Borneocola (Zingiberaceae), a New Genus from Borneo

Total Page:16

File Type:pdf, Size:1020Kb

Borneocola (Zingiberaceae), a New Genus from Borneo A peer-reviewed open-access journal PhytoKeys 75: 31–55 (2016) Borneocola (Zingiberaceae), a new genus from Borneo 31 doi: 10.3897/phytokeys.75.9837 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Borneocola (Zingiberaceae), a new genus from Borneo Yen Yen Sam1, Atsuko Takano2, Halijah Ibrahim3, Eliška Záveská4, Fazimah Aziz5 1 Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia 2 Museum of Nature and Human Activities, Hyogo 6 chome, Yayoigaoka, Sanda, Hyogo 669-1546, Japan 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Institute of Botany, University of Innsbruck, Austria 5 Department of Aquatic Science, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia Corresponding author: Yen Yen Sam ([email protected]) Academic editor: Pavel Stoev | Received 12 July 2016 | Accepted 9 November 2016 | Published 29 November 2016 Citation: Sam YY, Takano A, Ibrahim H, Záveská E, Aziz F (2016) Borneocola (Zingiberaceae), a new genus from Borneo. PhytoKeys 75: 31–55. doi: 10.3897/phytokeys.75.9837 Abstract A new genus from Borneo, Borneocola Y.Y.Sam, is described here. The genus currently contains eight spe- cies previously classified as members of the Scaphochlamys Baker. The finding is based on the results of the morphological and molecular studies of Scaphochlamys throughout its geographical range and its closely allied sister groups, Distichochlamys M.F.Newman and Myxochlamys A.Takano & Nagam. Borneocola is nested within the tribe Zingibereae and its monophyly is strongly supported by both ITS and matK se- quence data. The genus is characterised by several thin, translucent and marcescent floral bracts, absence of coloured streaks on the labellum and capitate stigma with two dorsal knobs. The genus is distributed in northwest Borneo and all species are very rare and highly endemic. Keywords Distichochlamys, Myxochlamys, Scaphochlamys, morphology, phylogeny, taxonomy Copyright Yen Yen Sam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 32 Yen Yen Sam et al. / PhytoKeys 75: 31–55 (2016) Introduction Southeast Asia is the centre of diversity for the family Zingiberaceae. Here, new taxa are continuously being discovered and named, both at the generic and specific levels. Several of the recent discoveries were further supported by the phyloge- netic analyses which give a better understanding of the evolutionary relationships within the family (Kress and Larsen 2001; Kress et al. 2010; Leong-Škorničková et al. 2011). During the revision of the genus Scaphochlamys throughout its entire geographical range by the first author, some distinctive morphological traits were observed in several Bornean species, suggesting they might represent a separate group from the Peninsular Malaysian taxa. This hypothesis was confirmed by the phylogenetic analyses which are presented here and the eight species previously included in the genus Scaphochlamys are recircumscribed in this paper as a new genus, Borneocola Y.Y.Sam. The genus Scaphochlamys was described by Baker (1892) in the Flora of British India with Scaphochlamys malaccana Baker from Mt. Ophir (now known as Gunung Ledang), Peninsular Malaysia, chosen as the type species. Holttum (1950) carried out the first comprehensive revision of the genus in which he recognised 19 species, all of which were recorded in the peninsula. When Smith (1987) reviewed the tribe Hedychieae in Borneo, she applied the generic delimitation defined by Holttum and recognised fiveScaphochlamys species in Borneo. Out of the five,S . polyphylla and S. petiolata were formerly placed in the genus Haplochorema K.Schum. Sakai and Nag- amasu (2006) discovered