CCL21 Expression in Β-Cells Induces Antigen-Expressing Stromal Cell

Total Page:16

File Type:pdf, Size:1020Kb

CCL21 Expression in Β-Cells Induces Antigen-Expressing Stromal Cell Page 1 of 57 Diabetes CCL21 Expression in -Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice Running Title: Diabetes Prevention by CCL21-induced Pancreatic TLOs Freddy Gonzalez Badilloa,e, †, MS, Flavia Zisi Tegoua,e, †, MS, Maria M. Abreua, †, PhD, Riccardo Masinaa, BS, Divya Shaa, MS, Mejdi Najjara, BS, Shane Wrighta, BS, Allison L. Bayera,b, PhD, Éva Korposf, PhD, Alberto Pugliesea,b,c, MD, R. Damaris Molanoa, DVM, Alice A. Tomeia,d,e*, PhD aDiabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA bDepartment of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA cDepartment of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA dDepartment of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA eDepartment of Biomedical Engineering, University of Miami, Miami, FL, USA fInstitute of Physiological Chemistry and Pathobiochemistry and Cells in Motion (CiM), Cluster of Excellence, University of Muenster, Muenster, Germany *Corresponding author: Alice A. Tomei, 1450 NW 10th Avenue, Miami, FL-33136, USA; Phone: +1 305-243-3469; Email: [email protected] †These authors contributed equally to the work Diabetes Publish Ahead of Print, published online August 1, 2019 Diabetes Page 2 of 57 Abstract Tumors induce tolerance towards their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, non-obese diabetic (NOD) mice express CCL21 in pancreatic β-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age consisting of naïve CD4+ T cells compartmentalized within networks of CD45- gp38+ CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12 week- old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti- inflammatory properties and enhanced expression of β-cell autoantigens compared to non- transgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and higher proportion of Tregs in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for regulation of autoimmunity and while the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in T1D islets in that they resemble lymph nodes, contain FRC-like cells expressing β-cell autoantigens and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention. Keywords Tertiary lymphoid organs, fibroblastic reticular cells, tolerance, non-obese diabetic Page 3 of 57 Diabetes Abbreviations BECs Blood Endothelial Cells DCs dendritic cells DNs Double Negative Lymphoid Stromal Cells EFP Epididymal Fat Pad FRCs Fibroblastic Reticular Cells GSIR Glucose-Stimulated Insulin Release KD Kidney Subcapsular Space LECs Lymphatic Endothelial Cells LN Lymph Node NOD Non-Obese Diabetic SCID Severe Combined Immunodeficiency T1D Type I Diabetes TLOs Tertiary Lymphoid Organs Tregs Regulatory T cells IL-1 Interleukin-1 TNF Tumor necrosis factor IL-6 Interleukin-6 IFNγ Interferon gamma LT Lymphotoxin MHC Major histocompatibility complex imDC immature DCs Diabetes Page 4 of 57 CTL Cytotoxic T lymphocyte Introduction Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in pancreatic islets, resulting in hyperglycemia and insulin dependency (1; 2). Failure of central and peripheral immunological tolerance to islet cell autoantigens mediate T1D (3). Tumor cells are able to induce tolerance and promote their own survival (4). One mechanism utilized by tumor cells to induce tolerance is by secreting the secondary lymphoid chemokine CCL21 (5; 6). CCL21 is expressed by endothelial cells of high endothelial venules (HEV), fibroblastic reticular cells (FRCs) in the lymph node (LN) paracortex and by lymphatic endothelial cells (LECs). CCL21 promotes interactions that are crucial to the adaptive T cell immunity, by attracting various immune cell types expressing its receptor, CCR7, including dendritic cells, regulatory T cell (Treg) and naïve T cells (7-9). CCR7 signaling is critical for peripheral tolerance as it is required for Treg activation in the LN (10-12). Autologous secretion of CCL21 by melanoma cells is required for immune tolerance to melanoma antigens and is dependent on the induction of