Proceedings No

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings No FRIM Proceedings No. 14 PROCEEDINGS Seminar on Reclamation, Rehabilitation and Restoration of Disturbed Sites: Planting of National and IUCN Red List Species 15 – 17 August 2017 Kuala Lumpur Organised by: Forest Research Institute Malaysia Supported by: Korea Forest Service Asia Pacific Association of Forestry Research Institutions PROCEEDINGS SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES 15 – 17 August 2017, Kuala Lumpur Editors WM Ho V Jeyanny HS Sik CT Lee 2017 © Forest Research Institute Malaysia 2017 All enquiries should be forwarded to: Director General Forest Research Institute Malaysia 52109 Kepong Selangor Darul Ehsan Malaysia Tel: 603-6279 7000 Fax: 603-6273 1314 http://www.frim.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES (2017 : Kuala Lumpur) PROCEEDINGS SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES, 15-17 August 2017, Kuala Lumpur / Editors WM Ho, V Jeyanny, HS Sik, CT Lee. (FRIM PROCEEDINGS NO. 14) ISBN 978-967-2149-08-8 1. Forest restoration--Congresses. 2. Forest and forestry--Congresses. 3. Government publications--Malaysia. I. Ho, WM. II. V Jeyanny. III. Sik, HS. IV. Lee, CT. V. Institut Penyelidikan Perhutanan Malaysia. VI. Title. 634.9095 MS ISO 9001:2015 Certified CONTENTS Page KEYNOTE ADDRESSES Principle of Restoring Tropical Forest Ecosystems and Opportunities 1 for Conserving Endemic, Endangered and Threatened Tree Species S Elliott, K Hardwick D Blakesley & S Chairuangsri Successful Greening Models of Some Disturbed Sites in Peninsular Malaysia 6 LH Ang ORAL Forest Plantation Characteristics on Ex-coal Mined Land in Indonesia: 15 A Case Study in East Kalimantan T Butarbutar Tigor, HH Siringoringo, CA Siregar & IWS Darmawan Rehabilitation Efforts of Disturbed Areas Using Endemic Species in Zambales 20 Diversified Metals Corporation (ZDMC), Northern Zambales, Philippines LS Salac Plant Species Diversity, Vegetation Structure and Aboveground Biomass in 24 Natural Regeneration Forest and Acacia mangium Willd. Plantation in an Ex-tin Mine at Phang-Nga Forestry Research Station, Thailand W Jundang, M Jamroenprucksa, P Duengkae, N Leksungnoen & S Maelim Are Threatened Species Suitable for Rehabilitation Programmes? 29 LSL Chua Variability of Landfill Soils at Tree Planting Areas of Sungai Melaka Recreation and 33 Beautification Sites K Wan Rasidah & I Mohamad Fakhri Phytoremediation of Heavy Metals Using Acacia mangium in Rahman Hydraulic Tin 38 (RHT) Tailings V Jeyanny, Y Ahmad Zuhaidi, MI Fakhri & G Syaliny Cultivation and Management Practices of Aquilaria for Agarwood in Malaysia 44 EH Lok & Y Ahmad Zuhaidi Effects of Different Soil Amendments on Growth of Bambusa vulgaris in 50 Ex-mining Land in Dengkil, Selangor, Malaysia K Amir Saaiffudin, O Abd Razak, I Dasrul & N Zawiah Identifying Framework Tree Species for Restoring Forest 56 K Sobon, S Elliott, S Thea & H Chanthoeun Status and Conservation of Threatened Tree Species in Vietnam 61 TT Nguyen Population of Threatened Dipterocarp Species in the Forests under Various Past 66 Disturbances in the Dong Nai Biosphere Reserve, Southern Vietnam LD Tran, TT Nguyen, TH Do, TS Hoang, NB Trinh, VK Ninh, QT Pham, DT Phung Dinh, HQ Tran & TTP Nguyen The Five Cs of the Aquatic Plant Conservation Outreach Programme of Lake Chini 72 Cause, Choice, Capacity, Communication and Continuity MY Chew, R Sarah-Nabila & AR Ummul-Nazrah Ex-situ Conservation of Dipterocarp Species in Peninsular Malaysia 80 MS Ahmad Fauzi, A Mohd Zaki, M Suhaida, K Amir Saaiffudin & ZH Faizan Germination and Storage Studies of Dryobalanops aromatica Seeds 85 H Nor Asmah, A Noraliza, NA Nashatul Zaimah & N Nadiah Salmi POSTER Restoration of Marginal