Southern Region

Total Page:16

File Type:pdf, Size:1020Kb

Southern Region Building Healthy Living Soils for Succesful Organic Farming in the SOUTHERN REGION By Mark Schonbeck and Lauren Snyder With contributions from John Bell, Bryan Hager, Krista Jacobsen, Emily Oakley, Danielle Treadwell, Steve Diver, and Elizabeth Little Building Healthy Living Soils for Succesful Organic Farming in the SOUTHERN REGION FUNDED THROUGH WITH SUPPORT FROM Ceres Trust UNFI Foundation Cliff Bar Family Foundation © 2021 Organic Farming Research Foundation • Santa Cruz, CA Table of Contents Introduction ........................................................................................................................................................... 1 Chapter I: Soil Health Challenges and Opportunities in the Southern Region ...................... 3 Concept 1: Balancing Percent SOM and Microbial Activity in Warm Climates................. 5 Concept 2: How a Changing Climate Affects Soil Health in the South ................................ 7 Chapter II: Organic Soil Health Management Strategies for the Southern Region ............10 Farm Story 1: Applying the Six Principles of Soil Health Management ...............................12 Windy Acres Farm, Orlinda, Tennessee Strategy A: Get to Know your Soil..........................................................................................................15 Strategy B: Manage Nutrients for Soil Health, Crop Production, and Net Returns .............17 Concept 3: Nutrient Budgeting in Organic Systems ..................................................................19 Strategy C: Build Soil Health with Cover Crops .............................................................................24 Concept 4: Cover Crops for Tropical and Subtropical Regions ...........................................26 Concept 5: Cover Crop Genetics: Cultivar can Make a Difference ...................................29 Strategy D: Build Soil Health with Crop Diversity and Crop-livestock Integration ............. 30 Farm Story 2: Diversified Crop Rotation with Livestock-crop Integration ........................31 Elmwood Stock Farm, Georgetown, Kentucky Strategy E: Use Compost, Manure, and Organic Amendments as Supplements .................33 Concept 6: A Simple Test for Compost Maturity and Quality..............................................34 Concept 7: Biochar ...............................................................................................................................36 Strategy F: Enhance the Soil Microbiome ...........................................................................................37 Strategy G: Till with Care ........................................................................................................................40 Farm Story 3: Gearing-down the Tiller to Improve Sandy Soils .............................................41 Mattawoman Creek Farm, Eastville, Virginia Strategy H: Use Soil-saving Weed Management Strategies .........................................................45 Farm Story 4: Landscape Fabric for Weed Control and Cover Crop Termination ...... 48 Crager Hager Farm, Bremen, Georgia Farm Story 5: Repurposing Old High Tunnel Plastic for Soil Solarization, Weed Control, and Cover Crop Termination.......................................................................................... 50 Abingdon Organics, Abingdon, Virginia Strategy I: Make the Crops Fit the Land: Perennial Plantings for Soil Health .......................52 Farm Story 6: Berm and Swale Terraces with Multifunctional Perennial Plantings .......53 Radical Roots Farm, Keezletown,Virginia Special Topic: Managing Soil Health in the High Tunnel ...............................................................55 Farm Story 7: Haygrove High Tunnel Rotation ...........................................................................58 Elmwood Stock Farm, Georgetown, Kentucky Special Topic: Managing Soil Health in Organic Rice Production .............................................60 Concept 8: System of Rice Intensification ....................................................................................62 Chapter III: Resources ....................................................................................................................................64 Knowing your Soil ........................................................................................................................................64 General Resources on Soil Health Management and Cover Crops ..........................................64 Cover Crops and Other Soil Health Practices for the Southern Region .................................66 Perennial Cropping Systems, Permaculture, and Agroforestry ...................................................68 Soil Health in the High Tunnel.................................................................................................................68 Keeping Up with Soil Health Research Developments: Searchable Databases ....................69 Chapter IV: A Deeper Dive into Soil Types and Inherent Soil Properties in the South .....70 Researcher Perspective 1: Farming Florida Soils Sustainably ................................................73 Dr. Danielle Treadwell, University of Florida Chapter V: Soil Health and Organic Farming in the South: Recent and Ongoing Research ............................................................................................................................................. 