Tsuga Caroliniana Engelm.) Population Genetic Structure and Diversity in the Southern Appalachians Using Microsatellite Markers

Total Page:16

File Type:pdf, Size:1020Kb

Tsuga Caroliniana Engelm.) Population Genetic Structure and Diversity in the Southern Appalachians Using Microsatellite Markers ABSTRACT CAMPBELL, ANGELIA ROSE. Assessing Carolina Hemlock (Tsuga caroliniana Engelm.) Population Genetic Structure and Diversity in the Southern Appalachians Using Microsatellite Markers. (Under the direction of Robert Jetton). Carolina hemlock (Tsuga caroliniana Engelm.) is a rare conifer species that exists in a few small, isolated populations throughout the southern Appalachian Mountains. There is a need to develop conservation genetics strategies for this species, as it is under threat by the hemlock woolly adelgid (Adelges tsugae Annand), an invasive species that can kill the trees in as little as four years. In order to develop these strategies, more information about the population genetic structure of Carolina hemlock is necessary. In this study, 439 trees from twenty-nine populations of Carolina hemlock were sampled: a range-wide, comprehensive sampling of most of the known populations of Carolina hemlock. Sixteen polymorphic microsatellite loci were amplified in these samples. The results show that the populations of Carolina hemlock are inbred (Overall FIS = 0.464), and highly differentiated from each other with little gene flow (Overall FST = 0.496, Nm = 0.9116). Three genetic clusters were inferred using STRUCTURE, and the genetic makeup of each population was identified. One cluster dominated in the northern populations, one in the southeastern populations, and one in the southwestern populations -- though all three regions had some representation from every cluster. The relationships displayed on the neighbor-joining tree mirror the population structure shown in the STRUCTURE results. The data indicated that the unusual population of Cuyahoga Valley is likely planted rather than natural. Though no correlation between genetic diversity and latitude, longitude or elevation was uncovered, the analysis yielded informative diversity measures for each population. Pockets of diversity were identified. This information will be invaluable in developing conservation strategies for Carolina hemlock. Knowledge about the population genetic structure of Carolina hemlock will inform management efforts, showing which regions and populations to prioritize for protection and conservation. © Copyright 2014 by Angelia Campbell All Rights Reserved Assessing Carolina Hemlock (Tsuga caroliniana Engelm.) Population Genetic Structure and Diversity in the Southern Appalachians Using Microsatellite Markers by Angelia Rose Campbell A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Forestry and Environmental Resources Raleigh, North Carolina 2014 APPROVED BY: _______________________________ ______________________________ Robert M. Jetton Kevin M. Potter Committee Chair ________________________________ ________________________________ Fred Gould Jenny Xiang Minor Representative ii BIOGRAPHY Angelia Campbell has been interested in science and the natural world for as long as she can remember. She spent a significant part of her childhood in the mountains of North Carolina, exploring the forests and trails armed with field guides and binoculars. This interest developed into a desire to pursue a career in a field related to plant sciences. From August 2008-May 2011 she pursued a degree in biology at Furman University. She enjoyed the study of botany and worked with Dr. Joe Pollard on an undergraduate research project studying Psychotria grandis, a plant with an unusual ability to take up heavy metals from the soil. This research project resulted in her first scientific publication: Facultative Hyperaccumulation of Nickel in Psychotria grandis (Rubiaceae). Angelia graduated from Furman University with her B.S. in Biology in 2011. In August 2012, Angelia began working on her M.S. in Forestry and Environmental Resources with a minor in Plant Biology at NC State University. Under the direction of Robert Jetton, she studied the population genetic structure and diversity of Carolina hemlock. She sampled most of the known populations across the range of Carolina hemlock, and travelled to the Southern Institute of Forest Genetics in Saucier, Mississippi to analyze the samples using microsatellite markers. The findings are presented in this thesis. iii ACKNOWLEDGMENTS I am grateful to the many people who provided help, support, and advice throughout my research. Foremost, I would like to thank my committee members: Robert Jetton, Kevin Potter, Fred Gould, and Jenny Xiang. Their feedback, expertise, and help throughout my project was invaluable. I would especially like to thank Robert Jetton, my advisor, who guided me through every aspect of the project. Kevin Potter was also very helpful, especially during the data analysis process. Both of them were always available to answer my frequent questions and point me in the right direction. I would