Development of a Rain Down Technique to Artificially Infest Hemlocks with the Hemlock Woolly Adelgid, Adelges Tsugae Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Rain Down Technique to Artificially Infest Hemlocks with the Hemlock Woolly Adelgid, Adelges Tsugae Abstract Journal of Insect Science: Vol. 14 | Article 106 Jetton et al. Development of a rain down technique to artificially infest hemlocks with the hemlock woolly adelgid, Adelges tsugae Robert M. Jetton1a, Albert E. Mayfield III2b, and Zaidee L. Powers3c 1Research Assistant Professor, Camcore, Department of Forestry & Environmental Resources, North Carolina State University, Raleigh 2Research Entomologist, USDA Forest Service, Southern Research Station, Asheville, NC 3Graduate Research Assistant, Camcore Department of Forestry & Environmental Resources, North Carolina State University, Raleigh Abstract The hemlock woolly adelgid Adelges tsugae Annand (Hemiptera: Adelgidae), is a non-native invasive pest that has caused widespread decline and mortality of eastern hemlock (Tsuga canadensis (L.) Carr. (Pinales: Pinaceae)) and Carolina hemlock (T. caroliniana Engelm.) in the eastern United States. Our pre- liminary experiments evaluated the utility of a rain-down technique to induce artificial infestations of A. tsugae on hemlock seedlings en masse. Experiments were conducted in PVC (1 m3) cages topped with poultry wire for placement of A. tsugae-infested branches, and with 1 m2 gridded glue sheets and/or hem- lock seedlings placed below to capture adelgid abundance, distribution, and infestation rate data. In the March 2011 experiment, the density of progrediens crawlers (adelgid nymphs, first instars) that rained down inside the PVC cages was significantly higher in the high ovisac treatment compared to the low ovi- sac treatment, with an estimated 513,000 and 289,000 crawlers per m2 falling beneath each treatment, respectively. Resulting A. tsugae infestation rates on Carolina hemlock seedlings placed inside the cages did not differ between the treatments but were at or above established damage threshold densities for the adelgid. Infestation rates on eastern hemlock seedlings that were placed in cages nine days after the exper- iment started were below damage threshold levels and did not differ between the treatments. In the May 2011 experiment, the density of sistens crawlers raining down was substantially lower, with 17,000 and 33,000 falling per m2 in the low and high ovisac treatments, respectively. Resulting infestation rates on Carolina hemlock seedlings were extremely low and well below damage threshold levels. Although A. tsugae crawlers were well distributed across the 1 m2 gridded glue sheets placed at the bottom of each cage, hot spots of unusually high crawler density did occur in both experiments. This rain-down technique shows potential for use in an operational tree-breeding program where screening large numbers of hem- lock seedlings for resistance to A. tsugae is required. Keywords: exotic species, host resistance screening, artificial infestation, Tsuga canadensis, Tsuga caroliniana Correspondence: a [email protected], b [email protected], c [email protected] Editor: Brian Aukema was editor of this paper. Received: 27 September 2012 Accepted: 29 March 2013 Published: 1 August 2014 Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 14, Number 106 Cite this paper as: Jetton RM, Mayfield III AE, Powers ZL. 2014. Development of a rain down technique to artificially infest hemlocks with the hemlock woolly adelgid, Adelges tsugae. Journal of Insect Science 14(106). Available online: http://www.insectscience.org/14.106 Journal of Insect Science | http://www.insectscience.org 1 Journal of Insect Science: Vol. 14 | Article 106 Jetton et al. Introduction native spruce flora of eastern North America have thus far been immune to A. tsugae infes- The hemlock woolly adelgid, Adelges tsugae tation and successful sexual reproduction has Annand (Hemiptera: Adelgidae), is a serious never been observed in the introduced range. invasive forest pest in the United States, where it poses a significant threat to the long- The first instar nymphs of the progrediens and term sustainability of hemlock (Tsuga spp. sistens generations are called crawlers and are (Pinales: Pinaceae)) ecosystems. The insect the only mobile stage of the insect. After was first described from specimens