74 Nutrient Management and Organic Amendments .......................................................................... 74 Cover Crops for the Southern Region .................................................................................................77 Integrated Soil Health Strategies and Crop Diversity .....................................................................81 Soil Microbiome, Inoculants, and Organic Disease Management ..............................................82 Researcher Perspective 2: Organic Rice Research in Southeast Texas .............................85 Steve Diver, University of Kentucky Researcher Perspective 3: Grappling with Root Knot Nematode ..................................... 88 Dr. Elizabeth Little, University of Georgia Cover Crop Based Organic No-till and Reduced Tillage Systems ............................................90 Soil-friendly Organic Weed Management ..........................................................................................92 Soil Health in Perennial Systems ............................................................................................................93 Literature References ....................................................................................................................................95 INTRODUCTION Healthy, living soils provide the foundation for successful and profitable organic farming and ranching. Nowhere is soil health more vital than in the South, where organic producers face intense pressure from weeds, insect pests, parasitic nematodes, and plant-pathogens; extremes of summer heat, drought, and flood; and soil types with inherent fertility limitations. In addition, long growing seasons can make it harder to rebuild soil organic matter, especially during intensive crop production. In a 2015 nationwide survey of organic producers, 79% of respondents from the South cited soil health as a high research priority, a little higher than the national average of 74% (Jerkins and Ory, 2016). Other priori- ties identified by farmers in the South included weed management (70%), fertility and nutrient manage- ment (67%), insect management (62%), disease management (62%), soil conservation (55%), cover crops (45%), and coping with climate change (42%). Many respondents understood the central role of healthy soil in dealing with pests and weather extremes and expressed a need for practical information on how to build soil health in hot climates that burn up soil organic matter (SOM) and promote aggressive weed growth. These challenges have hindered the growth of organic agriculture in the Southern region, which accounted for less than 11% of USDA certified organic operations, and about 9% of U.S. organic sales in 2017 (USDA, 2019). The goal of this guidebook is to help the region’s current and aspiring organic producers develop ef- fective, site-specific soil health management strategies that support successful, resilient enterprises. We begin this guidebook by reviewing the unique challenges and opportunities that organic producers face in building healthy soils in the Southern region (Chapter I). In Chapter II, we explore how to apply organic soil health principles to the region’s soils through a series of practical steps and strategies, illustrated by innovative farmer stories and brief descriptions of underlying scientific concepts (Figure 1). The latter por- tions of the guidebook provide a list of resources for additional reading (Chapter III), a description of the inherent properties of soil types commonly found in the South (Chapter IV), and a summary of the latest soil health research being conducted in this region (Chapter V). BUILDING HEALTHY LIVING SOILS - SOUTHERN REGION 1 Strategy H Strategy A Manage Weeds Strategy G Know pp 45-51, 92-93 Till with Care Your Soil pp 40-44, 90-92 pp 15-16, Strategy C Cover Crops 70-73 Strategy B Minimize Keep pp 24-29, Manage 77-81 Nutrients Soil Soil pp 17-23, 74-77 Disturbance Covered Special Topics: Soil Health in High Tunnels Healthy Maintain Strategy E Law of pp 55-59, 88-89 Organic
Recommended publications
  • Asean Guidelines on Soil and Nutrient Management (Final Draft)
    ASEAN GUIDELINES ON SOIL AND NUTRIENT MANAGEMENT (FINAL DRAFT) The Regional Soil and Nutrient Management Expert Group Chair: Thandar Nyi (MMR) Vice-Chair: Varughese Philip (SGP) Mohd Izzannuddin bin Hj Bujang (BRN), Koy Ra (KHM), Budi Irianta (IDN), Pheng Sengxua and Nivong Sipaseuth (LAO), Asnita Abu Harirah and Borhan Bin Jantan (MYS), Sonia M. Salguero (PHL), Phatchayaphon Meunchang (THA), Vu Manh Quyet and Nguyen Quang Hai (VNM) and Philip Moody, Thomas Erich Jäkel, and Wannipa Soda Under commission of the ASEAN Sectoral Working Group on Crops (ASWGC) on behalf of ASEAN and supported by the German Federal Ministry for Economic Cooperation and Development (BMZ) on behalf of the Federal Republic of Germany ACKNOWLEDGEMENTS This ASEAN Guidelines on Soil and Nutrient Management (SNM) was completed by the commitment and voluntary work of the members of the ASEAN Expert Group on Soil and Nutrient Management. These members represented soil and nutrient management scientists in their respective member states, and were affiliated with the national lead Departments and Institutions, namely: Department of Agriculture and Agrifood, BRUNEI DARUSSALAM; Department of Agricultural Land Resources Management, CAMBODIA; Directorate General of Agricultural Infrastructure and Facilities, INDONESIA; Department of Agricultural Land Management and Development, LAO PDR; Department of Agriculture, INDONESIA; Department of Agriculture, MALAYSIA; Department of Agriculture, MYANMAR; Bureau of Soil and Water Management, PHILIPPINES; Agri-Food and Veterinary Authority,
