California Native Americans

Total Page:16

File Type:pdf, Size:1020Kb

California Native Americans Lesson 12: California Native Americans California Education Standards : Kindergarten, Earth Sciences 2. Different types of plants and animals inhabit the earth. As a basis for understanding this concept: b. Students know stories sometimes give plants and animals attributes they do not really have. Grade 1, Earth Sciences 2. Plants and animals meet their needs in different ways. As a basis for understanding this concept: e. Students know roots are associated with the intake of water and soil nutrients and green leaves are associated with making food from sunlight (related). Grade 3, Earth Sciences 3. Adaptations in physical structure of behavior may improve an organism’s chance for survival. As a basis for understanding this concept: d. Students know when the environment changes, some plants and animals survive and reproduce; others die or move to new locations. Grade 4, Earth Sciences 3. Living organisms depend on one another and on their environment for survival. As a basis for understanding this concept: b. Students know that in any particular environment, some kinds of plants and animals survive well, some survive less well, and some cannot survive at all. Grade 5, Earth Sciences Lesson 12: California Native Americans 1 1. Elements and their combinations account for all the varied types of matter in the world. As a basis for understanding this concept: e. Students know scientists have developed instruments that can create discrete images of atoms and molecules that show that the atoms and molecules often occur in well-ordered arrays (related). Grade 6, Earth Sciences 5. Organisms in ecosystems exchange energy and nutrients among themselves and with the environment. As a basis for understanding this concept: b. Students know matter is transferred over time from one organism to others in the food web and between organisms and the physical environment. Grade 7, Earth Sciences 3. Biological evolution accounts for the diversity of species developed through gradual processes over many generations. As a basis for understanding this concept: a. Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. Objective : Students must understand the main concepts of organic gardening. They should also have a basic understanding of how this knowledge came to be. Vocabulary : Organic gardening – the science and art of growing fruits, vegetables, flowers, or ornamental plants by following the essential principles of organic agriculture in soil building and conservation, and pest management. Mulch – a protective covering, usually of organic matter such as leaves, straw, or peat, placed around plants to prevent the evaporation of moisture, the freezing of roots and the growth of weeds Compost – a mixture that consists largely of decayed organic matter and is used for fertilizing and conditioning land “no-dig” gardening method – non-cultivation method Organic pest control – preventing and controlling the pest problem instead of chemically eradicating Integrated Pest Management – an approach which first assesses the pest situation, evaluates the merits of pest management options, and then implements a system of complementary management actions within a defined area Lesson : Organic horticulture or organic gardening, as it’s more commonly known as, is the science of growing fruits, vegetables, flowers, or ornamental plants by following certain principles of soil Lesson 12: California Native Americans 2 building and conservation, and pest management. Organic gardening uses unique and healthier ways than conventional gardening to produce food. What are the main things that distinguish organic gardening from conventional or chemical gardening? Generally, organic horticulture involves natural processes, often taking place over a long amount of time, and a sustainable, natural approach. Chemical-based horticulture focuses on immediately taking care of the situation through isolated effects and reductionist strategies. One of the primary factors that distinguishes organic gardening from chemical gardening is the importance that soil is given. Mulches, compost, manures, and mineral supplements are soil- building staples that distinguish this type of farming from its commercial counterpart. Through attention to good healthy soil conditions, insect, fungal, or other problems that can hurt plants are minimized. One well known technique is the “no-dig” gardening method. Reasons for tilling the soil are to remove weeds, loosen and aerate the soil, and incorporate organic matter such as compost or manure into lower soil layers. However, there are arguments against it especially in areas with thin soil and high erosion. Critics argue that, over time, tilling can be detrimental to the food web in the fragile topsoil. Digging tends to displace nutrients, shifting surface organic material deeper, where there is less oxygen to support the decomposition to plant-available nutrients, which then need to be otherwise replenished. So instead of digging the soil, organic gardeners believe that organic matter, such as well rotted manure, compost, leaf mold, spent mushroom