collected hatching, crawlers move about their natal trees in western North America, where it was ini- or passively disperse to nearby trees in search tially thought to be an exotic pest of western of feeding sites on the pulvinus (needle cush- hemlock (T. heterophylla (Raf.) Sarg.) (An- ion) at the base of hemlock needles, where the nand 1924) but is now known to be native insect remains for the duration of its life (Oten (Havill et al. 2011). The adelgid is exotic in 2011). Adelgids feed by inserting their stylets eastern North America, where it was intro- (piercing/sucking mouthparts) into the plant duced into Virginia in the early 1950s (Havill and extracting stored nutrients from xylem ray et al. 2006), most likely on ornamental nurse- parenchyma cells (Young et al. 1995). Feed- ry stock imported from Japan. The distribution ing causes changes in hemlock cellular of A. tsugae in this region now covers a 19- structures and water potential (Walker-Lane state area, ranging from southern Maine south 2009; Gonda-King et al. 2012) and leads to along the Appalachian Mountain chain to the abortion of reproductive and vegetative northern Georgia and west into Ohio (USDA buds, restriction of new growth, dessication, Forest Service 2011). Throughout much of and needle loss. Severe infestations can kill this range, it has caused widespread decline trees in as few as four years, although some and mortality among populations of eastern trees have been noted to survive infestation hemlock (T. canadensis (L.) Carr.) and Caro- for more than 10 years (McClure et al. 2001). lina hemlock (T. caroliniana Engelm.). The integrated strategy to manage the impact In the eastern United States, A. tsugae has a of A. tsugae on eastern forests includes classi- complex polymorphic life cycle that includes cal biological control, chemical insecticides, two wingless parthenogenetic generations and silvicultural practices, gene conservation, and one winged sexual generation each year host resistance (Onken and Kenna 2008). Of (McClure 1989). The first appearance of each these, biological and chemical control have generation and the timing of life stages varies received the most interest; biological control considerably with latitude (McClure 1989; currently is considered the most promising Gray and Salom 1996; Joseph et al. 2011). tool for long-term adelgid management (Onk- The two parthenogenic generations, called the en and Reardon 2011). Since 2002, however, progrediens and sistens, are present from the general understanding of host‒insect inter- March to June and June to March, respective- actions in the hemlock‒adelgid system has ly. The winged sexual generation is called the improved, and the possibility exists for find- sexuparae and overlaps with the progrediens. ing or breeding A. tsugae-resistant hemlock Upon molting to the adult form, the sexuparae genotypes for reforestation. Initially, both migrate away from hemlock for sexual repro- hemlock species were thought to be universal- duction on spruce (Piceae spp.); however, the ly susceptible to A. tsugae attack (McClure Journal of Insect Science | http://www.insectscience.org 2 Journal of Insect Science: Vol. 14 | Article 106 Jetton et al. 1992), but recent evidence suggests that some needs of larger breeding programs that seek to level of endogenous adelgid tolerance or re- screen among thousands of hemlock geno- sistance may exist within Eastern hemlock types simultaneously. (Caswell et al. 2008) and Carolina hemlock (Jetton et al. 2008, Oten 2011). Attempts to The development of artificial infestation tech- breed the adelgid resistance of T. chinensis niques that are efficient and reliable for (one of the Asian hemlocks) into Carolina screening large numbers of putatively adelgid hemlock through interspecific hybridization resistant genotypes has been identified as a were also successful (Montgomery et al. research priority by the USDA Forest Service 2009). Working Group on Genetics and Host Re- sistance in Hemlock. To address this priority, The screening of tree genotypes for pest re- the preliminary experiments reported here sistance is often accomplished with young were designed to test the utility of a rain-down plants derived from seed or clonally propagat- technique for inducing artificial adelgid infes- ed via rooted stem cuttings or grafted scions. tations on hemlock seedlings en masse. The