tolerogenic tertiary lymphoid organs (TLO) (6). TLO formation is reported in many organs during autoimmune diseases, chronic infections, inflammation, in allogeneic transplantation (13-20), and in the fetal pancreas (21); however, the role of TLOs in modulating immunity and self-tolerance remains unclear. In the pancreas of non- Page 5 of 57 Diabetes obese diabetic (NOD) mice, islet infiltration is associated with TLO formation. Characterized by compartmentalization of T and B cell infiltrates as well as appearance of high endothelial venules (HEVs), TLOs are considered sites of antigen presentation and activation of the immune response (22; 23). In a C57BL/6 mouse model, Luther et al. showed that TLO formation in the endocrine pancreas is induced by ectopic expression of CCL21 by the pancreatic islets without any signs of diabetes development (24). The presence and function of FRCs, which induce peripheral tolerance in LNs (25), remain to be elucidated in pancreatic TLOs in T1D. Here, we investigated CCL21 as a novel regulator of immune tolerance to self- molecules implicated in the development of T1D. Local secretion of CCL21 in the pancreas of NOD mice was associated with the formation of TLOs containing β-cell autoantigen-expressing FRC-like cells, which induced systemic regulation of diabetogenic splenocytes. Diabetes Page 6 of 57 Research Design and Methods Mice All animal procedures were approved by the Institutional Animal Care and Use Committee of University of Miami. Female NOD.Cg-Tg (Ins2-Ccl21b)2Cys/JbsJ (herein referred to as Ins2- CCL21) mice, NOD.CB17-Prkdcscid/J (NOD-scid), NOD/ShiLtJ, BALB/cJ, and C57BL/6J mice were purchased from The Jackson Laboratory (Bar Harbor, Maine). Histological Evaluation, Immunofluorescence and Insulitis Grading Sections from formalin-fixed paraffin-embedded or OCT frozen blocks were stained and imaged as reported (26). Islet size, Treg and FRCs density within pancreatic islets and islet size were quantified with ImageJ (NIH). Insulitis was graded depending on the percent of lymphocyte infiltration in the islet; 0%=grade 1, 1-10%=grade 2, 10-25%=grade 3, 25-50%=grade 4, and >50%=grade 5. Islet isolation, culture, in vitro functionality and CCL21 assays. Isolation of murine pancreatic islets were performed at the DRI Preclinical Cell Processing and Translational Models Core as described (27). Glucose stimulated insulin release (GSIR) was performed as described (27). CCL21 levels were measured by ELISA (R&D Systems, Minneapolis, MN). Diabetes Induction, Blood Glucose Monitoring, Islet and Skin Transplantation, Adoptive Transfer of Splenocytes Page 7 of 57 Diabetes Diabetes was chemically-induced with a single intravenous injection of 200mg/kg streptozotocin (STZ) (27) or with 50 mg/kg of STZ on five consecutive days. Diabetes was determined by three, consecutive readings of non-fasting glycemic values above 250mg/dL. Transplants in the renal subcapsular space (KD) were performed as described (26-28). Islet transplant experiments and donor age/gender can be found in in Table 1 and Table S2. Skin grafting was performed as described (29). Adoptive transfer experiments by intravenous (IV) injection are summarized in Table 2. Immune cell isolation from pancreas, spleens, LNs and blood LNs and spleens were processed by manual disruption. Collagenase D (Sigma) was used for the pancreatic distention and cell isolation. Single cell suspensions were stained for live/dead (Invitrogen) and using the following anti-mouse antibodies: CD3, CD8, CD44, CD62L, CD25, CD127, Ki-67, B220 (BD Bioscience), CD4, FoxP3 (eBioscience), CD45 (Biolegend) and acquired on a CytoFLEX or a BD LSRII. Tetramer staining for insulin and IGRP (NIH Tetramer Core) is detailed in Table S1. FRC isolation from islets and LNs FRCs were isolated from skin draining LNs (axillary, brachial and inguinal) and pancreatic islets by adapting published protocols (30). Briefly, harvested tissues were digested with Dispase II, DNAse I and Collagenase P for 1 hour maximum. Every 15 Diabetes Page 8 of 57 minutes, released cells were collected on ice, while fresh enzyme solution was added to the undigested tissue. Single cell suspensions were stained with the following antibodies: gp38-PE (eBioscience), CD31-APC (Biolegend) and CD45-PeCy7 (Tonbo Biosciences) and sorted using a Beckman Coulter MoFlo Astrios EQ. LN FRCs and islet-derived FRC-like cells were gated as CD45- CD31- gp38+ cells. Characterization of FRC-like cells by RNA sequencing RNAseq Sample Preparation and Sequencing. Total RNA was extracted from FRCs freshly sorted from LNs or from pancreatic islets using TRIzol reagent (Invitrogen) and the RNeasy microKit (Qiagen). Preparation and sequencing of RNA libraries was carried out in the John P.