    [Show full text]
  • 3.1 Nutrient Budgeting
    3.1 Nutrient budgeting 3.1 Nutrient budgeting Dairy production systems typically require regular nutrient applications, especially of the macronutrients nitrogen (N), phosphorus (P), potassium (K) and sulphur (S), to meet nutrient removal rates of pastures and crops (DPI 2004, Gourley et al. 2007a). When nutrients are used in excess, they have the potential to significantly degrade air and water quality. The risk of nutrient pollution from a dairy farm increases when nutrient inputs exceed the amount leaving the farm in products (Gourley et al. 2007b). Total P and N inputs onto dairy farms, mainly in the forms of feed, fertiliser and N fixation by legumes, are usually much greater than the outputs in milk, animals and crops, so the surpluses tend to increase as farms intensify and stocking rates increase. In addition to off-farm environmental impacts, nutrient accumulation on dairy farms can result in unnecessary expenditure on feed supplements and fertiliser, and may reduce animal health and production (Gourley et al. 2007b). A significant proportion of nutrients on a dairy farm can end up in the effluent (Gourley et al. 2007b). These nutrients provide a valuable resource and should, where possible, be used to replace nutrients removed from pastures and crops and to replace fertiliser (Gourley et al. 2007a, McDonald et al. 2005). The quantification of nutrients in effluent and their subsequent fate are important considerations in dairy effluent management. Farm nutrient budgeting tools are important tools to assess the risks associated with adverse environmental or production impacts that could result from nutrient deficiency or excess. A nutrient budget, defined as an accounting approach to nutrient inputs, stores and outputs, can help manage nutrients by identifying production goals and opportunities for improvements in nutrient use efficiency, and thus reduce the risk of off-farm nutrient impacts (Gourley et al.
    [Show full text]
  • Urban Expansion and Sensitive Environments
    Urban Expansion and Sensitive Environments Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area RIRDC Publication No. 09/025 RIRDCInnovation for rural Australia Urban Expansion and Sensitive Environments Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area by J Merson, R Attwater, S Booth, R Mulley, P Ampt, H Wildman, M Nugent, S Hooper, M Campbell and R Chapple March 2009 RIRDC Publication No 09/025 RIRDC Project No UNS-18A © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 829 6 ISSN 1440-6845 Urban Expansion and Sensitive Environments – Assessing the role of agri-industries as landscape buffers to the neighbouring Greater Blue Mountains World Heritage Area Publication No. 09/025 Project No. UNS-18A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.
    [Show full text]
  • Soil Fertility Management Is a Lasting Challenge for the Researcher
    Libyan Agriculture Research Center Journal International 1 (4): 221-230, 2010 ISSN 2219-4304 © IDOSI Publications, 2010 Modeling Based Fertilizer Prescription Using Nutmon-Toolbox and Dssat for Soils of Semi Arid Tropics in India U. Surendran, K. Sivakumar, M. Gopalakrishnan and V. Murugappan Department of Soil Science and Agricultural Chemistry, Centre for Soil and Crop management Studies, Tamil Nadu, Agricultural University, Coimbatore-641 003, India Abstract: Mining of nutrients from soil is a major problem causing soil degradation and threatening long-term food production in developing countries. In this study an attempt was made for carrying out nutrient audits, which includes the calculation of nutrient balance at micro (plot/field) and meso (farm) level and evaluation of trends in nutrient mining/enrichment. A nutrient budget is an account of inputs and outputs of nutrients in an agricultural system. NUTrient MONitoring (NUTMON) is a multiscale approach that assess the stocks and flows of N, P and K in an well defined geographical unit based on the inputs viz., mineral fertilizers, manures, atmospheric deposition and sedimentation and outputs of harvested crop produces, residues, leaching, denitrification and erosion losses. The nutrient budgeting study in an irrigated farm at Coimbatore district revealed that the nutrient management practices are not appropriate and sustainable. Soil nutrient pool has to offset the negative balance of N and K, hence there is an mining of nutrient from the soil reserve in the study area. The management options/policy interventions to mitigate this mining by manipulating all inputs and outputs in a judicious way with an integrated system approach are suggested.
