Porphyrites and Other Mafic Abyssal Masses. the Felsic to Intermediate

Total Page:16

File Type:pdf, Size:1020Kb

Porphyrites and Other Mafic Abyssal Masses. the Felsic to Intermediate J. Japan. Assoc. Min. Petr. Econ. Geol. 74, 235-244, 1979. THULITE AND ASSOCIATED MINERALS FROM THE NAKADORI ISLAND, GOTO, NAGASAKI PREFECTURE HISASHI TAKESHITA Moji High School, Fukuoka Prefecture and YUKIO MATSUMOTO Geological Institute, Faculty of Liberal Arts, Nagasaki University The association of thulite-scolectei-prehnite in felsic volcanic pyroclastics of the Neogene Tertiary developed at the Nakadori Island, Goto, is reproted here as a peculiar case of the Green-Tuff alteration. The thulite is mangan-clinozoisite, (Ca2 .039Mg0.034Mn0.058)2.131 (Fe0.172Al2.828)3.000(Al0.023Si2.913)2.936(OH)O12. Thulite in porphyrite dikes which intrude into the pyroclastics, however, ranges from mangan-clinozoisite ((Na0 .005Ca1.939Mg0.097Mn0.044)2.082 (Fe0.049Al2.936)2.984Si2.972(OH)O12 to withermite ((Na0.006Ca2.033Mg0.019Mn0.038)2.095(Fe0.546Al2.389) 2.930Si3.000(OH)O12-(Ca1.999Mg0.002Mn0.034)2.036(Fe0.696Al2.302)2.998Si2.893(OH)O12). Scolecite associated with thulite has the chemical composition of (K0 .001Na0.012Ca0.989Mg0.004)1.006Al1.933 Si3.049O10•E3H2O. Prehnite associated with thulite and scolecite has the composition of (Na0 .001 Ca1.988Mg0 .001Fe0.006Mn0.002)1.998Al1.015(Al1.036Si2.964)4.000(OH)2O10. porphyrites and other mafic abyssal masses. INTRODUCTION AND OCCURRENCE The felsic to intermediate pyroclastics, Thulite comprises pink zoisite as well as partially welded in their lower part, belong pink clinozoisitie. In the present study the to the Goto Volcanic Complex (Ueda, 1961), clinozoisite, light pinkish color in appearance, and are correlated to the Arikawa Forma is easily recognized under microscope by tion (Tsukahara et al., 1975) underlaid with high relief, rather low birefringence, pinkish the Goto Formation (Ueda, 1961), composed weak pleochroisms and optically positive of sandstone and mudstone. Of these, character. It becomes withermite toward volcanic pyroclastic rocks are regionally the small cores which show relatively high altered. They carry montmorillonitic clay birefringence and optically negative minerals, sericite, chlorite, and epidote in character. cases. The sedimentary basin filled with The locality is situated at the Narao large volumes of these pyroclastics has been Port, south of the Nakadori Island of Goto. recognized as a part of the Green-Tuff Region The thulite-bearing rocks are exposed in Southwest Japan (Matsumoto, 1973; within a quite restricted area, while the 1977). greenish epidote-bearing ones rather widely The leucccratic thulite-bearing rocks occur in pyroclastic formations, where they appear to grade into light greenish epidote- are intruded by many dikes and sheets of bearing rocks within a sh ??t distance (Fig. (Manuscript received February 21, 1979) 236 Hisashi Takeshita and Yukio Matsumoto Thulite and associated minerals from the Nakadori Island, Goto, Nagasaki Prefecture 237 1). A dike rock which is not so leucocratic 74073007A) or porphyritic texture. Phe as compared with the thulite-bearing tuff nocrysts are plagioclase, An34-30, dusty breccia of dacitic composition also has kali-feldspar, and variable amounts of thulite in its silicified and pyritized part. primary quartz. Primary mafic minerals In such a part the dike rock has lost its are not observed. Epidote frequently original chilled texture (Fig. 2-1) by intense replaces plagioclase and often constructs a alteration. The chilled margin can clearly beautiful radial aggregate. Zeolite is rarely be seen (Fig. 2-2) against the boundary with found in cavities. Its features (2V(-)= epidote-bearing tuff breccia. Epidote does 41-42•‹) are as same as those of scolecite of not always develop throughout the whole the sample No. N-51. As a subordinate pyroclastic formations, but is sporadically component augite-andesite (No. 74073008) found where abyssal or hypabyssal masses is found as debris in the pyroclastics. Zonal have intruded. structure is well-developed in the pheno crysts of plagioclase, ranging from An71 to An54, and hour-glass structure is often DESCRIPTION OF ROCKS observed in the augite phenocrysts. The As far as surveyed by the present groundmass minerals are lath-shaped plagio- authors, the Green-Tuff of the Nakadori clase, anhedral alkali feldspar, considerable Island are chiefly composed of felsic or amounts of augite and magnetite. Xeno- pumiceous tuff, siliceous shale, quartzose crystic quartz is surrounded by coronas of