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases
    Current Genomics, 2010, 11, 591-606 591 Genetics of Interleukin 1 Receptor-Like 1 in Immune and Inflammatory Diseases Loubna Akhabir and Andrew Sandford* Department of Medicine, University of British Columbia, UBC James Hogg Research Centre, Providence Heart + Lung Institute, Room 166, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada Abstract: Interleukin 1 receptor-like 1 (IL1RL1) is gaining in recognition due to its involvement in immune/inflamma- tory disorders. Well-designed animal studies have shown its critical role in experimental allergic inflammation and human in vitro studies have consistently demonstrated its up-regulation in several conditions such as asthma and rheumatoid ar- thritis. The ligand for IL1RL1 is IL33 which emerged as playing an important role in initiating eosinophilic inflammation and activating other immune cells resulting in an allergic phenotype. An IL1RL1 single nucleotide polymorphism (SNP) was among the most significant results of a genome-wide scan inves- tigating eosinophil counts; in the same study, this SNP associated with asthma in 10 populations. The IL1RL1 gene resides in a region of high linkage disequilibrium containing interleukin 1 receptor genes as well as in- terleukin 18 receptor and accessory genes. This poses a challenge to researchers interested in deciphering genetic associa- tion signals in the region as all of the genes represent interesting candidates for asthma and allergic disease. The IL1RL1 gene and its resulting soluble and receptor proteins have emerged as key regulators of the inflammatory proc- ess implicated in a large variety of human pathologies We review the function and expression of the IL1RL1 gene.
    [Show full text]
  • Regulation of CCR7-Dependent Cell Migration Through CCR7 Homodimer Formation
    www.nature.com/scientificreports OPEN Regulation of CCR7-dependent cell migration through CCR7 homodimer formation Received: 6 September 2016 Daichi Kobayashi 1,2,6,7, Masataka Endo2, Hirotaka Ochi2, Hironobu Hojo3, Accepted: 24 July 2017 Masayuki Miyasaka4,5,6 & Haruko Hayasaka2 Published: xx xx xxxx The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efcacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers, we demonstrated a direct contribution of CCR7 homodimerization to CCR7-dependent cell migration and signaling. Induction of stable CCR7 homodimerization resulted in enhanced CCR7- dependent cell migration and CCL19 binding, whereas induction of CXCR4/CCR7 heterodimerization did not. In contrast, dissociation of CCR7 homodimerization by a novel CCR7-derived synthetic peptide attenuated CCR7-dependent cell migration, ligand-dependent CCR7 internalization, ligand-induced actin rearrangement, and Akt and Erk signaling in CCR7-expressing cells. Our study indicates that CCR7 homodimerization critically regulates CCR7 ligand-dependent cell migration and intracellular signaling in multiple cell types. Recruitment of lymphocytes from the blood into secondary lymphoid tissues is a process contributing to con- tinuous immune surveillance. Tis process is tightly regulated by the interaction between lymphoid chemokines expressed in lymphoid tissues and their specifc G-protein-coupled receptors in migrating cells1, 2. CCR7 is one of the major chemokine receptors preferentially expressed in a wide range of immune cells, including naïve T and B cells, central memory T cells, mature dendritic cells3, and plasmacytoid dendritic cells4, 5.