like to thank Sedley Josserand, Craig Echt, and Dana Nelson from the Southern Institute of Forest Genetics, who were involved with the lab work portion of the project. SIFG hosted me for months while I completed my lab work for the project. I would especially like to thank Sedley Josserand, who worked closely with me, dedicating much of her time to guiding me through the lab work and helping me resolve any issues that arose. I am also grateful for Andy Whittier's contributions to the project. Andy Whittier was heavily involved with the field work. He put a lot of time and effort into planning and travelling with me to nearly every population that we visited. I owe the success of my project to the many people who helped along the way, and I am grateful to each of them. iv TABLE OF CONTENTS LIST OF TABLES...................................................................................................................v LIST OF FIGURES................................................................................................................vi CHAPTER 1: A Review of the Literature Relevant to Carolina Hemlock and the Hemlock Woolly Adelgid.........................................................................................................1 CHAPTER 2: Assessing Carolina hemlock (Tsuga caroliniana Engelm.) population genetic structure and diversity in the southern Appalachians using microsatellite markers...................................................................................................................................30 INTRODUCTION.................................................................................................................30 MATERIALS AND METHODS..........................................................................................34 RESULTS...............................................................................................................................40 DISCUSSION.........................................................................................................................43 REFERENCES.......................................................................................................................51 TABLES AND FIGURES.....................................................................................................56 v LIST OF TABLES Table 1. Populations of Carolina hemlock from which samples were collected. For each population, location, state, coordinates, elevation (averaged elevation in meters of all samples taken for each population), HWA prevalence (% of sampled trees infested with HWA), date collected and number of samples analyzed from each population are given. The p-value for Hardy Weinberg exact tests for each population is also given. * means that there was a highly significant value for p, and thus that the population was out of Hardy-Weinberg equilibrium...............................................................................................................................56 Table 2. Sixteen loci were utilized in the study. Ho (observed heterozygosity), He (expected heterozygosity), FIS, FST, A (total alleles at each locus), Ae (effective alleles at each locus), and null allele frequency estimates (Brookfield 1996) are given. All loci met the p-value for being out of Hardy Weinberg equilibrium (*=significant p-value).........................................57 Table 3. FSTAT 2.3.9.2 yielded values for the probability that a given pair of loci is in genetic disequilibrium. The adjusted P-value for the 5% nominal level is 0.000417, and all loci that met this significance value for disequilibrium are shown in the table.......................58 Table 4. FSTAT 2.3.9.2 was used to estimate the Weir and Cockerham F-statistics. The table shows FIS and FST. The values given are mean values for each locus, using the jackknifing over populations method..........................................................................................................59 Table 5. Table shows the average Cavalli-Sforza chord distance between the given population and all other populations. Values obtained using FreeNA....................................60 Table 6: Diversity statistics for each population of Carolina hemlock. GenAlEx yielded a list of private alleles per population. Latitude, longitude, elevation (averaged over all trees sampled) are given. Polymorphism (percent of loci that were polymorphic in the population), Ho (observed heterozygosity), and He (expected heterozygosity) values were obtained. A is allelic richness, the number of alleles per locus averaged for each population.......................61 Table 7. R values
Recommended publications
  • Carolina Hemlock Information