sandstone, and their mixed pyroclastic clinopyroxene rods or shows corroded form. assemblage. Replacement by montmoril A dusty plagioclase is also considered as a lonitic clay minerals is distinct in the Green- xenocryst which is rimmed by clear plagio- Tuff. Locally epidote is associated with clase. Chlorite, light green in color and secondary quartz in the altered pyroclastics very low in birefringence, forms pseudomorph of rhyolitic to dacitic composition. Their after olivine, associated with augite, magne component debris show eutaxitic (No. tite, and epidote replacing plagioclase. Fig. 1 Distribution of various rocks of the Green-Tuff, developed near the environs of the Narao Port, southern part of the Nakadori Island. Legend: 1. Porphyrite dike, characterized by epidote. 2. Porphyrite dike, characterized by thulite, withermite, scolecite, wairakite and rarely prehnite. 3. Dacite tuff and tuff breccia, containing montmorillonitic clay minerals. 4. Dacitic tuff breccia, characterized by epidote and chlorite. 5. Dacite tuff breccia, characterized by thulite, scolecite and wairakite. 6. Shale of the Goto Formation. 7. Dip and strike of the boundary between dike and country rocks. 8. Dip and strike of stratum. No. 74073001•@ Well-stratified dacite tuft, greenish in appearance No. 74073007•@ A. Eutaxitic dacite debris B. Dacite debris No. 74073008•@ Mafic andes ite debris No. 74073009•@ Augite-hypersthene-hornblende-porphyrite No. 74072902•@ Dacite tuff breccia No. 74072903•@ Ditto, collected from a brecciated part close to the dike. No. 74073002•@ Thulite-bearing part of the dike No. 74073005•@ Porphyrite, characterized by greenish epidote. 238 Hisashi Takeshita and Yukio Matsumoto Fig. 2. 1. Dike II, intruding into dacitic pyroclastic bed (left), shows rather melanocratic appearance on its bulk core, whereas its margin appears to have been grown dull in color (a portion where a hammer is placed). 2. Elongation of the Dike II, showing rather melanocratic chilled margin against light gray dacitic pyroclastic bed (top). 3. Pyrite (Py) enclosing thulite (Th). Scolecite (Sc) is seen in the matrix of the tuff. Crosse nicols. 4. Scolecite showing radial aggregate and rimmed by deep yellowish brown antigorite (A). 5. Thulite-prehnite assemblage. In the light portion, scolecite is present. Prehnite (Pr) encloses fine grains of thulite. Thulite and associated minerals from the Nakadori Island, Goto, Nagasaki Prefecture 239 Dike rocks are intermediate in composition. Table 1 Acute sides of Kohler's angle, An mol.% and ordering degree (o.d.) of porphyritc A thulite-bearing rock (e.g. Dike II in Fig. 1) plagioclase in propyritized thulite-bear becomes a thulite-free and epidote-bearing ing porphyrite, No. N-51, collected from rock on the elongation of the same dike. Narao Another thulite-bearing dike (e.g. Dike I) has thulite-free core. Texture of these dike rocks is porphyritic and pilotaxitic, characterized by anhedral quartz and alkali-feldspar. Porphyritic plagioclase is rather fresh and is calcic as high as the An content from 64 to 90%. Original mafic minerals have been replaced by chlorite and epidote. The marginal part of Dike I (No. 74072904) carries small amounts of thulite Its porphyritic plagioclase is very dusty and calcic (Ann in the core and An,, on average). important metamorphic mineral, whereas It is intruded by many strings of opal and prehnite is rare in the pyroclastics. Prehnite sodic plagioclase. The terminal part of associated with thulite is shown in Fig. 2-5. Dike II is more or less brecciated to produce The only phenocryst preserved well is pockets filled by quartz, calcite, thulite, plagioclase, though it is considerably scolecite, and pyrite in cubic or pyritehedral altered by intrusion of strings of opal and form. Sometimes thulite and scolecite are sodic plagioclase. Measurements on acute apparently enclosed in pyrite (Fig. 2-3). sides of Kohler's angle reveal that there may The thulite-bearing volcanic pyroclastic be two types of plagioclase (Table 1); one is rock (Nos. 74072902, 03) contains essential the ordered type, where the An mol.% fragments of dacite, pumice, and accidental ranges from 75 to 84, and another is the fragments of quartzose sandstone and tuff disordered type with the composition, aceous mudstone. Porphyritic crystals An68-74. are clear oligoclase to andesine (nx(min.)