    [Show full text]
  • Following Ligation of CCL19 but Not CCL21 Arrestin 3 Mediates
    Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL21 Melissa A. Byers, Psachal A. Calloway, Laurie Shannon, Heather D. Cunningham, Sarah Smith, Fang Li, Brian C. This information is current as Fassold and Charlotte M. Vines of September 25, 2021. J Immunol 2008; 181:4723-4732; ; doi: 10.4049/jimmunol.181.7.4723 http://www.jimmunol.org/content/181/7/4723 Downloaded from References This article cites 82 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/181/7/4723.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL211 Melissa A. Byers,* Psachal A. Calloway,* Laurie Shannon,* Heather D. Cunningham,* Sarah Smith,* Fang Li,† Brian C.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The Unexpected Role of Lymphotoxin Β Receptor Signaling
    Oncogene (2010) 29, 5006–5018 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The unexpected role of lymphotoxin b receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development MJ Wolf1, GM Seleznik1, N Zeller1,3 and M Heikenwalder1,2 1Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland and 2Institute of Virology, Technische Universita¨tMu¨nchen/Helmholtz Zentrum Mu¨nchen, Munich, Germany The cytokines lymphotoxin (LT) a, b and their receptor genesis. Consequently, the inflammatory microenviron- (LTbR) belong to the tumor necrosis factor (TNF) super- ment was added as the seventh hallmark of cancer family, whose founder—TNFa—was initially discovered (Hanahan and Weinberg, 2000; Colotta et al., 2009). due to its tumor necrotizing activity. LTbR signaling This was ultimately the result of more than 100 years of serves pleiotropic functions including the control of research—indeed—the first observation that tumors lymphoid organ development, support of efficient immune often arise at sites of inflammation was initially reported responses against pathogens due to maintenance of intact in the nineteenth century by Virchow (Balkwill and lymphoid structures, induction of tertiary lymphoid organs, Mantovani, 2001). Today, understanding the underlying liver regeneration or control of lipid homeostasis. Signal- mechanisms of why immune cells can be pro- or anti- ing through LTbR comprises the noncanonical/canonical carcinogenic in different types of tumors and which nuclear factor-jB (NF-jB) pathways thus inducing cellular and molecular inflammatory mediators (for chemokine, cytokine or adhesion molecule expression, cell example, macrophages, lymphocytes, chemokines or proliferation and cell survival.
    [Show full text]
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • CCL21 Modulates the Migration of NSCL Cancer by Changing the Concentration of Intracellular Ca2+
    ONCOLOGY REPORTS 27: 481-486, 2012 CCL21 modulates the migration of NSCL cancer by changing the concentration of intracellular Ca2+ JUN LIU, LEI ZHANG and CHANGLI WANG Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China Received September 23, 2011; Accepted October 31, 2011 DOI: 10.3892/or.2011.1528 Abstract. Recurrence and metastasis are the major factors with more than 1.1 million new cases of NSCLC reported associated with the poor prognosis of non-small cell lung annually and nearly 1.2 million deaths each year (1-3) and the cancer (NSCLC). It has been shown that multiple chemokines incidence continues to increase (4). After clinical diagnosis and their receptors are related to the progression and metastasis of lung cancer, only about 20% patients benefit from curative of NSCLC. The aim of this study was to conduct an investiga- surgical therapies such as lung resection. Furthermore, a tion into whether CCL21 and its receptor, CCR7, play a role in recurrence rate as high as around 65% is seen within five NSCLC invasion and metastasis. We used Western blotting, years and the survival rate is only 30-40% at five years immunocytochemistry and flow cytometry to detect CCR7 post-operatively. NSCLC recurrence and metastasis are the protein expression in four NSCLC cell lines EKVX, HOP-62, main causes of treatment failure and the high fatality rate NCI-H23 and Slu-01; and we conducted a cell migration of this cancer. So the major factors associated with the poor experiment to observe the pseudopodia formation and mobility prognosis of NSCLC are the high frequency of tumor recur- of the lung cancer cells.
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]