Sls-Spec-159 Cross-Program

Total Page:16

File Type:pdf, Size:1020Kb

Sls-Spec-159 Cross-Program https://ntrs.nasa.gov/search.jsp?R=20200000867 2020-04-13T19:26:29+00:00Z SLS-SPEC-159 REVISION G National Aeronautics and EFFECTIVE DATE: DECEMBER 11, 2019 Space Administration CROSS-PROGRAM DESIGN SPECIFICATION FOR NATURAL ENVIRONMENTS (DSNE) Approved for Public Release; Distribution is Unlimited The electronic version is the official approved document. Verify this is the correct version before use. Space Launch System (SLS) Program Revision: G Document No: SLS-SPEC-159 Effective Date: December 11, 2019 Page: 2 of 364 Title: Cross-Program Design Specification for Natural Environments (DSNE) HISTORY PAGE Revision Change Effective Status Description No. No. Date Baseline Initial baseline per CECBD SV-02-0004, dated 8/8/12; 8/8/12 (CR SLS-00034) PCN SV00077 Category 1 Applicable Document Assessment per 8/22/13 PCBD SV2-01-0100R1, dated 8/22/13; CR SLS- 00162; PCN SV00305 A Update SLS-SPEC-159, Cross-Program Design 12/18/13 Specification for Natural Environments (DSNE) to Revision A, per JICBD SV2-02-0063, dated 12/18/13; CR SLS-00193; PCN SV00450 B Update SLS-SPEC-159, Cross-Program Design 8/27/14 Specification for Natural Environments (DSNE) to Revision B to close out a forward work item and change specifications due to model and database updates that are being applied by ESD per JICBD SV2-02-0133, dated August 27, 2014; CR SLS- 00293; PCN SV00668 C Revise SLS-SPEC-159, Cross-Program Design 03/25/15 Specification for Natural Environments (DSNE) to Revision C, per JICBD SV2-02-0194, dated March 25, 2015; CR SLS-00370; PCN SV00801 D Revise SLS-SPEC-159, Cross-Program Design 11/4/15 Specification for Natural Environments (DSNE) to Revision D, per JICBD SV2-02-0257, dated November 4, 2015; CR SLS-00407-X; PCN SV00895 E Revise SLS-SPEC-159, Cross-Program Design 07/12/17 Specification for Natural Environments (DSNE), to Revision E per JICBD SV2-02-0476, dated July 12, 2017; CR SLS-00633-X; PCN SV01341 F Revise SLS-SPEC-159, Cross-Program Design 05/08/19 Specification for Natural Environments (DSNE) to Revision F per JICBD SV2-02-0707, dated May 8, 2019; CR SLS-00833-X; PCN SV01922 G Revise SLS-SPEC-159, Cross-Program Design 12/11/19 Specification for Natural Environments (DSNE) to Revision G per JICBD SV2-02-0828, dated Approved for Public Release; Distribution is Unlimited The electronic version is the official approved document. Verify this is the correct version before use. Space Launch System (SLS) Program Revision: G Document No: SLS-SPEC-159 Effective Date: December 11, 2019 Page: 3 of 364 Title: Cross-Program Design Specification for Natural Environments (DSNE) December 11, 2019; CR SLS-00903-X; PCN SV02184 NOTE: Updates to this document, as released by numbered changes (Change XXX), are identified by a black bar on the right margin. Approved for Public Release; Distribution is Unlimited The electronic version is the official approved document. Verify this is the correct version before use. Space Launch System (SLS) Program Revision: G Document No: SLS-SPEC-159 Effective Date: December 11, 2019 Page: 4 of 364 Title: Cross-Program Design Specification for Natural Environments (DSNE) TABLE OF CONTENTS PARAGRAPH PAGE 1.0 INTRODUCTION .............................................................................................................23 1.1 Background ........................................................................................................................23 1.2 Purpose ...............................................................................................................................23 1.3 Scope ..................................................................................................................................23 1.4 Change Authority/Responsibility.......................................................................................25 2.0 DOCUMENTS ...................................................................................................................26 2.1 Applicable Documents, Models, and Data Sets .................................................................26 2.1.1 Applicable Documents .........................................................................................26 2.1.2 Applicable Models/Data Sets ...............................................................................26 3.0 NATURAL ENVIRONMENT SPECIFICATION............................................................28 3.1 Prelaunch – Ground Processing Phases .............................................................................28 3.1.1 Transportation Environments to the Launch Site KSC (Reserved) .....................28 3.1.2 Reserved ...............................................................................................................28 3.1.3 Ground Winds for Transport and Launch Pad Environments ..............................28 3.1.4 Radiant (Thermal) Energy Environment for Ground Ops at KSC .......................37 3.1.5 Air Temperature Environment for Ground Operations at KSC ...........................45 3.1.6 Air Pressure Environment for Ground Operations at KSC ..................................48 3.1.7 Humidity Environment for Ground Operations at KSC .......................................49 3.1.8 Aerosol Environment for Ground Operations at KSC .........................................50 3.1.9 Precipitation Environment for Ground Operations at KSC ..................................52 3.1.10 Flora and Fauna Environment for Ground Operations .........................................53 3.1.11 Lightning Environment for Ground Operations at KSC ......................................53 3.2 Launch Countdown and Earth Ascent Phases ...................................................................54 3.2.1 Ground Winds Environments During Launch ......................................................54 3.2.2 Surface Air Temperature Environment During Launch .......................................58 3.2.3 Surface Air Pressure Environment During Launch ..............................................59 3.2.4 Surface Humidity Environment During Launch ..................................................59 3.2.5 Aloft Wind Environment for Vehicle Ascent .......................................................60 Approved for Public Release; Distribution is Unlimited The electronic version is the official approved document. Verify this is the correct version before use. Space Launch System (SLS) Program Revision: G Document No: SLS-SPEC-159 Effective Date: December 11, 2019 Page: 5 of 364 Title: Cross-Program Design Specification for Natural Environments (DSNE) 3.2.6 Aloft Air Temperature Environment for Vehicle Ascent .....................................66 3.2.7 Aloft Air Pressure Environment for Vehicle Ascent ............................................67 3.2.8 Aloft Air Density Environment for Vehicle Ascent .............................................67 3.2.9 Cloud Environment for Launch ............................................................................68 3.2.10 Rain and Precipitation Environment for Launch ..................................................70 3.2.11 Flora and Fauna Environments during Launch and Ascent .................................71 3.2.12 Natural and Triggered Lightning during Launch and Ascent ..............................72 3.2.13 Ionizing Radiation Environment for Launch, Ascent and Re-entry .....................72 3.3 In-Space Phases .................................................................................................................82 3.3.1 Total Dose ............................................................................................................83 3.3.2 Single Event Effects ...........................................................................................145 3.3.3 Plasma Charging .................................................................................................173 3.3.4 Ionizing Radiation Environment for Crew Exposure .........................................184 3.3.5 Reserved .............................................................................................................189 3.3.6 Meteoroid and Orbital Debris Environment .......................................................189 3.3.7 Earth Gravitational Field ....................................................................................191 3.3.8 Lunar Gravitational Field ...................................................................................191 3.3.9 Thermal Environment for In-Space Hardware ...................................................193 3.3.10 Solar Illumination Environment for In-Space Hardware ...................................200 3.3.11 In-Space Neutral Atmosphere (Thermosphere) Density ....................................202 3.3.12 Geomagnetic Fields (Reserved) .........................................................................203 3.4 Lunar Surface Operational Phases ...................................................................................203 3.4.1 Lunar Surface Geological and Geomorphological Environment .......................204 3.4.2 Lunar Regolith Properties ..................................................................................215 3.4.3 Lunar Surface Plasma Environment ...................................................................245 3.4.4 Lunar Regolith Electrical Properties ..................................................................248 3.4.5 Optical Properties ...............................................................................................254
Recommended publications
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Dsc Pub Edited
    1968 93) few craters, much like the mare sites, Surveyor 7 although the general area was rougher. About Nation: U.S. (43) 21 hours after landing, ground controllers Objective(s): lunar soft-landing fired a pyrotechnic charge to drop the alpha- Spacecraft: Surveyor-G scattering instrument on the lunar surface. Spacecraft Mass: 1,040.1 kg When the instrument failed to move, con- Mission Design and Management: NASA JPL trollers used the robot arm to force it down. Launch Vehicle: Atlas-Centaur (AC-15 / Atlas The scoop on the arm was used numerous 3C no. 5903C / Centaur D-1A) times for picking up soil, digging trenches, Launch Date and Time: 7 January 1968 / and conducting at least sixteen surface- 06:30:00 UT bearing tests. Apart from taking 21,274 pho- Launch Site: ETR / launch complex 36A tographs (many of them in stereo), Surveyor Scientific Instruments: 7 also served as a target for Earth-based 1) imaging system lasers (of 1-watt power) to accurately 2) alpha-scattering instrument measure the distance between Earth and the 3) surface sampler Moon. Although it was successfully reacti- 4) footpad magnet vated after the lunar night, Surveyor 7 Results: Since Surveyors 1, 3, 5, and 6 success- finally shut down on 21 February 1968. In fully fulfilled requirements in support of total, the five successful Surveyors returned Apollo, NASA opted to use the last remaining more than 87,000 photos of the lunar surface Surveyor for a purely scientific mission out- and demonstrated the feasibility of soft- side of exploring a potential landing site for landing a spacecraft on the lunar surface.