that H. gracilipes K.Schum. also have the characteristics of Scaphochlamys and effected the transfer. Recent years have seen a surge in the new species discovered from Borneo bringing the total number of Bornean Scaphochla- mys to 14 (Poulsen and Searle 2005, Meekiong et al. 2011, Ooi and Wong 2014; Meekiong 2015). Distichochlamys M.F.Newman and Myxochlamys A.Takano & Nagam. are sister genera to Scaphochlamys with several unique characteristics clearly separating them from Scaphochlamys (Newman 1995, Searle and Hedderson 2000, Kress et al. 2002, Ngamriabsakul et al. 2004, Takano and Nagamasu 2007). However, the distinc- tion, based on morphological characters, became ambiguous as several taxa described recently exhibit exceptions to the usual generic characters. For example, S. calcicola A.D.Poulsen & R.J.Searle, a species named in 2005 from Sarawak, has a distichous inflorescence, a distinguishing character for the genusDistichochlamys M.F.Newman. Larsen and Newman (2001) also reported another Scaphochlamys species with a dis- tichous inflorescence from north Peninsular Malaysia. A current study on the mor- phology of Scaphochlamys also revealed that some species display the characteristics of Distichochlamys and Myxochlamys. To test the validity of the current generic concept of Scaphochlamys and closely related genera Distichochlamys and Myxochlamys, we have examined their relationship by utilising ITS and matK markers together with the anal- ysis of the morphology across these genera. Borneocola (Zingiberaceae), a new genus from Borneo 33 Materials and methods Morphological study The morphological study was based on living plants in the forest, cultivated plants in the nursery of the Forest Research Institute Malaysia and specimens in the herbaria of AAU, BKF, C, FI, E, K, KEP, KLU, PSU, SAN, SAR and SING. A total of 372 herbarium specimens were examined in this study which includes 29 Scaphochlamys species and four Borneocola species (the types of another four Borneocola species were not yet deposited in the herbaria).The morphological characters examined in the study were habit; position of the rhizome, thickness and colour; height of leafy stem, its base (whether swollen to form a bulbous base); distance between leafy stems; characters of bladeless sheath such as colour, indumentum, number and length; ligule length, indumentum and shape; petiole length, indumentum, whether channelled or rounded in cross section; number of leaves per leafy stem; lamina colour on both surfaces, size, shape, venation, texture, indumentum, apex and base; length of the inflorescence and infructescence, arrangement of the floral bracts on the rachis, characters of floral bracts and bracteoles (colour, indumentum, texture, shape); size, colour and shape of calyx, floral tube, corolla lobes, labellum, staminodes, stamen, ovary. DNA extraction, amplification and sequencing Fresh leaves from the cultivated plants or silica-dried materials from plants collected in the field were used for genomic DNA extraction. For the ITS, the genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Valencia, California, USA) following the manufacturer’s protocol. Two primers, ITS 5P (5’-GGAAGGAGAAGTCGTAACAAGG-3’) and ITS 8P (5’-CACGCTTCTCCAGACTACA3’) (Moller and Cronk 1997) were used to am- plify the ITS region during the polymerase chain reaction (PCR). The thermal cycle of PCR for the amplification of the ITS sequences is initial denaturation at 94°C for 2 minutes, 40 cycles of denaturation at 94°C for 30 seconds, primers annealing at 48°C for 2 minutes, an extension at 72°C for 45 seconds and final extension at 72°C for 7 minutes. The PCR products were then purified using MinElute Gel Extraction Kit (Qiagen, Valencia, California, USA). For the matK, the protocols for DNA extraction, condition, purification and DNA sequencing were described previously by Takano and Nagamasu (2007). The PCR and sequencing primers for matK (cpDNA) were TA-240f (5’-GGGAAA GGATGGGGTCTCCCG-3’), TA-150r (5’-CTCAAGGAGTTTTGTGGTTC-3’), TA-470F (5’-CCCTCTCCCGTCCATATGGA-3’) (all three were designed in the present study), matK8 (Steele and Vilgalys 1994), m5r (Kress et al. 2002), matK8r (Ooi et al. 1995), trnK2621 (Liston and Kadereit 1995), TA-10F, TA-05R, TA-02F and TA-02R (all from Takano and Okada 2002). 