    http://www.cnr.vt.edu/dendro/dendrology/syllabus/factsheet.cfm?ID=143 USDAFS Additional Silvics Index of Species Information SPECIES: Tsuga caroliniana Introductory Distribution and Occurrence Management Considerations Botanical and Ecological Characteristics Fire Ecology Fire Effects References Introductory SPECIES: Tsuga caroliniana AUTHORSHIP AND CITATION : Coladonato, Milo 1993. Tsuga caroliniana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2009, November 2]. ABBREVIATION : TSUCAR SYNONYMS : NO-ENTRY SCS PLANT CODE : TSCA2 COMMON NAMES : Carolina hemlock TAXONOMY : The currently accepted scientific name of Carolina hemlock is Tsuga caroliniana Engelm. [12]. There are no recognized subspecies, varieties, or forms. LIFE FORM : Tree FEDERAL LEGAL STATUS : No special status OTHER STATUS : Carolina hemlock is listed as rare in its natural range [11]. DISTRIBUTION AND OCCURRENCE SPECIES: Tsuga caroliniana GENERAL DISTRIBUTION : Carolina hemlock has a very limited distribution. It occurs along the slopes of the Appalachian Mountains from southwestern Virginia and western North Carolina into South Carolina and northern Georgia [6,8,22]. ECOSYSTEMS : FRES14 Oak - pine FRES15 Oak - hickory STATES : GA NC SC TN VA BLM PHYSIOGRAPHIC REGIONS : NO-ENTRY KUCHLER PLANT ASSOCIATIONS : K104 Appalachian oak forest K111 Oak - hickory - pine forest SAF COVER TYPES : 44 Chestnut oak 58 Yellow-poplar - eastern hemlock 59 Yellow-poplar - white oak - northern red oak 78 Virginia pine - oak 87 Sweet gum - yellow-poplar SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : NO-ENTRY MANAGEMENT CONSIDERATIONS SPECIES: Tsuga caroliniana WOOD PRODUCTS VALUE : The wood of Carolina hemlock can be used for lumber or pulpwood, but the species is so limited in extent that it is not considered commercially important [6,16].
    [Show full text]
  • Halesia Spp. Family: Styracaceae Silverbell
    Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load.
    [Show full text]
  • Hemlock Woolly Adelgid Fact Sheet
    w Department of HEMLOCK WOOLLY ADELGID RK 4 ATE Environmental Adelges tsugae Conservation ▐ What is the hemlock woolly adelgid? The hemlock woolly adelgid, or HWA, is an invasive, aphid-like insect that attacks North American hemlocks. HWA are very small (1.5 mm) and often hard to see, but they can be easily identified by the white woolly masses they form on the underside of branches at the base of the needles. These masses or ovisacs can contain up to 200 eggs and remain present throughout the year. ▐ Where is HWA located? HWA was first discovered in New York State in 1985 in the lower White woolly ovisacs on an Hudson Valley and on Long Island. Since then, it has spread north to eastern hemlock branch Connecticut Agricultural Experiment Station, the Capitol Region and west through the Catskill Mountains to the Bugwood.org Finger Lakes Region, Buffalo and Rochester. In 2017, the first known occurrence in the Adirondack Park was discovered in Lake George. Where does HWA come from? Native to Asia, HWA was introduced to the western United States in the 1920s. It was first observed in the eastern US in 1951 near Richmond, Virginia after an accidental introduction from Japan. HWA has since spread along the East Coast from Georgia to Maine and now occupies nearly half the eastern range of native hemlocks. ▐ What does HWA do to trees? Once hatched, juvenile HWA, known as crawlers, search for suitable sites on the host tree, usually at the base of the needles. They insert their long mouthparts and begin feeding on the tree’s stored starches.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Abstract Walker-Lane, Laura Newman
    ABSTRACT WALKER-LANE, LAURA NEWMAN. The Effect of Hemlock Woolly Adelgid Infestation on Water Relations of Carolina and Eastern Hemlock. (Under the direction of John Frampton.) In North America, hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an exotic insect pest from Asia that is causing severe decimation of native eastern hemlock (Tsuga canadensis (L.) Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). Extensive research has been committed to the ecological impacts and potential control measures of HWA, but the exact physiological mechanisms that cause tree decline and mortality are not known. Eastern and Carolina hemlock may be reacting to infestation in a manner similar to the response of Fraser fir (Abies fraseri (Pursh.) Poir.) to infestation by balsam woolly adelgid (BWA; Adelges picea Ratz.). It is known that Fraser fir produces abnormal xylem in response to BWA feeding. This abnormal xylem obstructs water movement within the trees, causing Fraser fir to die of water-stress. In this study, water relations within 15 eastern and Carolina hemlock were evaluated to determine if infestation by HWA was causing water-stress. Water potential, carbon-13 isotope ratio, stem conductivity, and stomatal conductance measurements were conducted on samples derived from those trees. In addition, branch samples were analyzed for possible wood anatomy alterations as a result of infestation. Pre-dawn branch water potential (Ψ) measurements were more negative in infested hemlock than in non-infested trees. Carbon isotope ratios (normalized δ13C vs. VPDB) of the branches were more positive for infested trees, while stomatal conductance (gs) was lower in infested trees. These results indicate that infested eastern and Carolina hemlock are experiencing drought-like symptoms.