Sites Using Leguminous Tree Species, Pterocarpus 90 indicus: Practices and Challenges EH Lok & D Bernie Biochar: A New Frontier in Establishment of Forests on Marginal Soils 96 V Jeyanny, K Wan Rasidah, I Mohamad Fakhri, A Rozita, AH Nurhafiza & G Syaliny Growth Evaluation of Bamboos Planted in Lake Chini 99 O Abd Razak & K Amir Saaifudin Increasing Tree Diversity Index through Planting of 30 Indigenous Rainforest 102 Tree Species on a 5-ha Slime Tailings LH Ang, WM Ho, LK Tang & SO Hazarimmah Survival and Vegetative Growths of Some Selected Rainforest Tree Species 107 Inter-planted under Hopea odorata Stand at Slime Tailings in Peninsular Malaysia LH Ang, WM Ho, LK Tang, HS Kang & DK Lee Domestication of Ten Endemic, Endangered and Threatened Tree Species 114 in a Degraded Terrestrial Ecosystem in Peninsular Malaysia LH Ang, WM Ho & LK Tang Can Ex-tin Mine Be a Depository for Indigenous and Red List Species? 119 WM Ho, LH Ang, LK Tang & MI Siti Zaharah Rehabilitation Technique Developed for Disturbed Firefly Habitat at the 124 Riverbank of Sungai Selangor LK Tang, LH Ang, WM Ho & MR Junaidi Potential Wood Resources from Hopea odorata Grown on Tin Tailings 130 HS Sik & WM Ho Effect of Different Planting Methods to the Growth Performance of Nypa fruticans 135 A Mohd Zaki, W Nor Fadilah, N Mohamad Lokmal, MS Ahmad Fauzi & MA Farah Fazwa Edible Fruits from the Forest and Their Characteristics 138 N Zawiah & WM Ho Desiccation Sensitivity and Storage of Hopea subalata Seeds A Critically 141 Endangered Species of Peninsular Malaysia NA Nashatul Zaimah, H Nor Asmah, N Nadiah Salmi & A Noraliza Germination of Shorea roxburghii G. Don Seeds for Future Ex-situ Conservation 146 and Reforestation Programmes MA Farah Fazwa, W Nor Fadilah, A Mohd Zaki, N Mohd Lokmal, MS Ahmad Fauzi, A Noraliza, SB Syafiqah Nabilah, S Norhayati & L Mohd Asri Desiccation and Storage Studies of Shorea roxburghii G. Don Seeds 151 A Noraliza, MA Farah Fazwa, H Nor Asmah, A Mohd Zaki, N Mohd Lokmal, W Nor Fadilah, NA Nashatul Zaimah & N Nadiah Salmi Keynote Address PRINCIPLES OF RESTORING TROPICAL FOREST ECOSYSTEMS AND OPPORTUNITIES FOR CONSERVING ENDEMIC, ENDANGERED AND THREATENED TREE SPECIES S Elliott1*, K Hardwick2, D Blakesley3 & S Chairuangsri1 1 Forest Restoration Research Unit, Biology Department, Science Faculty, Chiang Mai University, Thailand, 50200 2Millennium Seed Bank Partnership, Royal Botanic Gardens, Kew, UK, 3Wildlife Landscapes, UK *E-mail: [email protected] ABSTRACT Restoring tropical forest ecosystems involves manipulating natural regeneration to achieve the maximum biomass, structure, biodiversity and ecological functioning that are possible within climatic and edaphic limitations. A nearby remnant of least-disturbed forest should be selected as the “target forest ecosystem” to set restoration goals and to provide a seed source. In the seasonally dry tropics, a regenerant1 density of 3,086/ha is needed to initiate canopy closure within two years. If regenerants are present at higher densities and they are not suppressed by weeds, protection alone can achieve restoration. However, if herbaceous weeds suppress regenerants, protection must be complemented with weeding and/or fertilizer application (assisted natural regeneration, ANR). Where regenerant density < 3,086/ha, protection and ANR must be complemented with tree planting. Where incoming seed dispersal from remnant forest remains possible, only a few “framework tree species” need be planted i.e. representative species of the target forest type that i) survive and grow well on deforested sites, ii) have dense, spreading crowns to shade out weeds and iii) attract seed- dispersing wildlife. Where such seed dispersal is not possible, all tree species of the