    [Show full text]
  • 50 Years of Dust on the Moon: from Apollo to Cheng'e-4
    DUST ON THE MOON: FROM APOLLO TO CHENG’E-4 Prof. Brian J. O’Brien School of Physics, University of Western Australia [email protected] www.uwa.edu.au/people/brian.obrien Ph. 61 8 9387 3827 DAP2017 Boulder, Colorado 12 January 2017 Presented by courtesy of Dr William M. Farrell, GSFC LDAP2010: OVERVIEW BY O’BRIEN 1. 1st REVIEW OF DDE, TDS AND LEAM EXPTS 2. DDE: 8 DISCOVERIES O’Brien 1970-2009 3. TDS: FIRST MODERN DISCUSSION GOLD’s DISCOVERY OF COHESIVE FORCES IN 1971 4. LEAM: SUGGESTED ALTERNATIVE CAUSE AS NOISE BITS IN BURSTS, PERHAPS FROM EMI 5. FINAL O’B IN 2011 “BUT WHO WILL LISTEN?” 6. LADEE FINDINGS CONSISTENT WITH #3 + #4? COHESIVE FORCES OF LUNAR DUST SURFACE DUST ON MOON: MAJOR ITEMS SINCE LDAP2010 O’BRIEN 2010-16 CHENG’E-3 & CHENG’E-4 • 2011:O’BRIEN LDAP-2010 • CHENG’E-3 & YUTU doi:10.1016/j.pss.2011.04.016 • YUTU FIFTH LUNAR ROVER • 2013: LUNAR WEATHER AT • IN 2013 FIRST IN 40 YEARS 3 APOLLO SITES • MOVED 100m LUNAR DAY 1 http:dx.doi.org/10.1016/j.pss. • NO MOVEMENTS AFTER 1st 2013.1002/2013SW000978 SUNRISE: WHY NOT? • 2015: SUNRISE-DRIVEN GROUND-TRUTH FACTS • CHENG’E-4 (2018): dx.doi.org/10.1016/j.pss.2015 #1 PRIORITY CHANGED 2016 .09.018 TO LUNAR DUST STUDIES SUNRISE DRIVEN EFFECTS APOLLO 12 DUST SYNERGIES WITH 2 SOLAR DETECTOR DDE CELLS AT RIGHT ANGLES INVENTED 12/01/1966 1 VSCE VERTICAL SOLAR CELL FACES EAST (SUNRISE MAX) 2 HSC HORIZONTAL CELL FACING UP (NOON MAX.).
    [Show full text]
  • OSIRIS-Rex Goes Asteroid Collecting
    OSIRIS-REx Goes Asteroid Collecting — Scott Messenger, NASA Johnson Space Center OSIRIS-REx is NASA’s third New Frontiers mission, following the New Horizons mission, which completed a flyby of Pluto in 2015, and the Juno mission to orbit Jupiter, which has just begun science operations. The OSIRIS-REx mission’s primary objective is to collect pristine surface samples of a carbonaceous asteroid and return them to Earth for analysis. Carbonaceous asteroids and comets are considered to be L “primitive” bodies that have preserved remnants of the solar system starting materials. By studying them, scientists can learn about the origin and earliest evolution of the solar system. The OSIRIS-REx spacecraft was launched on September 8, 2016, beginning its two- year journey to asteroid 101955 Bennu (formerly designated 1999 RQ36). After more than one year of detailed remote observations, OSIRIS-REx will obtain surface samples and return them to Earth in September 2023. The OSIRIS-REx proposal, led by the late Dr. Michael J. Drake, was selected during the 2011 New Frontiers competition, and is now led by Dr. Dante Lauretta of the University of Arizona. The Pmission name OSIRIS-REx (an acronym for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) embodies five objectives: (1) Origins: Return and analyze a sample of a carbonaceous asteroid; (2) Spectral Interpretation: Provide ground truth for remote observations of asteroids; (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid; (4) Security: Directly measure the non-gravitational force known as the Yarkovsky effect, which changes asteroidal orbits through its Iinteraction with sunlight; and (5) Regolith Explorer: Determine the properties of unconsolidated material that covers the asteroid surface.
