onum TH9900001 msUsftuotnms NST7 onaimansuaannTuIaSuGinaas nsofi cu

cfiunaiuuiauuiuUsuioiiida^un %M ns:ns3U3n8imans ISBN 974 7400-22-7 30-36 Please be aware that all of the Missing Pages in this document were originally blank pages ii

wsssivirnuui&isivniswaiSQU Thimsflhsiv

uasjJssvirfunnmi favwv

irilmjssamwdiiswfiioa'o uazuoinenJssT&vuetiioiiiiia'tturimi ufimliv uazuriutJufiu

4 i wssmtrvmnsamsTnfni mo wwii wtGfinsiv iJsraiuauwus cfsiflfmumito molnauoinaas ai HaaUstrnjanatsansOina tfo 0

Ruclesw Technology : ff Stimulus Tor Thai Economy

The 7 Tluclear Science and Technology Conference 1-2 December 1998 at Kasetsart Golden Jubilee Administration and InTormation Center Kasetsart University Bangkok 10900. Thailand

Organized by ©filee of Atomic Energy Tor Peace Ministry ol Science Technology and Environment sn nsbfi i 1 - 2 ffUDlflU 2541

n.s\. 2504 doiasu auuauunisflnuiStfaua^injunSnaifliaiasfJoiflaas u

BITU morrmbumBS Dununna'iRfijlunamsriio n idvi lumomsuwns' nismuHS aeiannnssu ua:fiiTnaniMaofio:iiiliJlffiiIuRuriiiufiwaooiuwafins:iialrlflniiaoils:mfiTu6inRpi

cfouuso msifs^v5ffims3nmfnaeisua:mnlulamioifiass " iilmJs^inn 2 1) ItiaiSulouritl M.R. 2529 iiluefuui ua^iiRloiJiiIiimssfliJsifliJRlofi 7 IwaiJHOuayianuaomsiJsrni] fia

* uannJ^auRDiusua-iJs:aunisnnuonu^nOT3oe3n8imaiasua:inRMa8uoiRaasnnaiin -it

ajfhJsmaumsiJs^u

msUs-fluiJs:naufl3amsiJigntnwmul6iaHrfa3in[uiToluua:riioiJs:infi msaJiTJsia unssRmsrno Dinms otnmsmo nfiaDnaifliaflsfoniYmarmsinuias 3flDnssuFnaEis'ua:inFiTuIaa

s unna' 3flons ua:ioinuifiHilfliJloiu3o8uar>Tfuin s lTo/nRsguiauananuu oiuDuUsantu 300 sni

Jufi 1-2 aiiyinij 2541 sauioai 2 Jumms

tu iTaoiJs^aijaiRisa'isuinfi 50 0 umSnaiaainufisHiaws S " 1umjDfl3flimsehvn TciBfjosTBanoain ua= uuuWas'uunfleiaaMfi a*iunoiuwaoonmJsinnnwaaiifi msiowons nsomvn 10900 Ins : 579-5230 Tnsaas : 561-3013

Haon:iuaumsouiJs:i)iJ^MsuianaissDusauunRoiijRiii " onaifliansuarinflluTaaiioiflaes " fiti

lafl ailsisn omi.i

nuiiorroMsoafl luinom^ns nsoinvii 10900 InsfTwri : 562-0102,579-5230 eia 231 Insans : 561-3013 E-mail : [email protected] http ! //www.oaep.go.th/NSTC7 fintnssumsfiiJsnuT

fl.un subs aossffln ils:BiiiFinj:aunssiJfnsiHaovnuiJsiJiniliinomsu«nB' uiaonsnquni ysnj:a"uqnB iJsiBniififuraijnssiJfnsMaooiuiJsuiajlufiomsaiaann uiBauliR snlaeiu Os:Biunni:9unssxjfnswaooiuiJsuitijTufiomsinuias sfl. eaffa aflias f\. naoIsBu a'auouns n. tTntn flsmjq 96msuSum3Ti8iaBinuiasniaias UIBOJRJU wt]nu:5u uiBinsBofTnM nnsiflu uiauury asiusiau saoiaBi6msdiiTnonuwaoonuiJsiJitULv'iaauK