compost, and so on, is added directly to the soil surface as a mulch at least 2 to 6 inches deep, which is then incorporated by the actions of worms, insects and microbes. Worms and other soil life also assist in building up the soil's structure, because their tunnels provide aeration and drainage, and their excretions bind together soil crumbs. This natural biosphere maintains healthy conditions in the upper soil horizons where annual plant roots thrive. The treatment of pests in the two types of gardening also differs. In chemical horticulture, a specific insecticide may be applied to quickly kill off a particular insect pest. Chemical controls can dramatically reduce pest populations in the short term, but by killing beneficial insects and animals, they cause an increase in the pest population in the long term. Repeated use of insecticides and herbicides also encourages the pest population to become tolerant and adapt to the chemicals, leading to gardeners using stronger chemicals, and so negatively influencing the chemical balance of the environment. In contrast, organic horticulture tends to tolerate some pest populations while taking the long view. Organic pest control requires a thorough understanding of pest life cycles and interactions, and involves the cumulative effect of many techniques, including: • Allowing for an acceptable level of pest damage Lesson 12: California Native Americans 3 • Encouraging predatory beneficial insects to flourish and eat pests • Encouraging beneficial microorganisms • Choosing disease-resistant plant varieties • Planting companion crops that discourage or divert pests • Using row covers to protect crop plants during pest migration periods • Rotating crops to different locations from year to year to interrupt pest reproduction cycles • Using insect traps to monitor and control insect populations There is a system that is specifically designed to help control the “pest problem” in gardens without the use of chemicals. It is called the Integrated Pest Management, or IPM. An American IPM system is designed around six basic components: 1. Acceptable pest levels: The emphasis is on control, not eradication. IPM programs first work to establish acceptable pest levels, called action thresholds, and apply controls if those thresholds are crossed. 2. Preventive cultural practices: Selecting varieties best for local growing conditions, and maintaining healthy crops, is the first line of defense, together with plant quarantine and “cultural techniques” such as crop sanitation (e.g., removal of diseased plants to prevent spread of infection). 3. Monitoring: Regular observation is the cornerstone of IPM. Observation is broken into two steps: first, inspection and second, identification. 4. Mechanical controls: When a pest reaches an unacceptable level, mechanical methods are the first options to consider. They include simple hand-picking, erecting insect barriers, using traps, vacuuming, and tillage to disrupt breeding. 5. Biological controls: Natural biological processes and materials can provide control, with minimal environmental impact, and often at low cost. The main focus is on promoting beneficial insects that eat target pests. 6. Responsible Pesticide Use: Synthetic pesticides are generally only used as required and often only at specific times in a pest’s life cycle. Compost is a key ingredient in organic farming. Compost is organic matter that has been decomposed and recycled as fertilizer and soil amendment. At the simplest level, the process of composting simply requires making a heap of wetted organic matter (leaves, "green" food waste) and waiting for the materials to break down after a period of weeks or months. By shredding the matter, adding water and aerating by turning the mixture, the process of decomposition speeds up. Compost is generally recommended as an additive to soil. It provides a rich growing medium, or a porous, absorbent material that holds moisture and soluble minerals, providing the support and Lesson 12: California Native Americans 4 nutrients in which plants can use to flourish. Compost can be tilled directly into the soil or growing medium to boost the level of organic matter and the overall fertility of the soil. Now that we have a basic understanding of what organic gardening entails and what some of its practices are, we should focus on the earlier history of it. Organic gardening
Recommended publications
  • Urban Expansion and Sensitive Environments
    Urban Expansion and Sensitive Environments Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area RIRDC Publication No. 09/025 RIRDCInnovation for rural Australia Urban Expansion and Sensitive Environments Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area by J Merson, R Attwater, S Booth, R Mulley, P Ampt, H Wildman, M Nugent, S Hooper, M Campbell and R Chapple March 2009 RIRDC Publication No 09/025 RIRDC Project No UNS-18A © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 829 6 ISSN 1440-6845 Urban Expansion and Sensitive Environments – Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area Publication No. 09/025 Project No. UNS-18A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.