Upon reaching suitable age or size, these objective of the study was to evaluate the den- plants are artificially infested or inoculated sity and distribution patterns of A. tsugae with the insect or pathogen of concern. Exam- progrediens and sistens crawlers allowed to ples include the selection of pine (Pinus spp.) rain down onto glue sheets and hemlock seed- genotypes for resistance to pitch canker lings. (Fusarium circinatum) and fusiform rust (Cronartium quercuum), and poplar (Populus Materials and Methods spp.) hybrids for resistance to the cottonwood leaf beetle, Chrysomela scripta F. (Foster and A. tsugae source material Anderson 1989; Bingaman and Hart 1992; This study consisted of two separate infesta- Hodge and Dvorak 2007). Within the context tion experiments in the spring of 2011, one of an operational tree breeding program, a key using A. tsugae crawlers of the progrediens
Recommended publications
  • Carolina Hemlock Information
    http://www.cnr.vt.edu/dendro/dendrology/syllabus/factsheet.cfm?ID=143 USDAFS Additional Silvics Index of Species Information SPECIES: Tsuga caroliniana Introductory Distribution and Occurrence Management Considerations Botanical and Ecological Characteristics Fire Ecology Fire Effects References Introductory SPECIES: Tsuga caroliniana AUTHORSHIP AND CITATION : Coladonato, Milo 1993. Tsuga caroliniana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2009, November 2]. ABBREVIATION : TSUCAR SYNONYMS : NO-ENTRY SCS PLANT CODE : TSCA2 COMMON NAMES : Carolina hemlock TAXONOMY : The currently accepted scientific name of Carolina hemlock is Tsuga caroliniana Engelm. [12]. There are no recognized subspecies, varieties, or forms. LIFE FORM : Tree FEDERAL LEGAL STATUS : No special status OTHER STATUS : Carolina hemlock is listed as rare in its natural range [11]. DISTRIBUTION AND OCCURRENCE SPECIES: Tsuga caroliniana GENERAL DISTRIBUTION : Carolina hemlock has a very limited distribution. It occurs along the slopes of the Appalachian Mountains from southwestern Virginia and western North Carolina into South Carolina and northern Georgia [6,8,22]. ECOSYSTEMS : FRES14 Oak - pine FRES15 Oak - hickory STATES : GA NC SC TN VA BLM PHYSIOGRAPHIC REGIONS : NO-ENTRY KUCHLER PLANT ASSOCIATIONS : K104 Appalachian oak forest K111 Oak - hickory - pine forest SAF COVER TYPES : 44 Chestnut oak 58 Yellow-poplar - eastern hemlock 59 Yellow-poplar - white oak - northern red oak 78 Virginia pine - oak 87 Sweet gum - yellow-poplar SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : NO-ENTRY MANAGEMENT CONSIDERATIONS SPECIES: Tsuga caroliniana WOOD PRODUCTS VALUE : The wood of Carolina hemlock can be used for lumber or pulpwood, but the species is so limited in extent that it is not considered commercially important [6,16].
    [Show full text]
  • Hemlock Woolly Adelgid Fact Sheet
    w Department of HEMLOCK WOOLLY ADELGID RK 4 ATE Environmental Adelges tsugae Conservation ▐ What is the hemlock woolly adelgid? The hemlock woolly adelgid, or HWA, is an invasive, aphid-like insect that attacks North American hemlocks. HWA are very small (1.5 mm) and often hard to see, but they can be easily identified by the white woolly masses they form on the underside of branches at the base of the needles. These masses or ovisacs can contain up to 200 eggs and remain present throughout the year. ▐ Where is HWA located? HWA was first discovered in New York State in 1985 in the lower White woolly ovisacs on an Hudson Valley and on Long Island. Since then, it has spread north to eastern hemlock branch Connecticut Agricultural Experiment Station, the Capitol Region and west through the Catskill Mountains to the Bugwood.org Finger Lakes Region, Buffalo and Rochester. In 2017, the first known occurrence in the Adirondack Park was discovered in Lake George. Where does HWA come from? Native to Asia, HWA was introduced to the western United States in the 1920s. It was first observed in the eastern US in 1951 near Richmond, Virginia after an accidental introduction from Japan. HWA has since spread along the East Coast from Georgia to Maine and now occupies nearly half the eastern range of native hemlocks. ▐ What does HWA do to trees? Once hatched, juvenile HWA, known as crawlers, search for suitable sites on the host tree, usually at the base of the needles. They insert their long mouthparts and begin feeding on the tree’s stored starches.