target forest ecosystem must be planted (maximum diversity methods). Where top soil is lacking, planting “nurse” trees to improve soil structure and nutrient levels (e.g. Ficus & legumes) must precede other restoration procedures. Re-introduction of endemic, endangered or threatened tree species can be included in all of the above techniques. Focusing only on red listed tree species is not particularly useful, since such lists are incomplete and fail to recognize local rarity. Restorationists should ensure that the rarest tree species in the target forest recolonize restoration sites, usually by tree planting. The greatest barrier to the use of rare species in forest restoration is low seed availability. Partnerships between restorationists and botanical gardens and/or seed banks may be crucial to ensure rare species are represented in restoration projects. 1 INTRODUCTION Defining Forest Restoration Tropical forest ecosystem restoration is “directing and accelerating ecological succession towards an indigenous target forest ecosystem of the maximum biomass, structural complexity, biodiversity and ecological functioning that are self-sustainable within climatic and soil limitations”. The definition clearly excludes exotic or domesticated species. It explicitly states four measurable indicators of restoration success. Limits imposed by climate change are implicit. Restoration involves overcoming natural and artificial barriers to succession and driving succession forwards more rapidly than would occur without intervention. The target forest ecosystem should be the nearest remnant of least-disturbed forest, growing under similar topographical and climatic conditions. It is used to set restoration goals, particularly species composition (Elliott et al. 2013). Ensuring that the rarest species, in the target forest, re-colonize restoration sites is one of the
Recommended publications
  • Seeds and Plants Imported
    Issued November 9,1915. U. S. DEPARTMENT OF AGRICULTURE. BUREAU OF PLANT INDUSTRY. WILLIAM A. TAYLOR, Chief of Bureau. INVENTORY SEEDS AND PLANTS IMPORTED OFFICE OF FOREIGN SEED AND PLANT INTRODUCTION DURING THE PERIOD FROM APRIL 1 " " TO JUNE 30,1913. " , r (No. 35; Nos. 35136 TO 3566^..,--"•-****"*"' WASHINGTON: GOVERNMENT PRINTING OFFICE. 1915. Issued November 9,1915. U. S. DEPARTMENT OF AGRICULTURE. BUREAU OF PLANT INDUSTRY. WILLIAM A. TAYLOR, Chief of Bureau. INVENTORY SEEDS AND PLANTS IMPORTED BY THE OFFICE OF FOREIGN SEED AND PLANT INTRODUCTION DURING THE PERIOD FROM APRIL 1 TO JUNE 30,1913. (No. 35; Nos. 35136 TO 35666.) WASHINGTON: GOVERNMENT PRINTING OFFICE. 1915. BUREAU OF PLANT INDUSTRY. Chief of Bureau, WILLIAM A. TAYLOR. Assistant Chief of Bureau, KARL F. KELLERMAN. Officer in Charge of Publications, J. E. ROCKWELL. Chief Clerk, JAMES E. JONES. FOREIGN SEED AND PLANT INTRODUCTION. SCIENTIFIC STAFF. David Fairchild, Agricultural Explorer in Charge. P. H. Dorsett, Plant Introducer, in Charge of Plant Introduction Field Stations. Peter Bisset, Plant Introducer, in Charge of Foreign Plant Distribution. Frank N. Meyer and Wilson Popenoe, Agricultural Explorers. H. C. Skeels, S. C. Stuntz, and R. A. Young, Botanical Assistants. Allen M. Groves, Nathan Menderson, and Glen P. Van Eseltine, Assistants. Robert L. Beagles, Superintendent, Plant Introduction Field Station, Chico, Cal. Edward Simmonds, Superintendent, Subtropical Plant Introduction Field Station, Miami, Fla. John M. Rankin, Superintendent, Yarrow Plant Introduction Field Station, Rockville, Md. E. R. Johnston, Assistant in Charge, Plant Introduction Field Station, Brooksville, Fla. Edward Goucher and H. Klopfer, Plant Propagators. Collaborators: Aaron Aaronsohn, Director, Jewish Agricultural Experimental Station, Haifa, Palestine; Thomas W.