= OPTICS AND CHEMICAL COMPOSITIONS 1.542 nz(max)=1.557, An27-42), quartz OF THULITE AND ASSOCIATED MIN angular to subangular in form, and very ERALS dusty alkali-feldspar. Thulite, almost color- less to light pinkish, is sporadically found, Refractive indices were measured by and shows high relief against the felsic the immersion method, using immersion oil whose indices have been measured by groundmass or matrix of scolecite. The scolecite occurs as feather-like radial ag microrefractometer. The error of the in dices may reach •}0.002. The electron- gregates (Fig. 2-4). Its optic axial angle varies from 30•‹ to 53•‹ in negative sign. probe analysis has been carried out by Dr. Wairakite is rarely recognized by much M. Hayashi of Research Institute of Science larger optic axial angles than the largest and Industry, Kyushu University. In limit of those measured on the scolecite. every case the H2O content was regarded as A sample, No. N-51, collected from a the difference between 100% and the total obtained. large boulder of a dike, has prehnite as an 240 Hisashi Takeshita and Yukio Matsumoto Thulite From the refractive indices the presence of Analyses Nos. 1 and 2 in Table 2 the crystals with the composition inter represent a chnozoisite whose composition is mediate between Nos. 2 and 3 should be close to the end member, Ca2Al3Si3(OH)O12, expected. Really the thulite should be of the clinoziosite-epidote series.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • A Single-Crystal Epr Study of Radiation-Induced Defects
    A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal.
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Mineralogical Notes on Mesolite and Scolecite from Japan
    MINERALOGICAL JOURNAL, VOL . 5, No. 5, PP. 309-320, SEPT., 1968 MINERALOGICAL NOTES ON MESOLITE AND SCOLECITE FROM JAPAN KAZuo HARADA Section of Geology, Chichibu Museum of Natural History , Nagatoro 1417, Chichibu-gun, Saitama MAMORU HARA Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo and KAZUSO NAKAO Chemical Institute, Faculty of Science, Tokyo University of Education, Otsuka, Tokyo ABSTRACT Occurrence of mesolites and scolecite was confirmed in veinlets or amyg dales in andesitic or basaltic rocks in Japan. The results of chemical, physical and X-ray studies of these minerals are described, with their mineral associ ations and modes of occurrences. Introduction Mesolite and scolecite are usually classified as common fibrous zeolites, but there has been no report on the occurrence of these zeolites in Japan though the thermal and chemical data of mesolite from Tezuka, Nagano, Japan, was given by Koizumi (1953). However, our routine examinations of fibrous zeolites in the National Science Museum, Tokyo, recently confirmed that mesolite and scolecite are not so rare in Japan as hitherto believed. This paper deals with the 310 Mineralogical Notes on Mesolite and Scolecite from Japan descriptions of scolecite and mesolites from Japan. a) Mesolite from Tezuka, Nishisioda-mura, Chiisagata-gun, Naga no, Japan (coll. by Takaharu Imayoshi). This mineral occurs as fibrous aggregates, sometimes associated with heulandite, in the vein lets (2-3cm wide) in andesitic tuff breccia. The DTA, TGA and chemical analysis of this specimen were provided by Koizumi (1953). b) Mesolite from Oshima, Otsuki City, Yamanashi, Japan (coll. by the writers). This mineral occurs as fibrous aggregates closely associated with stilbite in amygdales (1-2cm) of thoroughly altered olivine basalt.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • Symmetry, Twinning, and Parallel Growth of Scolecite, Mesolite, And
    American Mineralogist, Volume 73, pages 613418, 1988 Symmetry, twinning, and parallel growth of scolecite,mesolite, and natrolite Mrzurrmo Axrzurr Institute of Mineralogy, Petrology,and Economic Geology, Faculty of Science,Tohoku University, Sendai 980, Japan Kl.zuo H.c.RAoa 1793,Noro-cho, Chiba 280-01,Japan AssrRAcr Scolecitecrystals consist of {l l0}, {010}, and {l l1} growth sectorswith triclinic sym- metry, although scoleciteappears to be monoclinic by X-ray analysis. The crystals have twinning causedby an asymmetric arrangementof Ca and HrO in the channel, and the (100) twin plane doesnot coincide with the sectorboundary. The crystal has partly ordered (Al,Si) arrangementsthat are symmetrical with respectto the boundariesbetween the four { I I I } sectors;that is, the (Al,Si) arrangementallows sectoral( 100) and (0 l0) twins. Natrolitecrystalsconsistof{1ll}and{110}growthsectors,whichcorrespondtosmooth (l I l) and striated (l l0) faces.The optical extinctions are oblique to the b axis and parallel to the c axis, suggestingmonoclinic symmetry, which can be attributed to (Al,Si) ordering. The {l l0} sectors show parallel intergrowths akin to twinning: one part is rotated 180' about the normal to (l l0) relative to the other. Sectorsthat grow in the opposite directions along the *c and -c axes show parallel intergrowths. Fine striations on the (ll0) face grow in the two directions corresponding to the +c and -c axes, producing the inter- growths. Mesolite crystalsconsist of only {lll} sectoraltwins, without {ll0} erowth sectors,and are monoclinic. fNrnooucrroN Pabst (1971) summarized some papers on twinning in Scolecite,mesolite, and natrolite are acicular or fibrous natrolite and described an intergrowth akin to twinning common zeolites with chain structures.