    [Show full text]
  • STRIVE Report Series No.74
    STRIVE Report Series No.74 Spent Mushroom Compost Management and Options for Use STRIVE Environmental Protection Agency Programme 2007-2013 Comhshaol, Pobal agus Rialtas Áitiúil Environment, Community and Local Government EPA Inside Pages NEW_Blue Text 08/09/2011 11:09 Page 1 Environmental Protection Agency The Environmental Protection Agency (EPA) is REGULATING IRELAND’S GREENHOUSE GAS EMISSIONS a statutory body responsible for protecting n Quantifying Ireland’s emissions of greenhouse gases the environment in Ireland. We regulate and in the context of our Kyoto commitments. police activities that might otherwise cause n Implementing the Emissions Trading Directive, pollution. We ensure there is solid involving over 100 companies who are major information on environmental trends so that generators of carbon dioxide in Ireland. necessary actions are taken. Our priorities are protecting the Irish environment and ENVIRONMENTAL RESEARCH AND DEVELOPMENT ensuring that development is sustainable. n Co-ordinating research on environmental issues (including air and water quality, climate change, The EPA is an independent public body biodiversity, environmental technologies). established in July 1993 under the Environmental Protection Agency Act, 1992. STRATEGIC ENVIRONMENTAL ASSESSMENT Its sponsor in Government is the Department n Assessing the impact of plans and programmes on of the Environment, Community and Local the Irish environment (such as waste management Government. and development plans). ENVIRONMENTAL PLANNING, EDUCATION AND OUR RESPONSIBILITIES GUIDANCE n Providing guidance to the public and to industry on LICENSING various environmental topics (including licence We license the following to ensure that their emissions applications, waste prevention and environmental do not endanger human health or harm the environment: regulations).
    [Show full text]
  • This Gardening Life Jonathan Sturm
    This Gardening Life Jonathan Sturm Ashwood Books First published in Australia June 2020 by Ashwood Books PO Box 73, Franklin, Tasmania 7113 ISBN Paperback: 978-0-9874111-0-5 ISBN Kindle: 978-0-9874111-4-3 https://ashwoodbooks.com This edition © Ashwood Books Text © JP Sturm 2020 Printed by Lightning Source This book’s body text is set in Palatino Linotype Headings: Avenir Next By the same author: Complete Organic Gardening 1992 Website: www.sturmsoft.com This cabbage, these carrots, these potatoes, these onions… will soon become me. Such a tasty fact! —Mike Garofalo In memory of my parents: my father the gardener and my mother the Stoic. I’ve had a good life, and was born to and among people I’ve admired and loved. —Wendell Berry Contents A Sufi Story (of sorts) ........................................................... i Preamble ............................................................................ ii Preface ............................................................................... v Introduction ...................................................................... vi Your Garden .......................................................................1 Choosing the Land ................................................................... 1 Basics .......................................................................................... 3 Soil .............................................................................................. 6 Plant Nutrition ........................................................................