    [Show full text]
  • Population Isolation Results in Unexpectedly High Differentiation in Carolina Hemlock (Tsuga Caroliniana), an Imperiled Southern Appalachian Endemic Conifer
    Tree Genetics & Genomes (2017) 13:105 DOI 10.1007/s11295-017-1189-x ORIGINAL ARTICLE Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer Kevin M. Potter1 & Angelia Rose Campbell2 & Sedley A. Josserand3 & C. Dana Nelson3,4 & Robert M. Jetton5 Received: 16 December 2016 /Revised: 14 August 2017 /Accepted: 10 September 2017 # US Government (outside the USA) 2017 Abstract Carolina hemlock (Tsuga caroliniana Engelm.) is a range-wide sampling of the species. Data from 12 polymor- rare conifer species that exists in small, isolated populations phic nuclear microsatellite loci were collected and analyzed within a limited area of the Southern Appalachian Mountains for these samples. The results show that populations of of the USA. As such, it represents an opportunity to assess Carolina hemlock are extremely inbred (FIS =0.713)andsur- whether population size and isolation can affect the genetic prisingly highly differentiated from each other (FST =0.473) diversity and differentiation of a species capable of long- with little gene flow (Nm = 0.740). Additionally, most popu- distance gene flow via wind-dispersed pollen and seed. This lations contained at least one unique allele. This level of dif- information is particularly important in a gene conservation ferentiation is unprecedented for a North American conifer context, given that Carolina hemlock is experiencing mortality species. Numerous genetic clusters were inferred using two throughout
    [Show full text]
  • Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren
    PNW 659 ∙ April 2014 Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren A Pacific Northwest Extension Publication Oregon State University ∙ University of Idaho ∙ Washington State University AUTHORS & ACKNOWLEDGMENTS Luisa Santamaria, assistant professor, Extension plant pathologist in nursery crops; and Chal Landgren, professor, Extension Christmas tree specialist; both of Oregon State University. The authors thank the following peers for the review of these diagnostic cards and for their helpful comments and suggestions. In alphabetical order: • Michael Bondi–Oregon State University • Gary Chastagner–Washington State University • Rick Fletcher–Oregon State University • Alina Freire-Fierro–Drexel University • Carla Garzon–Oklahoma State University • Dionisia Morales–Oregon State University • Kathy Riley–Washington State University • Helmuth Rogg–Oregon Department of Agriculture • David Shaw–Oregon State University • Cathy E. Thomas–Pennsylvania Department of Agriculture • Luis Valenzuela–Oregon State University This project was funded by the USDA Specialty Crop Block Grant program (grant numbers ODA-2577-GR and ODA-3557-GR). TABLE OF CONTENTS Diseases Damage (Weather) Annosus Root Rot . .1-2 Frost Damage . 43 Phytophthora Root Rot . .3-4 Winter Injury . 44 Grovesiella Canker . .5-6 Drought . 45 Interior Needle Blight . .7-8 Heat Damage . 46 Rhabdocline Needle Cast . .9-10 Swiss Needle Cast . 11-12 Damage (Chemical) Melampsora Needle Rust . 13-14 2,4-D and triclopyr . 47 Pucciniastrum Needle Rust . 15-16 Fertilizer Burn . 48 Uredinopsis Needle Rust . 17-18 Glyphosate (Roundup) . 49 Triazines . 50 Insects Twig Aphid . 19-20 Damage (Vertebrate) Conifer Root Aphid . 21-22 Deer, Elk, Mice, & Voles . 51 Conifer Aphids . 23-24 Rabbits & Birds . 52 Balsam Woolly Adelgid .