    [Show full text]
  • The NEO Problem: Current Activities in Russia
    51-th Session of STSC UN COPUOS Vienna, Austria, February 10, 2014 TheThe NEONEO problem:problem: currentcurrent activitiesactivities inin RussiaRussia B. Shustov r. GeneralGeneral activitiesactivities (Feb(Feb 20132013 –– FebFeb 2014)2014) 2013 March,12 – Round table of the Committees for science and defense of the Federation Council (Upper chamber of the Russia Parliament); 2013 November, a series of meetings in Roscosmos on cooperative approach to the NEO problem; Telecon EMERCOM-FEMA January 28, 2014; A number of expeditions were organized to the region of the fall of Chelyabinsk meteorite; All Russia science conferences in Chelyabinsk (April 2013) and in Krasnodar (October 2013) were held. 2 BBasicasic aspectsaspects ofof thethe NEONEO problemproblem Major constituents of the NEO (Asteroid/Comet Impact Hazard - ACH) problem are: Detection and characterization Risk assessment Protection and mitigation We work in all areas both at national and international levels. 3 ToTo thethe NEONEO massivemassive detectiondetection AZT-33IR AZT-33VM The telescope АZТ-33VM ( ∅ 1.6 m) for massive detection of NEOs at large distances is under construction near Baikal Lake. We plan to complete it in 2017. This is supported by Academy of Sciences and Roscosmos. 4 ISONISON telescopestelescopes forfor NEONEO surveyssurveys andand followfollow -- upup observationsobservations ISON (International Scientific Optical Network) – one of largest Russian networks capable to observe NEOs at near space. It is partially supported by Roscosmos. 5 ISONISON :: resultsresults
    [Show full text]
  • ILWS Report 137 Moon
    Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Albury February 2020 © 2011, revised 2020. All rights reserved by the authors. The contents of this publication are copyright in all countries subscribing to the Berne Convention. No parts of this report may be reproduced in any form or by any means, electronic or mechanical, in existence or to be invented, including photocopying, recording or by any information storage and retrieval system, without the written permission of the authors, except where permitted by law. Preferred citation of this Report Spennemann, Dirk HR & Murphy, Guy (2020). Returning to the Moon. Heritage issues raised by the Google Lunar X Prize. Institute for Land, Water and Society Report nº 137. Albury, NSW: Institute for Land, Water and Society, Charles Sturt University. iv, 35 pp ISBN 978-1-86-467370-8 Disclaimer The views expressed in this report are solely the authors’ and do not necessarily reflect the views of Charles Sturt University. Contact Associate Professor Dirk HR Spennemann, MA, PhD, MICOMOS, APF Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury NSW 2640, Australia. email: [email protected] Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page ii CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 2. HUMAN ARTEFACTS ON THE MOON 3 What Have These Missions Left BehinD? 4 Impactor Missions 10 Lander Missions 11 Rover Missions 11 Sample Return Missions 11 Human Missions 11 The Lunar Environment & ImpLications for Artefact Preservation 13 Decay caused by ascent module 15 Decay by solar radiation 15 Human Interference 16 3.