    [Show full text]
  • Dairy & Pasture Nutritional Guide
    Quality Ingredients Australian Made Family Owned Nutrient Solutions Dairy & Pasture Nutritional Guide Increase the value of your pasture with SLTEC’s range of quality fluid fertilizers. SLTEC can assist you in managing your nutrient budget, improving dry matter production and reducing environmental impacts. www.sltec.com.au Why Choose SLTEC® Fertilizers? SLTEC® Fertilizers is a leading manufacturer of fluid Fertilizers, based in Northern Victoria. Our Promise Quality Investment Service SLTEC® Fertilizers is SLTEC® Fertilizers will SLTEC® Fertilizers will provide committed to supplying ensure that your fertilizer professional, logistical and consistently high quality inputs maximise the return agronomic support to ensure products. on your investment. a sustainable relationship. Read our quality assurance policy online at sltec.com.au/quality Why use Fluid Fertilizer? • Efficient and highly plant available • Can deliver many nutrients with a single application • Small and frequent applications reduce leaching and runoff • Foliar and Fertigation options allow flexible application timing unlike relying on broadcast application • Consistency of product and uniform application across the soil • Nutrients infiltrate to the root zone where maximum uptake is achieved • Foliar application particularly of trace elements avoids tie up in the soil • Can be mixed with a range of farm chemicals • Labour savings and improved workplace safety 2 Product Options Nitrogen Products MoBo Complex™ Foliar top dressing with nitrogen can significantly boost Supplies Molybdenum and Boron together in appropriate your pasture production, especially in colder months when ratios for legume based pastures and lucerne. Boron is nitrogen fixation and mineralisation slows. The added cost associated with Molybdenum in the synthesis and movement of applying nitrogen can be profitable in situations where of sugars, the production of carbohydrates and nitrate higher cost conserved feed is being used.
    [Show full text]
  • STRIVE Report Series No.74
    STRIVE Report Series No.74 Spent Mushroom Compost Management and Options for Use STRIVE Environmental Protection Agency Programme 2007-2013 Comhshaol, Pobal agus Rialtas Áitiúil Environment, Community and Local Government EPA Inside Pages NEW_Blue Text 08/09/2011 11:09 Page 1 Environmental Protection Agency The Environmental Protection Agency (EPA) is REGULATING IRELAND’S GREENHOUSE GAS EMISSIONS a statutory body responsible for protecting n Quantifying Ireland’s emissions of greenhouse gases the environment in Ireland. We regulate and in the context of our Kyoto commitments. police activities that might otherwise cause n Implementing the Emissions Trading Directive, pollution. We ensure there is solid involving over 100 companies who are major information on environmental trends so that generators of carbon dioxide in Ireland. necessary actions are taken. Our priorities are protecting the Irish environment and ENVIRONMENTAL RESEARCH AND DEVELOPMENT ensuring that development is sustainable. n Co-ordinating research on environmental issues (including air and water quality, climate change, The EPA is an independent public body biodiversity, environmental technologies). established in July 1993 under the Environmental Protection Agency Act, 1992. STRATEGIC ENVIRONMENTAL ASSESSMENT Its sponsor in Government is the Department n Assessing the impact of plans and programmes on of the Environment, Community and Local the Irish environment (such as waste management Government. and development plans). ENVIRONMENTAL PLANNING, EDUCATION AND OUR RESPONSIBILITIES GUIDANCE n Providing guidance to the public and to industry on LICENSING various environmental topics (including licence We license the following to ensure that their emissions applications, waste prevention and environmental do not endanger human health or harm the environment: regulations).