    [Show full text]
  • Abstract Walker-Lane, Laura Newman
    ABSTRACT WALKER-LANE, LAURA NEWMAN. The Effect of Hemlock Woolly Adelgid Infestation on Water Relations of Carolina and Eastern Hemlock. (Under the direction of John Frampton.) In North America, hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an exotic insect pest from Asia that is causing severe decimation of native eastern hemlock (Tsuga canadensis (L.) Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). Extensive research has been committed to the ecological impacts and potential control measures of HWA, but the exact physiological mechanisms that cause tree decline and mortality are not known. Eastern and Carolina hemlock may be reacting to infestation in a manner similar to the response of Fraser fir (Abies fraseri (Pursh.) Poir.) to infestation by balsam woolly adelgid (BWA; Adelges picea Ratz.). It is known that Fraser fir produces abnormal xylem in response to BWA feeding. This abnormal xylem obstructs water movement within the trees, causing Fraser fir to die of water-stress. In this study, water relations within 15 eastern and Carolina hemlock were evaluated to determine if infestation by HWA was causing water-stress. Water potential, carbon-13 isotope ratio, stem conductivity, and stomatal conductance measurements were conducted on samples derived from those trees. In addition, branch samples were analyzed for possible wood anatomy alterations as a result of infestation. Pre-dawn branch water potential (Ψ) measurements were more negative in infested hemlock than in non-infested trees. Carbon isotope ratios (normalized δ13C vs. VPDB) of the branches were more positive for infested trees, while stomatal conductance (gs) was lower in infested trees. These results indicate that infested eastern and Carolina hemlock are experiencing drought-like symptoms.
    [Show full text]
  • Population Isolation Results in Unexpectedly High Differentiation in Carolina Hemlock (Tsuga Caroliniana), an Imperiled Southern Appalachian Endemic Conifer
    Tree Genetics & Genomes (2017) 13:105 DOI 10.1007/s11295-017-1189-x ORIGINAL ARTICLE Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer Kevin M. Potter1 & Angelia Rose Campbell2 & Sedley A. Josserand3 & C. Dana Nelson3,4 & Robert M. Jetton5 Received: 16 December 2016 /Revised: 14 August 2017 /Accepted: 10 September 2017 # US Government (outside the USA) 2017 Abstract Carolina hemlock (Tsuga caroliniana Engelm.) is a range-wide sampling of the species. Data from 12 polymor- rare conifer species that exists in small, isolated populations phic nuclear microsatellite loci were collected and analyzed within a limited area of the Southern Appalachian Mountains for these samples. The results show that populations of of the USA. As such, it represents an opportunity to assess Carolina hemlock are extremely inbred (FIS =0.713)andsur- whether population size and isolation can affect the genetic prisingly highly differentiated from each other (FST =0.473) diversity and differentiation of a species capable of long- with little gene flow (Nm = 0.740). Additionally, most popu- distance gene flow via wind-dispersed pollen and seed. This lations contained at least one unique allele. This level of dif- information is particularly important in a gene conservation ferentiation is unprecedented for a North American conifer context, given that Carolina hemlock is experiencing mortality species. Numerous genetic clusters were inferred using two throughout
    [Show full text]
  • Genetic Conservation of Fraser Fir (Abies Fraseri)
    Assessing Forest Tree Genetic Risk across the Southern Appalachians: A Tool for Conservation Decision-Making in Changing Times Kevin M. Potter Barbara S. Crane IUFRO Landscape Ecology Working Group International Conference Bragança, Portugal September 23, 2010 Outline 1) Overview of potential genetic effects of climate change on forest trees 2) Need for regional genetic risk assessments of multiple forest tree species 3) Description of the study region: Southern Appalachian Mountains of the Southeastern United States 4) Description of the genetic risk assessment and the risk factors included 5) Assessment results and next steps Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. Ecosystem processes, Management decisions Speciation, Landscape Ecology extinction, co- evolution Evolutionary Conservation Biology/Population Biology Genetics Applied Quantification, Forest Ecosystem management of Health and landscape genetic Sustainability genetics resources Forest Health Monitoring Research Group, Research Triangle Park, N.C. Robert A. Rohde (http://en.wikipedia.org/wiki/Instrumental_temperature_record) Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “Global meta-analyses documented significant range shifts averaging 6.1 km per decade toward the poles (or meters per decade upward), and significant mean advancement of spring events by 2.3 days per decade. … “This suite of analyses generates very high confidence … that climate change is already affecting living systems.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “[T]he process of northward tree migration in the eastern United States is currently underway with rates approaching 100 km/century for many species.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C. “[W]e predict, on the basis of mid-range climate- warming scenarios for 2050, that 15-37% of species in our samples of regions and taxa will be committed to exctinction.” Eastern Forest Threat Assessment Center, Research Triangle Park, N.C.