    [Show full text]
  • Wood Byproducts
    Wood Byproducts 867. Absorption of calcium and magnesium by the 870. Alteration of soil temperature and moisture fruiting body of the cultivated mushroom Hypsizigus through mulching on the morpho-physiological marmoreus (Peck) bigelow from sawdust culture differentiation in maize. media. Awal, M. A. and Khan, M. A. H. Tabata, T. and Ogura, T. Pakistan Journal of Biological Sciences (Pakistan) 2(4): Journal of Food Science 68(1): 76-79. (2003); ISSN: 0022- 1164-1167. (Oct. 1999) 1147 NAL Call #: QH301 .P355; ISSN: 1028-8880. Descriptors: absorption/ calcium/ calcium carbonate/ Descriptors: mulching / soil/ wood waste/ maize calcium phosphates/ culture media/ growth/ magnesium/ Abstract: Mulching effects of sawdust, ash, rice straw and magnesium carbonate/ magnesium chloride/ magnesium water hyacinth on the morpho-physiological differentiation sulfate/ mycelium/ sawdust/ Basidiomycetes/ of maize (Zea mays L.) and to relate these with soil Basidiomycota/ calcium phosphate/ Hypsizygus/ environment were described. Water hyacinth and rice straw Hypsizygus marmoreus/ magnesium sulphate/ mulches had significant promotive effects on shoot Tricholomataceae elongation, root penetration, LAI and DM accumulation. All Abstract: H. marmoreus was cultivated in potato-sucrose- mulches conserved soil moisture but water hyacinth and agar (PSA) and in sawdust media supplemented with Ca or rice straw retained comparatively greater amount. Water Mg salts. The radial growth of mycelia was determined. The hyacinth and rice straw mulches reduced soil temperature mushroom spawn did not grow on PSA supplemented with fluctuations in all soil depths (5 to 15 cm) and retained Ca carbonate, Mg carbonate, or Mg hydroxide. However, higher soil temperatures at the early hours of the day (02 to the mycelia grew well on sawdust media supplemented with 06 hrs) which were considered to be the decisive factor for Ca phosphate, Ca carbonate, or Mg sulfate.
    [Show full text]
  • Greenbook 2018
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp GREENBOOK 2018 The Minnesota Department of Agriculture (MDA) is pleased to release the 2018 edition of our annually published Greenbook. We are highlighting 25 projects funded through the Sustainable Agriculture Demonstration Grant (SADG) Program, a component of the Agricultural Growth, Research, and Innovation Program. We invested these dollars so grantees could explore new ideas that will make farming in Minnesota more productive and sustainable. We are very proud of this program and the many ways it has impacted farmers and rural communities in Minnesota for the past three decades. Recipients were awarded up to $25,000 for forward-thinking agricultural initiatives. We believe that the ideas these farmers and researchers are testing are fundamental to the future of agriculture. The SADG is dedicated to improving and shaping the future; many of the SADG’s previous projects have focused on practices that have become widely adopted, such as integrated pest management and cover cropping. In Greenbook 2018, you will find results from currently funded on-farm research and demonstration projects. The grantees are focusing on ways to increase energy and labor efficiency, reduce purchased inputs, and improve both the environment and their bottom line. To learn more about any of the projects, please don’t hesitate to get in touch with the grantee. You’ll find contact information listed at the beginning of each project summary. The MDA funded 11 new projects in 2018 and is accepting applications for new projects until December 12, 2018 for funding in 2019.
    [Show full text]
  • Organic Waste Composting Through Nexus Thinking
    Hiroshan Hettiarachchi Serena Caucci Kai Schwärzel Editors Organic Waste Composting through Nexus Thinking Practices, Policies, and Trends Organic Waste Composting through Nexus Thinking Hiroshan Hettiarachchi • Serena Caucci Kai Schwärzel Editors Organic Waste Composting through Nexus Thinking Practices, Policies, and Trends Editors Hiroshan Hettiarachchi Serena Caucci United Nations University United Nations University (UNU-FLORES) (UNU-FLORES) Dresden, Sachsen, Germany Dresden, Sachsen, Germany Kai Schwärzel Thünen Institute of Forest Systems Eberswalde, Germany ISBN 978-3-030-36282-9 ISBN 978-3-030-36283-6 (eBook) https://doi.org/10.1007/978-3-030-36283-6 © The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication. The opinions expressed in this publication are those of the authors/editors and do not necessarily reflect the views of the United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), its Board of Directors, or the countries they represent. Open Access This book is licensed under the terms of the Creative Commons Attribution 3.0 IGO license (https://creativecommons.org/licenses/by/3.0/igo/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), provide a link to the Creative Commons license and indicate if changes were made. Any dispute related to the use of the works of the United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES) that cannot be settled amicably shall be submitted to arbitration pursuant to the UNCITRAL rules.