    [Show full text]
  • Sustainable Nutrient Management on Farms
    Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions James M. Gibbons, Julie C. Williamson, A. Prysor Williams*, Paul J.A. Withers, Neal Hockley, Ian M. Harris, Jo W. Hughes, Rachel L. Taylor, Davey L. Jones, John R. Healey School of Environment, Natural Resources & Geography, Bangor University, Bangor, Gwynedd, LL57 2UW. *Author for correspondence: Prysor Williams ([email protected]) Abstract Pollution from agriculture has environmental consequences at local and global scales. Managing this pollution is challenging because of diffuse sources and complex relationships between aquatic and atmospheric emissions. We illustrate this for a UK county that has suffered outbreaks of microbial pollution and eutrophication. We surveyed 49 livestock farms covering 12% of total agricultural grazed land. Soil nutrient status and whole-farm nutrient balances were determined, and the environmental impact of alleviating sub-optimal soil pH by liming was estimated at the county level. Only 37% of fields contained more P than was required for satisfactory grass growth, and soil acidity and available K were often limiting production. The mean farm N, P and K balances were similar to a modelled farm in England & Wales and EU indicators for the majority of North West Europe. This suggests that local eutrophication events linked to agriculture are more likely to relate to improper timing of nutrient application rather than over-application. None of the surveyed farmers used nutrient decision support tools, largely due to a lack of awareness and competing sources of information. Liming soils to pH 6.0 was estimated to both reduce N-leaching and N2O emissions; however, the net climate-change impact would be negative as the direct CO2 emissions would exceed CO2 equivalent emissions of not liming by 394% (95% CI 201-21232).
    [Show full text]
  • Factsheet – E5 Nutrient Management (Banana Cultivation)
    Factsheet – E5 Nutrient management (Banana cultivation) The Banana BMP aligns with Queensland Government reef regulations and the This factsheet covers: Freshcare Environmental – Edition 3 – Code of Practice (ENV3). • Best Management Practice - Bananas Growers are encouraged to complete the Banana BMP self-assessment checklist • Fertilisers and soil additives and management plan as part of their Freshcare Environmental Action Plan, • Nutrient management continuous improvement cycle. • Soil and leaf testing • Selecting nutrient types and amounts For more information on the Banana Environmental BMP refer to the • Nutrient budgeting and planning Australian Banana Growers’ Council website: abgc.org.au/environmental-bmp • Application of fertilisers and soil additives • Storage of fertilisers and soil additives Fertilisers and soil additives • Record keeping The addition of fertiliser in either organic or inorganic forms is essential for • Record keeping – Reef catchments sustainable and productive agriculture. However, incorrectly applied fertilisers can degrade soil, ground water, watercourses and reefs. Good nutrient practices must The following resources may assist with nutrient management priorities: maintain productivity while preventing or minimising off-target impacts. • Nutrient Management section within the Banana BMP: abgc.org.au/best- Fertilisers may be lost from production areas through: management-practice • Queensland reef Water Quality Program – Prescribed methodology for • Inaccurate application. banana cultivation: • Leaching past the root zone and into groundwater. www.qld.gov.au/__data/assets/pdf_file/0015/113145/prescribed-banana- • Moving as dissolved nutrients in surface water leaving farm paddocks. methodology.pdf • Attaching to soil sediments and within organic particles in surface water • Queensland’s Reef Protection Regulations - Bananas: leaving farm paddocks. www.qld.gov.au/environment/agriculture/sustainable-farming/reef/reef- • regulations/producers/bananas Attaching to wind-eroded soil particles.
    [Show full text]
  • Improving Garden Soils with Organic Matter, EC 1561
    EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry.