    [Show full text]
  • Conserved Ex Situ Genetic Resources of Eastern and Carolina Hemlock: Eastern North American Conifers Threatened by the Hemlock Woolly Adelgid Robert M
    Conserved Ex Situ Genetic Resources of Eastern and Carolina Hemlock: Eastern North American Conifers Threatened by the Hemlock Woolly Adelgid Robert M. Jetton, W. Andrew Whittier, William S. Dvorak, and James “Rusty” Rhea Research Assistant Professor, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Research Forester, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Professor and Director, Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC; Forest Entomologist, U.S. Department of Agriculture, Forest Service, Forest Health Protection, Asheville, NC Abstract [T. diversifolia (Maxim.) Masters]). Four species occur in North America. Western hemlock (T. heterophylla [Raf.] The long-term sustainability of the eastern North American Sargent) and mountain hemlock (T. mertensiana [Bong.] Car- conifers eastern hemlock (Tsuga canadensis [L.] Carriére) riére) occur in western North America in a range that extends and Carolina hemlock (T. caroliniana Engelmann) is threat- from southern Alaska south into northern California. Eastern ened by the exotic insect hemlock woolly adelgid (Adelges hemlock (T. canadensis [L.] Carriére) and Carolina hemlock tsugae Annand; HWA). The integrated pest management (T. caroliniana Engelmann) are native to eastern North strategy to mitigate HWA impacts on hemlock ecosystems America; they are the subjects of this article. includes a cooperative genetic resource conservation program being conducted by Camcore (International Tree Breeding Eastern hemlock is a widespread conifer species with a natural and Conservation Program at North Carolina [NC] State range that extends from Nova Scotia west to northern Minne- University) and the U.S. Department of Agriculture (USDA) sota, south throughout the New England and Middle Atlantic Forest Service Forest Health Protection.
    [Show full text]
  • Phylogeny and Biogeography of Tsuga (Pinaceae)
    Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T.
    [Show full text]
  • Understanding and Developing Resistance in Hemlocks to the Hemlock Woolly Adelgid Author(S): Kelly L.F
    Understanding and Developing Resistance in Hemlocks to the Hemlock Woolly Adelgid Author(s): Kelly L.F. Oten, Scott A. Merkle, Robert M. Jetton, Ben C. Smith, Mary E. Talley and Fred P. Hain Source: Southeastern Naturalist, 13(sp6):147-167. Published By: Eagle Hill Institute URL: http://www.bioone.org/doi/full/10.1656/058.013.s610 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Forest Impacts and Ecosystem Effects of the Hemlock Woolly Adelgid in the Eastern US 2014Southeastern Naturalist 13(Special Issue 6):147–167 Understanding and Developing Resistance in Hemlocks to the Hemlock Woolly Adelgid Kelly L.F. Oten1,*, Scott A. Merkle2, Robert M. Jetton3, Ben C. Smith4, Mary E. Talley4, and Fred P. Hain4 Abstract - In light of the increasing need for long-term, sustainable management for Adel- ges tsugae (Hemlock Woolly Adelgid), researchers are investigating host-plant resistance as part of an integrated approach to combat the pest.
    [Show full text]
  • Introduction to the Southern Blue Ridge Ecoregional Conservation Plan
    SOUTHERN BLUE RIDGE ECOREGIONAL CONSERVATION PLAN Summary and Implementation Document March 2000 THE NATURE CONSERVANCY and the SOUTHERN APPALACHIAN FOREST COALITION Southern Blue Ridge Ecoregional Conservation Plan Summary and Implementation Document Citation: The Nature Conservancy and Southern Appalachian Forest Coalition. 2000. Southern Blue Ridge Ecoregional Conservation Plan: Summary and Implementation Document. The Nature Conservancy: Durham, North Carolina. This document was produced in partnership by the following three conservation organizations: The Nature Conservancy is a nonprofit conservation organization with the mission to preserve plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Southern Appalachian Forest Coalition is a nonprofit organization that works to preserve, protect, and pass on the irreplaceable heritage of the region’s National Forests and mountain landscapes. The Association for Biodiversity Information is an organization dedicated to providing information for protecting the diversity of life on Earth. ABI is an independent nonprofit organization created in collaboration with the Network of Natural Heritage Programs and Conservation Data Centers and The Nature Conservancy, and is a leading source of reliable information on species and ecosystems for use in conservation and land use planning. Photocredits: Robert D. Sutter, The Nature Conservancy EXECUTIVE SUMMARY This first iteration of an ecoregional plan for the Southern Blue Ridge is a compendium of hypotheses on how to conserve species nearest extinction, rare and common natural communities and the rich and diverse biodiversity in the ecoregion. The plan identifies a portfolio of sites that is a vision for conservation action, enabling practitioners to set priorities among sites and develop site-specific and multi-site conservation strategies.