34 Yen Yen Sam et al. / PhytoKeys 75: 31–55 (2016) Sequence alignment and phylogenetic analysis Raw sequence data were assembled and edited manually using BioEdit software ver. 7.2.5 (Hall 1999). DNA sequences were aligned with the CLUSTALW 1.83 software package, with default settings and multiple alignments (Thompson et al. 1994). Align- ments of the matK sequences of cpDNA and the ITS sequences of nrDNA were com- bined. Gaps were deleted. A total of 100 individuals including 54 taxa of Scaphochlamys and allied spe- cies were used. The three Siphonochilus species were used as an outgroup (Kress et al. 2002). Materials, accession numbers for the sequences, vouchers and references to the literature are presented in Table 1 at the end of this paper. Three datasets which comprise ITS, matK and ITS+matK combined, each containing 82, 78, and 61 taxa, were constructed. These three datasets were analysed using three methods: maximum parsimony, maximum likelihood and Bayesian analysis. A maximum parsimony (MP) analysis was performed with MEGA 6 (Tamura et al. 2013). Heuristic searches were conducted with RANDOM addition, SPR branch swap- ping and MULPARS options. Support for each branch was estimated with a boot- strap analysis, with 1000 replications (Felsenstein 1985), in a heuristic search
Recommended publications
  • Cally Plant List a ACIPHYLLA Horrida
    Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’
    [Show full text]
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Establishment and Optimization Growth of Shoot Buds-Derived Callus and Suspension Cell Cultures of Kaempferia Parviflora
    American Journal of Plant Sciences, 2014, 5, 2693-2699 Published Online August 2014 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2014.518284 Establishment and Optimization Growth of Shoot Buds-Derived Callus and Suspension Cell Cultures of Kaempferia parviflora Ab Rahman Zuraida1, Othman Ayu Nazreena1, Kamarulzaman Fatin Liyana Izzati1, Ahmad Aziz2,3 1Biotechnology Research Centre, MARDI Headquarters, MARDI HQ, Persiaran MARDI-UPM, Serdang, Malaysia 2School of Science and Food Technology, Kuala Terengganu, Malaysia 3Centre for Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia Email: [email protected], [email protected] Received 10 June 2014; revised 16 July 2014; accepted 6 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Callus and suspension cells culture of Kaempferia parviflora was successfully established. Meris- tematic shoots can be used for utilization of plant cell biosynthetic capabilities for obtaining useful products from valuable medicinal plant to meet out the pharmaceutical demand and also for studying the metabolism. The medium containing combination of 0.2 mg/L 2,4-dichlorophenoxya- cetic acid (2,4-D) and 0.2 mg/L napthyleneacetic acid (NAA) promoted the highest callus induction at 20%. Transferring the initiated callus on the medium with 1 mg/L 2,4-D enhanced the prolif- eration rate up to maximum fresh weight of 6.71 gm. Growth curve of cultured cells revealed that the cells continued to grow until 50 days of culture and showed the highest peak (fresh weight) at 40 days in all different initial weight tested ( 0.2, 0.5 and 1.0 gram).