    [Show full text]
  • Development of a Rain Down Technique to Artificially Infest Hemlocks with the Hemlock Woolly Adelgid, Adelges Tsugae Abstract
    Journal of Insect Science: Vol. 14 | Article 106 Jetton et al. Development of a rain down technique to artificially infest hemlocks with the hemlock woolly adelgid, Adelges tsugae Robert M. Jetton1a, Albert E. Mayfield III2b, and Zaidee L. Powers3c 1Research Assistant Professor, Camcore, Department of Forestry & Environmental Resources, North Carolina State University, Raleigh 2Research Entomologist, USDA Forest Service, Southern Research Station, Asheville, NC 3Graduate Research Assistant, Camcore Department of Forestry & Environmental Resources, North Carolina State University, Raleigh Abstract The hemlock woolly adelgid Adelges tsugae Annand (Hemiptera: Adelgidae), is a non-native invasive pest that has caused widespread decline and mortality of eastern hemlock (Tsuga canadensis (L.) Carr. (Pinales: Pinaceae)) and Carolina hemlock (T. caroliniana Engelm.) in the eastern United States. Our pre- liminary experiments evaluated the utility of a rain-down technique to induce artificial infestations of A. tsugae on hemlock seedlings en masse. Experiments were conducted in PVC (1 m3) cages topped with poultry wire for placement of A. tsugae-infested branches, and with 1 m2 gridded glue sheets and/or hem- lock seedlings placed below to capture adelgid abundance, distribution, and infestation rate data. In the March 2011 experiment, the density of progrediens crawlers (adelgid nymphs, first instars) that rained down inside the PVC cages was significantly higher in the high ovisac treatment compared to the low ovi- sac treatment, with an estimated 513,000 and 289,000 crawlers per m2 falling beneath each treatment, respectively. Resulting A. tsugae infestation rates on Carolina hemlock seedlings placed inside the cages did not differ between the treatments but were at or above established damage threshold densities for the adelgid.
    [Show full text]
  • Biology and Management of Balsam Twig Aphid
    Extension Bulletin E-2813 • New • July 2002 Biology and Management of Balsam Twig Aphid Kirsten Fondren Dr. Deborah G. McCullough Research Assistant Associate Professor Dept. of Entomology Dept. of Entomology and Michigan State University Dept. of Forestry Michigan State University alsam twig aphid (Mindarus abietinus MICHIGAN STATE aphids will also feed on other true firs, Koch) is a common and important UNIVERSITY including white fir (A. concolor) and B insect pest of true fir trees (Fig. 1). Canaan fir (A. balsamea var. phanerolepsis), This bulletin is designed to help you EXTENSION especially if they are growing near balsam recognize and manage balsam twig aphid in or Fraser fir trees. Christmas tree plantations. Knowing the biology of this aphid will help you to plan scouting and Biology control activities, evaluate the extent of damage caused by Balsam twig aphid goes through three generations every aphid feeding and identify the aphid’s natural enemies. year. The aphids overwinter as eggs on needles near the Using an integrated management program will help you to bases of buds. Eggs begin to hatch early in spring, typically control balsam twig aphid efficiently and effectively. around late March to mid-April, depending on temperatures and location within the state. Hatching is completed in one to two weeks. Recent studies in Michigan showed that egg Photo by M. J. Higgins. hatch began at roughly 60 to 70 degree-days base 50 degrees F (DD50) and continued until approximately 100 DD50 (see degree-days discussion under “Timing insecticide sprays” on p. 5). The newly hatched aphids are very small and difficult to see, but by mid- to late April, at approximately 100 to 140 DD50, they have grown enough to be easily visible against a dark background.
    [Show full text]
  • Genetic Conservation of Fraser Fir (Abies Fraseri)
    Assessing Forest Tree Genetic Risk across the Southern Appalachians: A Tool for Conservation Decision-Making in Changing Times Kevin M. Potter Barbara S. Crane IUFRO Landscape Ecology Working Group International Conference Bragança, Portugal September 23, 2010 Outline 1) Overview of potential genetic effects of climate change on forest trees 2) Need for regional genetic risk assessments of multiple forest tree species 3) Description of the study region: Southern Appalachian Mountains of the Southeastern United States 4) Description of the genetic risk assessment and the risk factors included 5) Assessment results and next steps Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. Ecosystem processes, Management decisions Speciation, Landscape Ecology extinction, co- evolution Evolutionary Conservation Biology/Population Biology Genetics Applied Quantification, Forest Ecosystem management of Health and landscape genetic Sustainability genetics resources Forest Health Monitoring Research Group, Research Triangle Park, N.C. Robert A. Rohde (http://en.wikipedia.org/wiki/Instrumental_temperature_record) Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “Global meta-analyses documented significant range shifts averaging 6.1 km per decade toward the poles (or meters per decade upward), and significant mean advancement of spring events by 2.3 days per decade. … “This suite of analyses generates very high confidence … that climate change is already affecting living systems.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “[T]he process of northward tree migration in the eastern United States is currently underway with rates approaching 100 km/century for many species.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “[W]e predict, on the basis of mid-range climate- warming scenarios for 2050, that 15-37% of species in our samples of regions and taxa will be committed to exctinction.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.