    [Show full text]
  • NASAA Organic Standard, December 2004, Amended 06/02/2012, February 2016 Page 1 of 120
    National Association for Sustainable Agriculture Australia Limited NASAA ORGANIC & BIODYNAMIC STANDARD Printed December 2004, amended 6 February, 2012, amended February 2016 The NASAA Organic Standard, December 2004, Amended 06/02/2012, February 2016 Page 1 of 120 TABLE OF CONTENTS TABLE OF CONTENTS 2 ACKNOWLEDGMENT 7 INTRODUCTION 8 SECTION ONE – GENERAL 9 1.1 DEFINITIONS 9 1.2 ACRONYMS 13 1.3 PURPOSE 14 1.4 AIMS AND PRINCIPLES 14 SECTION TWO – GENERAL CERTIFICATION REQUIREMENTS 15 2.1 CONVERSION TO ORGANIC 15 2.2 ORGANIC CERTIFICATION 15 2.3 ORGANIC MANAGEMENT PLAN (OMP) 16 2.4 FARM MAP 16 2.5 RECORDS 17 2.6 PARALLEL PRODUCTION 17 2.7 TRANSFER OF CERTIFICATION 18 2.8 LEASING OF LAND 18 2.9 INSPECTION 19 2.10 SANCTIONS 19 2.11 DEFERRAL 20 2.13 EXPORTING ORGANIC PRODUCT 20 2.14 ORGANIC PRODUCE CERTIFICATES 21 2.15 REVOCATION OF ORGANIC PRODUCE CERTIFICATES 21 2.16 USE OF NASAA LABEL 21 2.17 CONVERSION LABELLING 22 2.18 LABELLING 22 2.19 CALCULATING THE PERCENTAGE OF CERTIFIED INGREDIENTS 22 SECTION THREE – PRECAUTIONS & GENERAL REQUIREMENTS 24 3.1 RESIDUES AND POSSIBLE CONTAMINATION 24 3.2 GENETICALLY MODIFIED ORGANISMS 25 3.3 WINDBREAKS / BUFFER ZONES 26 3.4 SPRAY EQUIPMENT 26 3.5 LANDSCAPE AND ENVIRONMENT 26 3.6 SOIL CONSERVATION, ORGANIC MATTER, HUMUS AND COMPOST 28 3.7 GREEN MANURE 30 3.8 DIVERSITY IN CROP PRODUCTION 30 3.9 WATER MANAGEMENT 30 3.10 IRRIGATION MANAGEMENT 31 SECTION FOUR – GENERAL STANDARDS FOR CROP PRODUCTION 33 4.1 ANNUAL CROP ROTATION 33 4.2 PRODUCTION OF SEEDS, SEEDLINGS AND PLANT PROPAGATIVE MATERIAL34 4.3 PLANT
    [Show full text]
  • Vegan-Organic Growing - the Basics
    Vegan-Organic Information Sheet #4 (60p) Vegan-Organic Growing - The Basics Growing with concern for people, ani- information is needed. mals and the environment Whilst conventional cultivation relies Organic growing involves treating the on synthetic chemicals and animal prod- soil, the growing environment and the ucts, traditional organic production also world environment as a resource to be generally relies on animal wastes and by- preserved for future generations, rather products. Both involve the exploitation than exploited in the short term. Vegan- of living creatures, and the inefficient use organics means doing this without any of land, water and energy resources. Ve- animal products at all, which is not dif- gan-organic methods minimise these ficult when you know how. All soil fertil- drawbacks. Many people who are not ity ultimately depends on plants and min- themselves vegan or vegetarian are com- erals - these do not have to be passed through ing to appreciate that animal-free grow- an animal in order to work. Fertility can ing is the most sustainable system: it is be maintained by plant-based composts, the future of organics. green manures, mulches, chipped branch wood, crop rotations and any other Vegan-organic information sheets are method that is sustainable, ecologically produced on various topics by the Ve- benign and not dependent upon animal gan-Organic Network, and are aimed exploitation. mainly at those with allotments, kitchen The guidelines below do not attempt gardens, or other small growing areas, to be fully comprehensive. The extent to although many of the techniques will also which you adhere to any system really de- apply to larger-scale situations.