    [Show full text]
  • The Moon As a Laboratory for Biological Contamination Research
    The Moon As a Laboratory for Biological Contamina8on Research Jason P. Dworkin1, Daniel P. Glavin1, Mark Lupisella1, David R. Williams1, Gerhard Kminek2, and John D. Rummel3 1NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2European Space AgenCy, Noordwijk, The Netherlands 3SETI InsQtute, Mountain View, CA 94043, USA Introduction Catalog of Lunar Artifacts Some Apollo Sites Spacecraft Landing Type Landing Date Latitude, Longitude Ref. The Moon provides a high fidelity test-bed to prepare for the Luna 2 Impact 14 September 1959 29.1 N, 0 E a Ranger 4 Impact 26 April 1962 15.5 S, 130.7 W b The microbial analysis of exploration of Mars, Europa, Enceladus, etc. Ranger 6 Impact 2 February 1964 9.39 N, 21.48 E c the Surveyor 3 camera Ranger 7 Impact 31 July 1964 10.63 S, 20.68 W c returned by Apollo 12 is Much of our knowledge of planetary protection and contamination Ranger 8 Impact 20 February 1965 2.64 N, 24.79 E c flawed. We can do better. Ranger 9 Impact 24 March 1965 12.83 S, 2.39 W c science are based on models, brief and small experiments, or Luna 5 Impact 12 May 1965 31 S, 8 W b measurements in low Earth orbit. Luna 7 Impact 7 October 1965 9 N, 49 W b Luna 8 Impact 6 December 1965 9.1 N, 63.3 W b Experiments on the Moon could be piggybacked on human Luna 9 Soft Landing 3 February 1966 7.13 N, 64.37 W b Surveyor 1 Soft Landing 2 June 1966 2.47 S, 43.34 W c exploration or use the debris from past missions to test and Luna 10 Impact Unknown (1966) Unknown d expand our current understanding to reduce the cost and/or risk Luna 11 Impact Unknown (1966) Unknown d Surveyor 2 Impact 23 September 1966 5.5 N, 12.0 W b of future missions to restricted destinations in the solar system.
    [Show full text]
  • Locations of Anthropogenic Sites on the Moon R
    Locations of Anthropogenic Sites on the Moon R. V. Wagner1, M. S. Robinson1, E. J. Speyerer1, and J. B. Plescia2 1Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-3603; [email protected] 2The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 Abstract #2259 Introduction Methods and Accuracy Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera To get the location of each object, we recorded its line and sample in (NAC) images, with resolutions from 0.25-1.5 m/pixel, allow the each image it appears in, and then used USGS ISIS routines to extract identifcation of historical and present-day landers and spacecraft impact latitude and longitude for each point. The true position is calculated to be sites. Repeat observations, along with recent improvements to the the average of the positions from individual images, excluding any extreme spacecraft position model [1] and the camera pointing model [2], allow the outliers. This process used Spacecraft Position Kernels improved by LOLA precise determination of coordinates for those sites. Accurate knowledge of cross-over analysis and the GRAIL gravity model, with an uncertainty of the coordinates of spacecraft and spacecraft impact craters is critical for ±10 meters [1], and a temperature-corrected camera pointing model [2]. placing scientifc and engineering observations into their proper geologic At sites with a retrorefector in the same image as other objects (Apollo and geophysical context as well as completing the historic record of past 11, 14, and 15; Luna 17), we can improve the accuracy signifcantly. Since trips to the Moon.
    [Show full text]
  • Russian Networks Capable to Observe Neos at Near Space
    52-th Session of STSC UN COPUOS Vienna, Austria, February 3, 2015 The NEO problem: current activities in Russia V.Emel’yanenko Basic aspects of the NEO problem Major constituents of the NEO (Asteroid/Comet Impact Hazard - ACH) problem are: Detection and characterization Risk assessment Protection and mitigation We work in all areas at both national and international levels. 2 General activities (Feb 2014 – Feb 2015) Studies of the Chelyabinsk meteorite; Completion of the 1.6 m telescope for NEO detection; Work on the development of a moderate aperture telescope national network aimed to detection and monitoring of NEOs; Various projects of space based means to detect and to counteract dangerous bodies; Construction of a data-bank on impact consequences . 3 Some lessons of the Chelyabinsk event (15 Feb, 2013): Asteroids of decameter size could be very dangerous; We need to know about coming threat reasonably in advance; Day time asteroids are unobservable by any ground based facilities. 4 En route to the NEO detection AZT-33IR AZT-33VM The telescope АZТ-33VM ( ∅ 1.6 m) for the mass detection of NEOs at large distances is nearing completion. First light is expected in the fall of 2015. 5 ISON telescopes for NEO surveys and follow- up observations ISON (International Scientific Optical Network) – one of the largest Russian networks capable to observe NEOs at near space. 6 ISON : results on asteroids Hundreds of light curves were constructed for tens of NEAs (3122) Florence, (20187) Janapittichova, (25916) 2001 CP44, (162004) 1991 VE, (7888)
    [Show full text]
  • Astronomical Observations of Volatiles on Asteroids
    Astronomical Observations of Volatiles on Asteroids Andrew S. Rivkin The Johns Hopkins University Applied Physics Laboratory Humberto Campins University of Central Florida Joshua P. Emery University of Tennessee Ellen S. Howell Arecibo Observatory/USRA Javier Licandro Instituto Astrofisica de Canarias Driss Takir Ithaca College and Planetary Science Institute Faith Vilas Planetary Science Institute We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume. 1 Water ice sublimation and processes that create, incorporate, or deliver volatiles to the asteroid belt 1.1 Accretion/Solar system formation The concept of the “snow line” (also known as “water-frost line”) is often used in discussing the water inventory of small bodies in our solar system. The snow line is the heliocentric distance at which water ice is stable enough to be accreted into planetesimals.