    [Show full text]
  • Inferring the Phylogeny and Divergence of Chinese Curcuma (Zingiberaceae) in the Hengduan Mountains of the Qinghai–Tibet Plateau by Reduced Representation Sequencing
    Article Inferring the Phylogeny and Divergence of Chinese Curcuma (Zingiberaceae) in the Hengduan Mountains of the Qinghai–Tibet Plateau by Reduced Representation Sequencing Heng Liang 1,†, Jiabin Deng 2,†, Gang Gao 3, Chunbang Ding 1, Li Zhang 4, Ke Xu 5, Hong Wang 6 and Ruiwu Yang 1,* 1 College of Life Science, Sichuan Agricultural University, Yaan 625014, China; [email protected] (H.L.); [email protected] (C.D.) 2 School of Geography and Resources, Guizhou Education University, Guiyang 550018, China; [email protected] 3 College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China; [email protected] 4 College of Science, Sichuan Agricultural University, Yaan 625014, China; [email protected] 5 Sichuan Horticultural Crop Technical Extension Station, Chengdu 610041, China; [email protected] 6 Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Clarifying the genetic relationship and divergence among Curcuma L. (Zingiberaceae) species around the world is intractable, especially among the species located in China. In this study, Citation: Liang, H.; Deng, J.; Gao, G.; Reduced Representation Sequencing (RRS), as one of the next generation sequences, has been applied Ding, C.; Zhang, L.; Xu, K.; Wang, H.; to infer large scale genotyping of major Chinese Curcuma species which present little differentiation Yang, R. Inferring the Phylogeny and of morphological characteristics and genetic traits. The 1295 high-quality SNPs (reduced-filtered Divergence of Chinese Curcuma SNPs) were chosen from 997,988 SNPs of which were detected from the cleaned 437,061 loci by (Zingiberaceae) in the Hengduan RRS to investigate the phylogeny and divergence among eight major Curcuma species locate in the Mountains of the Qinghai–Tibet Hengduan Mountains of the Qinghai–Tibet Plateau (QTP) in China.
    [Show full text]
  • 20 Traditional Knowledge of Medicines Belonging to Family Zingiberaceae from South Western Maharashtra, India
    International Journal of Botany Studies International Journal of Botany Studies ISSN: 2455-541X, Impact Factor: RJIF 5.12 www.botanyjournals.com Volume 1; Issue 4; May 2016; Page No. 20-23 Traditional knowledge of medicines belonging to Family Zingiberaceae from South Western Maharashtra, India. 1 Abhijeet R. Kasarkar, 2 Dilipkumar K. Kulkarni 1 Department of Botany, Vivekanand College, Kolhapur, India. 2 BAIF Development Research Foundation, Warje-Malwadi, Pune, India. Abstract Traditional knowledge of medicines on family Zingiberaceae were collected from South Western Maharashtra regions like Kolhapur, Satara, Ratnagiri, Sindhudurg Districts, during the year 2008 to 2010. The information related to plant species which are used to cure common ailments and disease by personal interviews with local people and herbalists. The 14 species of family Zingiberaceae are used for medicinal purpose. The Details of these species are described with their botanical name, family, local name, part used and ethno-medicinal uses. Keywords: Family, Zingiberaceae, common ailments, South Western Maharashtra. 1. Introduction Ancient Indian books on medicines namely 'Caraka Samhita' The term ethno-botany was coined first by John W. and 'Susmta Samhita' describe the wonderful curative Harshberger [6]. Ethno-botany is a dynamic contemporary properties of Zingiberaceae especially Zingiber Boehm. And science with tremendous importance for the future due to Curcuma L. due to their chemical principles. The medicinal conservation in the hilly parts by oral tradition. It is a and aromatic properties of Indian Zingiberaceae members are traditional knowledge passed from one generation to second described in Materia Indica [1]. Ethnobotanical study of the generation by way of oral tradition and not documented till wild species of Zingiberaceae carried out by Manandhar [16].