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • High-Pressure Metamorphism and Uplift of the Olympic Subduction Complex
    High-pressure metamorphism and uplift of the Olympic subduction complex Mark T. Brandon, Arthur R. Calderwood* Department of Geology and Geophysics, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 ABSTRACT The discovery of the critical �mblage lawsonite + quartz + calcite indicates that a significant part of the Cenozoic Olympic subduction complex of northwestern Washington State formed by underplating at a depth of about 11 km. The deep structural level exposed in this area is attributed to the presence of a 10-km-high arch in the underlying Juan de Fuca plate. We postulate that this arch was formed when the southern Cordilleran coastline swung westward as a result of middle Miocene to recent extension in the Basin and Range province. INTRODUCTION Olympic subduction complex accumulated by the western Olympic subduction complex and The Cascadia convergent margin, which subduction underplating. In this paper we exam­ that of Hawkins (1967) on prehnite-bearing flanks the western side of Oregon, Washington, ine the metamorphic and uplift history of this rocks in the Mount Olympus area (MO in Fig. and Vancouver Island, marks the subduction subduction complex and postulate a new inter­ l ). Zones in the remaining areas were delimited boundary between North America and the Juan pretation for formation of the Olympic uplift. using samples collected during their mapping de Fuca plate. Along much of this margin, the (Tabor and Cady, 1978b) in the central and fore-arc region is underlain by a flat to gently METAMORPHISM OF THE eastern Olympic Peninsula. dipping sheet of lower Eocene basalt (Crescent, OLYMPIC SUBDUCTION COMPLEX We have examined thin sections from 138 Siletz, and correlative formations; Wells et al., Tabor and Cady (l978b) delimited a general sandstone samples from all parts of the Olympic 1984), which represents the basement on which metamorphic zonation decreasing in grade from subduction complex; most, however, are from a subsequent fore-arc basin has accumulated east to west.
    [Show full text]
  • Notes and Neii,S 565 Skeletonized Apophyllite
    NOTESAND NEII,S 565 SKELETONIZEDAPOPHYLLITE FROM CRESTMORE AND RI\,'ERSIDE,C-\LIFORNIA Epcan H. Barrnv, Ontario, California,. Skeletonizedapophyllite is hydrous silica after apophyllite, which re- tains some of the physical and optical properties of the parent mineral, as well as its crystal form, and thus differs from merely pseudomorphic opal. Simiiar skeletonizationhas been demonstratedfor other silicate minerals and also has been produced in the laboratory. Recent blasting at Crestmore Commercial Quarry, the well known mineral locality three miles north of Riverside, California, has revealed snow-white tetragonal crystals up to 5 mm. long, associatedwith veins of colorlessprehnite cutting garnet-diopsiderock. Diligent searchyielded only approximately 10 grams of the material with less than one gram of well-formed crystals. A few of the crystals were found to have sufficiently smooth faces to give reflections which, though multiple and hazy, were good enough to measure on a one circle goniometer. The average of 12 measurementsof (111) to (111) gave 119o50' as contrastedwith l2|o 04'for apophyllite as given in Dana's Syslem.A closervalue of I19" 33'was obtained by Luedecke(1) on apophyllitefrom Radauthal. The crystalshave the habit of the apophyilite from Crestmore describedby Eakle (2) with dominant pyramid [111], generally subordinate prism {100} and very small, or absent, base {001}. No other forms were found on the Crestmorema- terial. The New City Quarry in the Victoria district of Riverside has yielded apophyllite crystals of cubo-octahedral habit up to 3 cm. in size. No prehnite was found with these crystals but late coatings of honey-colored calcite with dog-tooth habit are common.
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]