    [Show full text]
  • Hemlock Woolly Adelgid
    United States Department of Agriculture TECHNOLOGY TRANSFER Non-native Pest BIOLOGY AND CONTROL OF HEMLOCK WOOLLY ADELGID Nathan P. Havill Lígia C. Vieira Scott M. Salom Forest Health Technology FHTET-2014-05 Enterprise Team Revised June 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, USDA Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Background image: Hemlock mortality, Jason Van Driesche, Bugwood.org Bottom left to right: HWA white ovisacs on eastern hemlock branch , Scott M. Salom, Virginia Tech; Sajiscymus tsugae, Carol Cheah, Bugwood.org; Laricobius osakensis, Ligia C. Vieira, Virginia Tech. CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommen- dations for their use, nor does it imply that the uses discussed here have been regis- tered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. In accordance with Federal
    [Show full text]
  • Evaluation of Cold—Moist Stratification Treatments for Germinating Eastern and Carolina Hemlock Seeds for Ex Situ Gene Conservation Author(S): Robert M
    Evaluation of Cold—Moist Stratification Treatments for Germinating Eastern and Carolina Hemlock Seeds for ex Situ Gene Conservation Author(s): Robert M. Jetton, W. Andrew Whittier and William S. Dvorak Source: Southeastern Naturalist, 13(sp6):168-177. Published By: Eagle Hill Institute URL: http://www.bioone.org/doi/full/10.1656/058.013.s611 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 2014 Forest Impacts and Ecosystem EffectsSoutheastern of the Hemlock Naturalist Woolly Adelgid in theVol. Eastern 13, Special US Issue 6 R.M. Jetton, W.A. Whittier, and W.S. Dvorak Southeastern Naturalist 6SHFLDO,VVXH ± (YDOXDWLRQRI&ROG±0RLVW6WUDWL¿FDWLRQ7UHDWPHQWVIRU *HUPLQDWLQJ(DVWHUQDQG&DUROLQD+HPORFN6HHGVIRU ([6LWX*HQH&RQVHUYDWLRQ Robert M. Jetton1,*, W. Andrew Whittier1, and William S. Dvorak1 $EVWUDFW Populations of Tsuga canadensis (Eastern Hemlock) and Tsuga caroliniana (Carolina Hemlock) are declining due to infestation by Adelges tsugae (Hemlock Woolly Adelgid), an exotic insect pest.
    [Show full text]
  • Hemlock Woolly Adelgid Facsheet Dec 2018
    Dr. Carole Cheah Valley Laboratory The Connecticut Agricultural Experiment Station 153 Cook Hill Road, P. O. Box 248 Windsor, CT 06095 Phone: (860) 683-4980 Fax: (860) 683-4987 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes Hemlock Woolly Adelgid (HWA) and Other Factors Impacting Eastern Hemlock Introduction and Overview Adelgids are small conifer-feeding insects, related to aphids, belonging to the Suborder Homoptera (1). Hemlock woolly adelgid, Adelges tsugae Annand, (HWA), feeds specifically on hemlock species and was first described from samples originally from Oregon by P. N. Annand in California in 1924 (2). In North America, native Eastern hemlock, Tsuga canadensis (L.) Carriere and Carolina hemlock, Tsuga caroliniana Engelmann are very susceptible to HWA attack (3). Eastern hemlock is the seventh most common tree species in Connecticut and the second most abundant conifer after eastern white pine (4). In the eastern United States, this non- native insect pest was initially reported at a private estate in Richmond, Virginia in the early 1950s (5). The hemlock woolly adelgid in eastern US originated from southern Honshu island, Japan (6) and infestations have since spread widely to attack eastern hemlock and Carolina hemlock in 20 eastern states, from the southern Appalachians in the Carolinas and Georgia, through the Mid-Atlantic States, westwards to Ohio and Michigan and northwards to northern New England (7). Most recently, HWA was found in southern Nova Scotia in Canada in 2017 (8). In Connecticut, HWA was first reported to the Connecticut Agricultural Experiment Station in New Haven in 1985 and by 1997, was found throughout the state, in all 169 Connecticut towns (7).
    [Show full text]