    [Show full text]
  • Dipterocarpaceae)
    DNA Sequence-Based Identification and Molecular Phylogeny Within Subfamily Dipterocarpoideae (Dipterocarpaceae) Dissertation Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) at Forest Genetics and Forest Tree Breeding, Büsgen Institute Faculty of Forest Sciences and Forest Ecology Georg-August-Universität Göttingen By Essy Harnelly (Born in Banda Aceh, Indonesia) Göttingen, 2013 Supervisor : Prof. Dr. Reiner Finkeldey Referee : Prof. Dr. Reiner Finkeldey Co-referee : Prof. Dr. Holger Kreft Date of Disputation : 09.01.2013 2 To My Family 3 Acknowledgments First of all, I would like to express my deepest gratitude to Prof. Dr. Reiner Finkeldey for accepting me as his PhD student, for his support, helpful advice and guidance throughout my study. I am very grateful that he gave me this valuable chance to join his highly motivated international working group. I would like to thank Prof. Dr. Holger Kreft and Prof. Dr. Raphl Mitlöhner, who agreed to be my co-referee and member of examination team. I am grateful to Dr. Kathleen Prinz for her guidance, advice and support throughout my research as well as during the writing process. My deepest thankfulness goes to Dr. Sarah Seifert (in memoriam) for valuable discussion of my topic, summary translation and proof reading. I would also acknowledge Dr. Barbara Vornam for her guidance and numerous valuable discussions about my research topic. I would present my deep appreciation to Dr. Amarylis Vidalis, for her brilliant ideas to improve my understanding of my project. My sincere thanks are to Prof. Dr. Elizabeth Gillet for various enlightening discussions not only about the statistical matter, but also my health issues.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • The Magazine of the Arnold Arboretum DIRECTOR’S REPORT 2003–2007 Richard Schulhof
    The Magazine of the Arnold Arboretum DIRECTOR’S REPORT 2003–2007 Richard Schulhof Zelkova serrata (AA 1813-77) by Michael Dosmann etween 1 July 2002 and 30 June 2007, 1,011 accessions Richard Schulhof Bcomprising 2,075 plants were added to the Living Collec- tions, bringing the total number of accessions and plants to 10,176 and 15,665, respectively. Of the new accessions, 53% were of wild origin and 42% were of garden origin, and 103 additions were of taxa new to the collection. Below, the taxonomic profile of the Living Collections as of 30 June 2007. Numbers for infraspecific ranks correspond only to those accessions where rank is known. RANK NUMBER Families 97 Genera 351 Species 2254 Subspecies 75 Varieties 401 Formae 84 Cultivars 1552 Interspecific hybrids 456 Intergeneric hybrids 19 Jon Hetman THE ARNOLD ARBORETUM OF HARVARD UNIVERSITY DIRECTOR’S REPORT: 2003–2007 Robert E. Cook, Director ARNOLDIA • VOLUME 65 • NUMBER 4 Arnoldia (ISSN 004-2633; USPS 866-100) is published quarterly by the Arnold Arboretum of Harvard University. Periodicals postage paid at Boston, Massachusetts. Copyright © 2008. The President and Fellows of Harvard College. The Arnold Arboretum of Harvard University 125 Arborway, Boston, Massachusetts 02130 FRONT COVER: Weld Hill research facility, design sketch of Centre Street view (detail); KlingStubbins. BACK COVER: Model of Weld Hill research facility by GPI Models; photographs by Desroches Photography. Top main entrance and laboratory wing on the north side of the building; Bottom courtyard and greenhouses on the south side of the building. Quercus (oak) collection by Jon Hetman Introduction arly this spring, the Arnold Arboretum began construction of a new research and administration building at Weld Hill, Ea fourteen-acre parcel of land adjacent to the grounds of the Arboretum (see Figure 1).