    [Show full text]
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • Astavarga Plants- Threatened Medicinal Herbs of the North-West Himalaya
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312533047 Astavarga plants- threatened medicinal herbs of the North-West Himalaya Article · January 2012 CITATIONS READS 39 714 8 authors, including: Anupam Srivastava Rajesh Kumar Mishra Patanjali Research Institute Patanjali Bhartiya Ayurvigyan evum Anusandhan Sansthan 16 PUBLICATIONS 40 CITATIONS 43 PUBLICATIONS 84 CITATIONS SEE PROFILE SEE PROFILE Rajiv K. Vashistha Dr Ajay Singh Hemwati Nandan Bahuguna Garhwal University Patanjali Bhartiya Ayurvigyan Evam Anusandhan Sansthan Haridwar 34 PUBLICATIONS 216 CITATIONS 5 PUBLICATIONS 79 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: ANTI FUNGAL ACTIVITY OF GANDHAK DRUTI AND GANDHAKADYA MALAHAR View project Invivo study of Roscoea purpurea View project All content following this page was uploaded by Rajesh Kumar Mishra on 10 September 2019. The user has requested enhancement of the downloaded file. Int. J. Med. Arom. Plants, ISSN 2249 – 4340 REVIEW ARTICLE Vol. 2, No. 4, pp. 661-676, December 2012 Astavarga plants – threatened medicinal herbs of the North-West Himalaya Acharya BALKRISHNA, Anupam SRIVASTAVA, Rajesh K. MISHRA, Shambhu P. PATEL, Rajiv K. VASHISTHA*, Ajay SINGH, Vikas JADON, Parul SAXENA Patanjali Ayurveda Research and Development Department, Patanjali Yogpeeth, Maharishi Dayanand Gram, Near Bahadrabad, Haridwar- 249405, Uttarakhand, India Article History: Received 24th September 2012, Revised 20th November 2012, Accepted 21st November 2012. Abstract: Astavarga eight medicinal plants viz., Kakoli (Roscoea purpurea Smith), Kshirkakoli (Lilium polyphyllum D. Don), Jeevak (Crepidium acuminatum (D. Don) Szlach), Rishbhak (Malaxis muscifera (Lindl.) Kuntze), Meda (Polygonatum verticillatum (Linn.) Allioni), Mahameda (P.
    [Show full text]
  • Thai Zingiberaceae : Species Diversity and Their Uses
    URL: http://www.iupac.org/symposia/proceedings/phuket97/sirirugsa.html © 1999 IUPAC Thai Zingiberaceae : Species Diversity And Their Uses Puangpen Sirirugsa Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand Abstract: Zingiberaceae is one of the largest families of the plant kingdom. It is important natural resources that provide many useful products for food, spices, medicines, dyes, perfume and aesthetics to man. Zingiber officinale, for example, has been used for many years as spices and in traditional forms of medicine to treat a variety of diseases. Recently, scientific study has sought to reveal the bioactive compounds of the rhizome. It has been found to be effective in the treatment of thrombosis, sea sickness, migraine and rheumatism. GENERAL CHARACTERISTICS OF THE FAMILY ZINGIBERACEAE Perennial rhizomatous herbs. Leaves simple, distichous. Inflorescence terminal on the leafy shoot or on the lateral shoot. Flower delicate, ephemeral and highly modified. All parts of the plant aromatic. Fruit a capsule. HABITATS Species of the Zingiberaceae are the ground plants of the tropical forests. They mostly grow in damp and humid shady places. They are also found infrequently in secondary forest. Some species can fully expose to the sun, and grow on high elevation. DISTRIBUTION Zingiberaceae are distributed mostly in tropical and subtropical areas. The center of distribution is in SE Asia. The greatest concentration of genera and species is in the Malesian region (Indonesia, Malaysia, Singapore, Brunei, the Philippines and Papua New Guinea) *Invited lecture presented at the International Conference on Biodiversity and Bioresources: Conservation and Utilization, 23–27 November 1997, Phuket, Thailand.