    [Show full text]
  • Assessing the Potential for the Upstream Control of Contaminants Present in Materials Spread to Land
    FINAL REPORT ASSESSING THE POTENTIAL FOR THE UPSTREAM CONTROL OF CONTAMINANTS PRESENT IN MATERIALS SPREAD TO LAND SARA MONTEIRO, CAROL MILNER, CHRIS SINCLAIR, ALISTAIR BOXALL DEFRA PROJECT: SP0578 FERA PROJECT: T6PU APRIL 2011 This report has been produced at The Food and Environment Research Agency on behalf of Defra EXECUTIVE SUMMARY The UK produces over 100 million tonnes of biodegradable waste every year and a significant proportion of this is disposed of in landfills. In order to meet regulatory targets, the Government, local authorities and industry need to find alternatives to sending waste to landfill and, for some waste materials one option is to apply the material to soil. The application of organic materials to soil not only provides nutrients and organic matter but also physical improvements. Each source of organic material has its own specific characteristic mix of organic matter, nutrients and structural improvers. When spread to land, organic materials recycle nutrients and organic matter back into the soil that otherwise would be destroyed by incineration or wasted in landfill. Requirements for the use of chemical fertilizer are also reduced by this practice. Inorganic materials can also improve the soil physical properties such as texture and porosity. There is however potential disadvantages associated with land spreading of materials derived from wastes, primarily due to the potential contaminants they might contain. These disadvantages include threats to human and animal health, soil contamination and deterioration of soil structure, odour and visual nuisance, and pollution of water. There is therefore a need to gain an understanding of what contaminants are present in different waste types, the potential for these to enter the soil environment and, in instances where a contaminant poses a risk, approaches to control these risks.
    [Show full text]
  • Allotment Issue 1 2011 56Pp Layout 1 17/01/2011 14:07 Page 1 Allotment and Leisure Gardener Issue No 1 • 2011
    Allotment Issue 1 2011 56pp_Layout 1 17/01/2011 14:07 Page 1 Allotment and Leisure Gardener Issue No 1 • 2011 Composting page 17 Beekeeping page 20 NSALG Survey page 24 National Society of Allotment and Leisure Gardeners PROTECT PROMOTE PRESERVE £2 Allotment Issue 1 2011 56pp_Layout 1 17/01/2011 14:07 Page 2 15 Kg (40Ltr) Bag £3.95 + vat delivered 100% ORGANIC FERTILISER PRODUCED FOR OVER 25 YEARS, COMPOSTED, MILLED AND OVEN HEATED AT OVER 200O C TO PRODUCE A SAFE AND ECONOMICAL PRODUCT ONE BAG WILL TREAT UP TO 250 SQUARE YARDS PELLETED CHICKEN FERTILISER • EASY TO SPREAD • CONCENTRATED • One or two handfuls per sq.metre for vegetables, soft fruits, flowers A dissolved handful in one gallon of water for an excellent liquid feed Scatter a handful on each layer of garden waste to enrich the compost Ideal for lawn feed at a handful per sq. metre 8 Kg bucket from e: [email protected] 20 Kg bag from £3.50 + vat delivered www.groworganic.org £5.95 + vat delivered Send orders to: Please send me:- 66 Bags of Groworganic @ £3.95 plus vat per bag ORGANICO LIMITED 33 Bags of Groworganic @ £4.25 plus vat per bag 60 8Kg buckets of pellets @ £4.00 plus vat per bucket DEPT 4, HAYES ROAD 100 (pallet) 8Kg buckets of pellets @ £3.50 plus vat per bucket COMPTON DUNDON 100 (pallet) 10Kg bags of pellets @ £3.50 plus vat per bag NR. SOMERTON 25 20Kg bags of pellets @£6.40 plus vat per bag SOMERSET 55 (pallet) 20Kg bags of pellets @ £5.95 plus vat per bag TA11 6PF (tick appropriate box) Name ____________________________________________ Address __________________________________________