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Technical Guidelines for Reforestation at Ex-Coal-Mining Areas
    Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Japan International Forestry Promotion and Cooperation Center (JIFPRO) March 2015 Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Eiichiro Nakama, Seiichi Ohta, Yasuo Ohsumi, Tokunori Mori and Satohiko Sasaki Japan International Forestry Promotion and Cooperation Center Fakhrur Razie, Hamdani Fauzi and Mahrus Aryadi Lambung Mangkurat University, Indonesia Japan International Forestry Promotion and Cooperation Center March 2015 Foreword During the past decades, deforestation and forest degradation continues especially in developing countries. According to the report of the Food and Agriculture Organization of the United Nation (FAO), approximately 13 million hectors of global forests have been lost annually due to forest land conversion to other land uses, forest fires and natural disasters, while reforestation and natural regeneration account for an increase of approx. 7.8 million hectors of forest cover. This means the net loss of global forest is estimated at 5.2 million hectors. Adverse impacts of forest conversion to farmland can be minimized as far as the land is properly used and managed in a sustainable manner. However, in some cases, problem soils are exposed and abandoned as degraded land. Deforestation by mining is a big issue these years. Problem soils such as strong acid soils and/or too much heavy metal soils appear at the ex-mining areas. In some cases it is too difficult to reforestate.
    [Show full text]
  • An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae Species
    Received: 30 October 2020 Revised: 6 March 2021 Accepted: 9 March 2021 DOI: 10.1002/ptr.7098 REVIEW Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species Rubi Barman1,2 | Pranjit Kumar Bora1,2 | Jadumoni Saikia1 | Phirose Kemprai1,2 | Siddhartha Proteem Saikia1,2 | Saikat Haldar1,2 | Dipanwita Banik1,2 1Agrotechnology and Rural Development Division, CSIR-North East Institute of Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest spe- Science & Technology, Jorhat, 785006, Assam, cies of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs India 2Academy of Scientific and Innovative are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Research (AcSIR), Ghaziabad, 201002, Uttar Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diar- Pradesh, India rhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic Correspondence agents. Nutmegs are cultivated around the tropics for high-value commercial spice, Dipanwita Banik, Agrotechnology and Rural Development Division, CSIR-North East used in global cuisine. A thorough literature survey of peer-reviewed publications, sci- Institute of Science & Technology, Jorhat, entific online databases, authentic webpages, and regulatory guidelines found major 785006, Assam, India. Email: [email protected] and phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavo- [email protected] noids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with Funding information www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers Council of Scientific and Industrial Research, showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immu- Ministry of Science & Technology, Govt.