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]
  • Journal Vol. 30 Final 2076.7.1.Indd
    102-120 J. Nat. Hist. Mus. Vol. 30, 2016-18 Flora of community managed forests of Palpa district, western Nepal Pratiksha Shrestha1, Ram Prasad Chaudhary2, Krishna Kumar Shrestha1, Dharma Raj Dangol3 1Central Department of Botany,Tribhuvan University, Kathmandu, Nepal 2Research Center for Applied Science and Technology (RECAST), Kathmandu, Nepal 3Natural History Museum, Tribhuvan University, Swayambhu, Kathmandu, Nepal ABSTRACT Floristic diversity is studied based on gender in two different management committee community forests (Barangdi-Kohal jointly managed community forest and Bansa-Gopal women managed community forest) of Palpa district, west Nepal. Square plot of 10m×10m size quadrat were laid for covering all forest areas and maintained minimum 40m distance between two quadrats. Altogether 68 plots (34 in each forest) were sampled. Both community forests had nearly same altitudinal range, aspect and slope but differed in different environmental variables and members of management committees. All the species present in quadrate and as well as outside the quadrate were recorded for analysis. There were 213 species of flowering plant belonging to 67 families and 182 genera. Barangdi-Kohal JM community forest had high species richness i.e. 176 species belonging to 64 families and 150 genera as compared to Bansa-Gopal WM community forest with 143 species belonging to 56 families and 129 genera. According to different life forms and family and genus wise jointly managed forest have high species richness than in women managed forest. Both community forests are banned for fodder, fuel wood and timber collection without permission of management comities. There is restriction of grazing in JM forest, whereas no restriction of grazing in WM forest.
    [Show full text]
  • Rich Zingiberales
    RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: The Tree of Death: The Role of Fossils in Resolving the Overall Pattern of Plant Phylogeny Building the monocot tree of death: Progress and challenges emerging from the macrofossil- rich Zingiberales Selena Y. Smith1,2,4,6 , William J. D. Iles1,3 , John C. Benedict1,4, and Chelsea D. Specht5 Manuscript received 1 November 2017; revision accepted 2 May PREMISE OF THE STUDY: Inclusion of fossils in phylogenetic analyses is necessary in order 2018. to construct a comprehensive “tree of death” and elucidate evolutionary history of taxa; 1 Department of Earth & Environmental Sciences, University of however, such incorporation of fossils in phylogenetic reconstruction is dependent on the Michigan, Ann Arbor, MI 48109, USA availability and interpretation of extensive morphological data. Here, the Zingiberales, whose 2 Museum of Paleontology, University of Michigan, Ann Arbor, familial relationships have been difficult to resolve with high support, are used as a case study MI 48109, USA to illustrate the importance of including fossil taxa in systematic studies. 3 Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley, CA 94720, USA METHODS: Eight fossil taxa and 43 extant Zingiberales were coded for 39 morphological seed 4 Program in the Environment, University of Michigan, Ann characters, and these data were concatenated with previously published molecular sequence Arbor, MI 48109, USA data for analysis in the program MrBayes. 5 School of Integrative Plant Sciences, Section of Plant Biology and the Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA KEY RESULTS: Ensete oregonense is confirmed to be part of Musaceae, and the other 6 Author for correspondence (e-mail: [email protected]) seven fossils group with Zingiberaceae.
    [Show full text]
  • The Potential for the Biological Control of Hedychium Gardnerianum
    The potential for the biological control of Hedychium gardnerianum Annual report 2012 www.cabi.org KNOWLEDGE FOR LIFE A report of the 4th Phase Research on the Biological Control of Hedychium gardnerianum Produced for Landcare Research, New Zealand and The Nature Conservancy, Hawai’i DH Djeddour, C Pratt, RH Shaw CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Reference: VM10089a www.cabi.org KNOWLEDGE FOR LIFE In collaboration with The National Bureau of Plant Genetics Resources and The Indian Council for Agricultural Research Table of Contents 1. Executive summary .................................................................................................. 1 2. Recommendations ................................................................................................... 3 3. Acronyms and abbreviations .................................................................................... 4 4. Phase 4 detail .......................................................................................................... 5 4.1 Background ..................................................................................................... 5 4.2 Aims and Milestones ...................................................................................... 5 4.3 Administration .................................................................................................. 7 4.4 Outputs .......................................................................................................... 13 5. Surveys .................................................................................................................
    [Show full text]