    [Show full text]
  • On the Russian Contribution to the IAWN
    IAWN Steering Group Meeting Minor Planet Center & Harvard-Smithsonian Center for Astrophysics 13 – 14 January 2014 On the Russian contribution to the IAWN Boris Shustov Institute of Astronomy, RAS Plan of the talk ! " The need for a national NEO program ! " Astronomical requirements for NEO detection/ monitoring ! " Existing premises and recent activities ! " What we plan to do ! " How to contribute to the IAWN 2 Arguments pro national program in Russia (NEO aspects) 1." The NEO problem is a multi-problem. Various organizations (ministries) are to be involved (coordinated); 2." The expensive technologies of massive detection of NEO, preventing collisions and mitigation can be proposed but cannot be realized under the responsibility of individual research institution; 3." Cooperation of countries on the NEO problem implies the involvement of Russia Government (or authorized body); 4." Regular funding is vitally important for real progress. 3 Suggestion to the definitions of hazardous celestial bodies (HCB) PHO - MOID < 0.05 A.U. Threatening object (TO) D < LD, D - 3σD < RE Collisional object (CO) D < RE, 3σD < RE NB: In the definition of PHO limiting size (or H) is not included! -3 6 -4 For TO collision probability >~10 , (if LD = 10 km then >~10 ) For CO collision probability >~0.5 4 Two tasks and modes of detection Large Distant Detection (LDD). Major goal is to detect “all” PHO larger than ~ 50 m well beforehand (to ensure possibility of active counteraction). Near Earth Detection (NED). Major goal – to detect “all” PHO larger than ~ 5 m in the near space (D < LD). This makes possible warning. “all” means > 90% 5 LDD mode: NEO detection (general requirements and other inputs for design of detection instrument ) ! " Time interval between detection+characterisation and rendez-vous must be not less than warning time (tw).
    [Show full text]
  • ASPIN - ISON Asteroid Program: History, Current State and Future Prospects
    ASPIN - ISON asteroid program: history, current state and future prospects L. Elenin1,2, I. Molotov1,2, V. Savanevych3, A. Bruhovetskiy4, Yu. Krugly5, V. Nevski2, Yu. Ivaschenko6, A. Yudin1,2 1. Keldysh Instute of Applied Mathemacs RAS 2. CJSC “ANC” 3. Kharkiv Naonal University of Radioelectronics 4. JSC “Hartron” Evoluon of Comet ISON. D. Peach (2013) 5. Instute of Astronomy of Kharkiv Naonal University 6. Andrushivka Astronomical Observatory ABSTRACT OBSERVATORIES OF THE ASPIN PROGRAM ASPIN (Asteroid Search and Photometry Iniave) - ISON asteroid program started in September 2003 at Andrushivka astronomical observatory (A50, Andrushivka, Ukraine). For these purposes was used Zeiss-600 telescope with small CCD camera. In 2009, telescope was upgraded by new full-format CCD camera and lens corrector, which increased FOV to 72’x72’. During first 7 years, observatory discovered more than 350 asteroids, include 2 NEAs. Unfortunately, at present me, when rivalry of surveys was growing up, Andrushivka forced to stop observaon in 2013, due to bad astroclimate and, as result, low magnitude limit. In 2014, we planning to install new, wide-field ORI-50M (0.5-m f/2.3) telescope at new site with good astroclimate condions. Aer that, survey program will resume. Next ISON observatory, which started own survey, was ISON-NM (H15, Mayhill, NM, USA). Survey work started in July 2010 and connues to this day. First telescope of this Andrushivka observatory was Centurion-18, 0.45-m f/2.8 with full-frame CCD camera. In September 2013 with telescope replaced by our new telescope Santel-400AN (0.4-m f/3) with Chuguev Khuraltogot Kislovodsk 105’x105’ FOV.
    [Show full text]