    [Show full text]
  • Greenbook 2018
    GREENBOOK 2018 The Minnesota Department of Agriculture (MDA) is pleased to release the 2018 edition of our annually published Greenbook. We are highlighting 25 projects funded through the Sustainable Agriculture Demonstration Grant (SADG) Program, a component of the Agricultural Growth, Research, and Innovation Program. We invested these dollars so grantees could explore new ideas that will make farming in Minnesota more productive and sustainable. We are very proud of this program and the many ways it has impacted farmers and rural communities in Minnesota for the past three decades. Recipients were awarded up to $25,000 for forward-thinking agricultural initiatives. We believe that the ideas these farmers and researchers are testing are fundamental to the future of agriculture. The SADG is dedicated to improving and shaping the future; many of the SADG’s previous projects have focused on practices that have become widely adopted, such as integrated pest management and cover cropping. In Greenbook 2018, you will find results from currently funded on-farm research and demonstration projects. The grantees are focusing on ways to increase energy and labor efficiency, reduce purchased inputs, and improve both the environment and their bottom line. To learn more about any of the projects, please don’t hesitate to get in touch with the grantee. You’ll find contact information listed at the beginning of each project summary. The MDA funded 11 new projects in 2018 and is accepting applications for new projects until December 12, 2018 for funding in 2019. If there’s a sustainable farming idea you’d like to try, please keep this opportunity in mind.
    [Show full text]
  • Encyclopedia of Subsistence Farming Solutions (Sakpedia, 2018 Edition)
    Encyclopedia of Subsistence Farming Solutions (SAKpedia, 2018 Edition) Editor: Manish N. Raizada University of Guelph, Canada An online, free, open-access book and searchable database that will be continuously updated and expanded (in preparation) Draft as of August 2017 (60 chapters completed, 350 pages) Approximately 95 chapters expected by January 2018 1 Table of Contents **manuscript needs further revision Chapter 1 - Scientific method 1.1 Testing products using split plots, multi-years…………………………...expected Jan 2018 Chapter 2- Land preparation and Sowing 2.1 Gloves to protect hands……………………………………………… Mitchell Van Schepen 2.2 New tools to prepare the field……………………………………………expected Jan 2018 2.3 Soaking seeds before planting (seed priming)……………………………..Samantha Martin 2.4 Sowing seeds in rows (line sowing)……………………………………… Kirsten Radcliffe 2.5 Jab seed planter…………………………………………………………..expected Jan 2018 2.6 Tools to sow seeds……………………………………………………..…expected Jan 2018 2.7 Reducing seedling crowding after sowing (thinning) ……………...……expected Jan 2018 2.8 Tools to transplant seedlings……………………………………………..expected Jan 2018 2.9 Raking tool (e.g. to collect weeds) ………...…………………………….expected Jan 2018 2.10 Back brace……………………………………………...……………….expected Jan 2018 Chapter 3 - Crop and Tree Intensification 3.1 Intercropping cereals and legumes……………………………………....expected Jan 2018 3.2 Relay cropping…………………………………………………………..expected Jan 2018 3.3 Vegetable seed packages for home gardens……………………………..expected Jan 2018 3.4/3.5 Tarpaulin/silpaulin for greenhouse and
    [Show full text]