    [Show full text]
  • Conserved Ex Situ Genetic Resources of Eastern and Carolina Hemlock: Eastern North American Conifers Threatened by the Hemlock Woolly Adelgid Robert M
    Conserved Ex Situ Genetic Resources of Eastern and Carolina Hemlock: Eastern North American Conifers Threatened by the Hemlock Woolly Adelgid Robert M. Jetton, W. Andrew Whittier, William S. Dvorak, and James “Rusty” Rhea Research Assistant Professor, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Research Forester, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Professor and Director, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Forest Entomologist, U.S. Department of Agriculture, Forest Service, Forest Health Protection, Asheville, NC Abstract [T. diversifolia (Maxim.) Masters]). Four species occur in North America. Western hemlock (T. heterophylla [Raf.] The long-term sustainability of the eastern North American Sargent) and mountain hemlock (T. mertensiana [Bong.] Car- conifers eastern hemlock (Tsuga canadensis [L.] Carriére) riére) occur in western North America in a range that extends and Carolina hemlock (T. caroliniana Engelmann) is threat- from southern Alaska south into northern California. Eastern ened by the exotic insect hemlock woolly adelgid (Adelges hemlock (T. canadensis [L.] Carriére) and Carolina hemlock tsugae Annand; HWA). The integrated pest management (T. caroliniana Engelmann) are native to eastern North strategy to mitigate HWA impacts on hemlock ecosystems America; they are the subjects of this article. includes a cooperative genetic resource conservation program being conducted by Camcore (International Tree Breeding Eastern hemlock is a widespread conifer species with a natural and Conservation Program at North Carolina [NC] State range that extends from Nova Scotia west to northern Minne- University) and the U.S. Department of Agriculture (USDA) sota, south throughout the New England and Middle Atlantic Forest Service Forest Health Protection.
    [Show full text]
  • Evaluating the Invasive Potential of an Exotic Scale Insect Associated with Annual Christmas Tree Harvest and Distribution in the Southeastern U.S
    Trees, Forests and People 2 (2020) 100013 Contents lists available at ScienceDirect Trees, Forests and People journal homepage: www.elsevier.com/locate/tfp Evaluating the invasive potential of an exotic scale insect associated with annual Christmas tree harvest and distribution in the southeastern U.S. Adam G. Dale a,∗, Travis Birdsell b, Jill Sidebottom c a University of Florida, Entomology and Nematology Department, Gainesville, FL 32611 b North Carolina State University, NC Cooperative Extension, Ashe County, NC c North Carolina State University, College of Natural Resources, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759 a r t i c l e i n f o a b s t r a c t Keywords: The movement of invasive species is a global threat to ecosystems and economies. Scale insects (Hemiptera: Forest entomology Coccoidea) are particularly well-suited to avoid detection, invade new habitats, and escape control efforts. In Fiorinia externa countries that celebrate Christmas, the annual movement of Christmas trees has in at least one instance been Elongate hemlock scale associated with the invasion of a scale insect pest and subsequent devastation of indigenous forest species. In the Conifers eastern United States, except for Florida, Fiorinia externa is a well-established exotic scale insect pest of keystone Fraser fir hemlock species and Fraser fir Christmas trees. Annually, several hundred thousand Fraser firs are harvested and shipped into Florida, USA for sale to homeowners and businesses. There is concern that this insect may disperse from Christmas trees and establish on Florida conifers of economic and conservation interest. Here, we investigate the invasive potential of F.
    [Show full text]