    [Show full text]
  • Nutrient Budgeting an Overview of What, How and Why
    Nutrient Budgeting An Overview of What, How and Why June 2014 Topics to Cover 1. Why the need for nutrient budgets 2. What is OVERSEER® ? 3. Principles Behind OVERSEER® 4. User Inputs 5. Importance of accurate information 6. OVERSEER® Reports / Outputs 7. Drivers that effect N loss 8. Nutrient Budgets – Key Points 1. Why the need for Nutrient Budgets 2. What is OVERSEER® ? . OVERSEER® is a Decision Support Tool . The program is jointly owned by MPI, AgResearch and The NZ Fertiliser Association . The program models nutrient flows for a farm system . OVERSEER® Nutrient Budgets are a valuable tool for a range of users, in particular farmers and their advisers. It also has a potential role informing policy that includes nutrient management in conjunction with other tools, and in the implementation of policy. An OVERSEER® Nutrient Budget 3. Principles Behind OVERSEER® . Simple to use – once users are trained. Farm specific. Empirical, based on NZ research. Annual time step. Long term averages. When collating data, it is important to understand that the model assumes: • the user supplies actual and reasonable inputs; • the system is at an equilibrium, or that productivity (stock, milk yield, crop yields) is in equilibrium with the inputs (fertiliser, supplements, irrigation both for rate and timing); • any management practice implemented on the farm follows best practice. OVERSEER® Version 6 . Version 6 represented a major new version of the model . On the positive side, OVERSEER® v6 incorporates: • Latest science • Enhanced user interface – now predominantly web based • Provision for monthly inputs of farm activities • Integration of cropping and pastoral models • Provision for cut and carry blocks • Differential grazing of blocks • Provision for composts and biosolids • Upgraded N leaching model • Addition of dairy goat farming model • Revised DCD model • Life Cycle Assessment capability 4.
    [Show full text]
  • This Gardening Life Jonathan Sturm
    This Gardening Life Jonathan Sturm Ashwood Books First published in Australia June 2020 by Ashwood Books PO Box 73, Franklin, Tasmania 7113 ISBN Paperback: 978-0-9874111-0-5 ISBN Kindle: 978-0-9874111-4-3 https://ashwoodbooks.com This edition © Ashwood Books Text © JP Sturm 2020 Printed by Lightning Source This book’s body text is set in Palatino Linotype Headings: Avenir Next By the same author: Complete Organic Gardening 1992 Website: www.sturmsoft.com This cabbage, these carrots, these potatoes, these onions… will soon become me. Such a tasty fact! —Mike Garofalo In memory of my parents: my father the gardener and my mother the Stoic. I’ve had a good life, and was born to and among people I’ve admired and loved. —Wendell Berry Contents A Sufi Story (of sorts) ........................................................... i Preamble ............................................................................ ii Preface ............................................................................... v Introduction ...................................................................... vi Your Garden .......................................................................1 Choosing the Land ................................................................... 1 Basics .......................................................................................... 3 Soil .............................................................................................. 6 Plant Nutrition ........................................................................
    [Show full text]
  • Wood Byproducts
    Wood Byproducts 867. Absorption of calcium and magnesium by the 870. Alteration of soil temperature and moisture fruiting body of the cultivated mushroom Hypsizigus through mulching on the morpho-physiological marmoreus (Peck) bigelow from sawdust culture differentiation in maize. media. Awal, M. A. and Khan, M. A. H. Tabata, T. and Ogura, T. Pakistan Journal of Biological Sciences (Pakistan) 2(4): Journal of Food Science 68(1): 76-79. (2003); ISSN: 0022- 1164-1167. (Oct. 1999) 1147 NAL Call #: QH301 .P355; ISSN: 1028-8880. Descriptors: absorption/ calcium/ calcium carbonate/ Descriptors: mulching / soil/ wood waste/ maize calcium phosphates/ culture media/ growth/ magnesium/ Abstract: Mulching effects of sawdust, ash, rice straw and magnesium carbonate/ magnesium chloride/ magnesium water hyacinth on the morpho-physiological differentiation sulfate/ mycelium/ sawdust/ Basidiomycetes/ of maize (Zea mays L.) and to relate these with soil Basidiomycota/ calcium phosphate/ Hypsizygus/ environment were described. Water hyacinth and rice straw Hypsizygus marmoreus/ magnesium sulphate/ mulches had significant promotive effects on shoot Tricholomataceae elongation, root penetration, LAI and DM accumulation. All Abstract: H. marmoreus was cultivated in potato-sucrose- mulches conserved soil moisture but water hyacinth and agar (PSA) and in sawdust media supplemented with Ca or rice straw retained comparatively greater amount. Water Mg salts. The radial growth of mycelia was determined. The hyacinth and rice straw mulches reduced soil temperature mushroom spawn did not grow on PSA supplemented with fluctuations in all soil depths (5 to 15 cm) and retained Ca carbonate, Mg carbonate, or Mg hydroxide. However, higher soil temperatures at the early hours of the day (02 to the mycelia grew well on sawdust media supplemented with 06 hrs) which were considered to be the decisive factor for Ca phosphate, Ca carbonate, or Mg sulfate.
    [Show full text]