    [Show full text]
  • Protecting Tropical Forests from the Rapid Expansion of Rubber Using Carbon Payments
    This is a repository copy of Protecting tropical forests from the rapid expansion of rubber using carbon payments. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/128396/ Version: Published Version Article: Warren-Thomas, E.M. orcid.org/0000-0001-5746-1738, Edwards, D.P., Bebber, D.P. orcid.org/0000-0003-4440-1482 et al. (9 more authors) (2018) Protecting tropical forests from the rapid expansion of rubber using carbon payments. Nature Communications, 9. 911. https://doi.org/10.1038/s41467-018-03287-9 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ ARTICLE DOI: 10.1038/s41467-018-03287-9 OPEN Protecting tropical forests from the rapid expansion of rubber using carbon payments Eleanor M. Warren-Thomas 1,2, David P. Edwards3, Daniel P. Bebber 4, Phourin Chhang5, Alex N. Diment 6, Tom D. Evans7, Frances H. Lambrick8, James F. Maxwell9, Menghor Nut10, Hannah J. O’Kelly6, Ida Theilade 9 & Paul M. Dolman 1 Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, 1234567890():,; carbon emissions, and biodiversity loss in Southeast Asia.
    [Show full text]
  • Biodiversity Assessment Study for New
    Technical Assistance Consultant’s Report Project Number: 50159-001 July 2019 Technical Assistance Number: 9461 Regional: Protecting and Investing in Natural Capital in Asia and the Pacific (Cofinanced by the Climate Change Fund and the Global Environment Facility) Prepared by: Lorenzo V. Cordova, Jr. M.A., Prof. Pastor L. Malabrigo, Jr. Prof. Cristino L. Tiburan, Jr., Prof. Anna Pauline O. de Guia, Bonifacio V. Labatos, Jr., Prof. Juancho B. Balatibat, Prof. Arthur Glenn A. Umali, Khryss V. Pantua, Gerald T. Eduarte, Adriane B. Tobias, Joresa Marie J. Evasco, and Angelica N. Divina. PRO-SEEDS DEVELOPMENT ASSOCIATION, INC. Los Baños, Laguna, Philippines Asian Development Bank is the executing and implementing agency. This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. Biodiversity Assessment Study for New Clark City New scientific information on the flora, fauna, and ecosystems in New Clark City Full Biodiversity Assessment Study for New Clark City Project Pro-Seeds Development Association, Inc. Final Report Biodiversity Assessment Study for New Clark City Project Contract No.: 149285-S53389 Final Report July 2019 Prepared for: ASIAN DEVELOPMENT BANK 6 ADB Avenue, Mandaluyong City 1550, Metro Manila, Philippines T +63 2 632 4444 Prepared by: PRO-SEEDS DEVELOPMENT ASSOCIATION, INC C2A Sandrose Place, Ruby St., Umali Subdivision Brgy. Batong Malake, Los Banos, Laguna T (049) 525-1609 © Pro-Seeds Development Association, Inc. 2019 The information contained in this document produced by Pro-Seeds Development Association, Inc.
    [Show full text]
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]
  • The Bioket Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G
    The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, Célia da Costa Pereira To cite this version: Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, Célia da Costa Pereira. The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction. Advances in Intelli- gent Data Analysis XIII - 13th International Symposium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Proceedings, Oct 2014, Leuven, Belgium. pp.131 - 142, 10.1007/978-3-319-12571- 8_12. hal-01084440 HAL Id: hal-01084440 https://hal.archives-ouvertes.fr/hal-01084440 Submitted on 19 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The BioKET Biodiversity Data Warehouse: Data and Knowledge Integration and Extraction Somsack Inthasone, Nicolas Pasquier, Andrea G. B. Tettamanzi, and C´elia da Costa Pereira Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06903 Sophia Antipolis, France {somsacki,pasquier}@i3s.unice.fr,{andrea.tettamanzi,celia.pereira}@unice.fr Abstract. Biodiversity datasets are generally stored in different for- mats. This makes it difficult for biologists to combine and integrate them to retrieve useful information for the purpose of, for example, efficiently classify specimens.
    [Show full text]