laboratory also tended to decrease with increasing size. Juveniles showed stronger covering responses than adults, possibly because they are more vulnerable to dislodgement and predation. We found that UV light stimulated a covering response, whereas UV-filtered sunlight and darkness did not, although the response to UV light was much weaker than that to waves and algal movement.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hornwrack (Flustra foliacea) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters & Susie Ballerstedt 2007-09-11 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1609]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Ballerstedt, S., 2007. Flustra foliacea Hornwrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1609.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-11 Hornwrack (Flustra foliacea) - Marine Life Information Network See online review for distribution map Flustra foliacea. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS).
    [Show full text]
  • Involving the Community in Rodent Eradication on Tristan Da Cunha Island Invasives: Eradication and Management
    Varnham, K.; T. Glass, and C. Stringer. Involving the community in rodent eradication on Tristan da Cunha Island invasives: eradication and management Involving the community in rodent eradication on Tristan da Cunha K. Varnham1, T. Glass2, and C. Stringer3 1 University of Bristol, School of Biological Sciences, Woodland Rd, Bristol, BS8 1UG, UK. <karen.varnham@bristol. ac.uk>. 2 Government of Tristan da Cunha. 3The Royal Society for the Protection of Birds, Potton Rd, Sandy, UK. Abstract Tristan da Cunha is the world’s remotest inhabited island, with a population of around 270 people. Ship rats (Rattus rattus) and house mice (Mus musculus) are present on the main island of Tristan and house mice are present on Gough Island, also part of the UK Overseas Territory of Tristan da Cunha. The impacts of invasive rodents on both islands have been well documented and detailed plans to eradicate them were developed in association with island representatives. In March 2008, the island was visited to discuss eradication plans with the island community and get their views on the proposals. Information disseminated about the project was followed by individual meetings with all government departments and other employers. These individual meetings proved by far the most effective forum for hearing people’s views. Strong concerns were expressed about the safety of an aerial bait drop on Tristan, in particular the perceived risks to children, livestock and the security of the water supply. The proposed eradication of mice from Gough Island was fully supported. Although the population on Tristan did not want a full-scale rodent eradication carried out on the island, they were keen to have improved rodent control around the settlement and at agricultural sites.
    [Show full text]
  • Preparations for the Eradication of Mice from Gough Island: Results of Bait Acceptance Trials Above Ground and Around Cave Systems
    Cuthbert, R.J.; P. Visser, H. Louw, K. Rexer-Huber, G. Parker, and P.G. Ryan. Preparations for the eradication of mice from Gough Island: results of bait acceptance trials above ground and around cave systems Preparations for the eradication of mice from Gough Island: results of bait acceptance trials above ground and around cave systems R. J. Cuthbert1, P. Visser1, H. Louw1, K. Rexer-Huber1, G. Parker1, and P. G. Ryan2 1Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, SG19 2DL, United Kingdom. <[email protected]>. 2DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Cape Town, Rondebosch 7701, South Africa. Abstract Gough Island, Tristan da Cunha, is a United Kingdom Overseas Territory, supports globally important seabird colonies, has many endemic plant, invertebrate and bird taxa, and is recognised as a World Heritage Site. A key threat to the biodiversity of Gough Island is predation by the introduced house mouse (Mus musculus), as a result of which two bird species are listed as Critically Endangered. Eradicating mice from Gough Island is thus an urgent conservation priority. However, the higher failure rate of mouse versus rat eradications, and smaller size of islands that have been successfully cleared of mice, means that trials on bait acceptance are required to convince funding agencies that an attempted eradication of mice from Gough is likely to succeed. In this study, trials of bait acceptance were undertaken above ground and around cave systems that are potential refuges for mice during an aerial application of bait. Four trials were undertaken during winter, with rhodamine-dyed, non-toxic bait spread by hand at 16 kg/ha over 2.56 ha centred above cave systems in Trials 1-3 and over 20.7 ha and two caves in Trial 4.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE OCEANOGRAPHY Copyright © 2020 The Authors, some rights reserved; Algal plankton turn to hunting to survive and recover exclusive licensee American Association from end-Cretaceous impact darkness for the Advancement Samantha J. Gibbs1*†, Paul R. Bown2†, Ben A. Ward1†, Sarah A. Alvarez3,2, Hojung Kim2, of Science. No claim to 2‡ 4 5 6 7 original U.S. Government Odysseas A. Archontikis , Boris Sauterey , Alex J. Poulton , Jamie Wilson , Andy Ridgwell Works. Distributed under a Creative The end-Cretaceous bolide impact triggered the devastation of marine ecosystems. However, the specific kill Commons Attribution mechanism(s) are still debated, and how primary production subsequently recovered remains elusive. We used NonCommercial marine plankton microfossils and eco-evolutionary modeling to determine strategies for survival and recovery, License 4.0 (CC BY-NC). finding that widespread phagotrophy (prey ingestion) was fundamental to plankton surviving the impact and also for the subsequent reestablishment of primary production. Ecological selectivity points to extreme post- impact light inhibition as the principal kill mechanism, with the marine food chain temporarily reset to a bacteria- dominated state. Subsequently, in a sunlit ocean inhabited by only rare survivor grazers but abundant small prey, it was mixotrophic nutrition (autotrophy and heterotrophy) and increasing cell sizes that enabled the eventual reestablishment of marine food webs some 2 million years later. Downloaded from INTRODUCTION evidence suggest that at least partial recovery occurred quickly The asteroid impact at the Cretaceous-Paleogene (K/Pg) boundary (years to tens of years), with ubiquitous, prokaryotic cyanobacteria 66 million years (Ma) ago triggered a cascading mass extinction through likely being the main primary producers as light levels improved http://advances.sciencemag.org/ the entirety of the global food web that occurred in a geological in- (4, 12–14).
    [Show full text]