g unauinia saoiauiemsa^unoiima^Mimlsmtumaaiifl uiaussoo nooivistyso waiuDamsnaomsDcinuiruiamwfoa nssums uioWinaspi Bmt\v HanuDamsnaoBOHmnnuiTuDisoa nssunis U181B13U S9HT190R1 W91U08msn90lRlJ nSSUfliS UIBDSB flsmasn wgiuDamsnaodansaliJflun nssums uonami6 HaiuoamsnaoHaeilaMniJ nssums oaom wanuaamsnao^and nssums uninmaorf wanuoamsnaoonanniaias^mvi nssums uiaiiaau WOU'MDUU wanuaamsnaoau/nw nssums luauuat) wgiuoamsnaoaiJnsniaiannsatind nssums gntivnudana {Jaiuoamsgua'tiinunoiuiJaowMsooiuiioifiaas nssums unolan laBiurnsnsu nssumsuanainums ailsisn nssunisua:wit38ia!nums unafio nssumsua^Hdoaiamums 3TTU 7

unaiJgu imaumia ils:6iunssums inaitnou U1080QS1 ifuia35fljinijuri

1/1801181 uiaasiTa inoutum uiovwowssw aiJsisn

U1099QS1 uaO9S83iJO "US=( U1831181 SBRIGUfi US:B1Uf)OI:m01U inanStfhtf rTufl33pmnuuri yriiouj U18U131 31S3QB yriioiu U109QUUOnO HSOJOJ130U Htiiom uiaaosu osrJaiuviofi mtioiu uiaanaa ftsfisua HTliOill uiaasffnM vuffwliB^aa yriioiu uionnsi aimno ytiiom uiaauns Inuafins' yriioiu uioaioflSsnu fisuumS HliiOlU uiafi3(]^ aunsina tJriioiu U1O3U0IU1 UUUIfl tfmoiu uialwijaa nauinus yriioiu uioaisanojoji ounsuona yriioiu nntTiiJTURTUHsmsua^ioTufi uiaanSMniu vluui uriioiu nufiairtiioiii uiaaa flsauu Hiiiom RtUrTiiJTURTllIaHTliffUlJnsni uioBofiwd uonainaa HTIIOITI uiaasffa wou'ioSajau TJS=BlUflOlMiiOlU uiaiHBojaa uuuunfi HTTIOIU uiaaulo ifi8sfi(TnM5HJui wriuiu uianqum riurfuiJfi [Iiiioiu uioaisaufls nsoiJsrTiij HT11O1U uiaffsriou' riaoWso Htiioiu uiaiJnsni f\nt\r\e miioiu U1Ja13vUnS1 l9n3SSaiUUTl yriiouj uiaBfiffs Hbasau wriioiu inaautinB soffniflfl Htiiom uiasffiffa wauuno yriioiu uiauojoi loSojuin wriioiu nawhjTumuROusijiiariton: uia^owiiB inpinai yriioiu uioBQu'iJooa fiSfyojiSou ils^f uioWifiasK auinu inoouensua' 03iaSfuiiu6 HT11OHJ uiouoim ilnioiffaa: xJsr 61Ufiftl:riiO1U uiomojfiyia' nnnsnu yriioiu inaflnu iJ&iasginasoioj wriioiu UIOUOJOJI aaififi uriioiu uioai3RflHuq 01 aouai wriioiu uiaaswou fiuWouns uriioiu uiamsseiu ngueooum HTIIOIU nQtmnuHTUfriswu uiasiBas souauiu yriioiti U10H30HSSO1 ^U1 OS:(51UfiOJ:Tii01U uiaanffa HSfisiJa' UTium uioavd ffSmasfi utiioiu uio/Tnsi aim no umoiu uioauaeiiii fiuafieia uriioiu uioiai3«orf wsoj wrlioiu UIOUJSUORS 3SW\)U wriioiu maMmixi mougyiou yriioiu uiomnjoui auiiaaqa yriioiu U1OOUHU1 tJUUIfl ytiioiu uioai33iaui fisojspiu ytiioiu uioai3^Ssciii fisuueiS yriioiu uiouunsssm ounsOsou wriioiu nfttmnumuiainums U1OlU13Seill 3SSBU:lfU6 wriuiu U1OlJS:lV(flfI ailSIS/1 lJS:l uioai33is ana wriioiu uuina3sofi unaoa yriioiu inaflnu lisnasginasainj yriioiu uioai33la3ssoi ifuoaa yriioiu uioai3ftnvTu6 01 aoaai wriioiu iiijTufi'Hruoi uaoil&iasg yriioiu uuai3a3ua SBIURU wriioiu uioaiouiQuau mans yriioiu uiaiJinaii ws3Uiaulns wriioiu uioai39isi?n ifisuauiJsraofi' tlrhoiu nsoii i 1-2 SlmflU 2541 ni ifojiJsraija'imsmsiiinfl so iJ inranmaaifrunsmans nsjirmimrims

l mnfiu 2541

08:00 - 09:00 aaruiutru

aisna

09:00 - 09:30 - iaun6msaiunoiuwa^mJsina}maa\iia (uimnsvjfinfi /Tnswu; na'iosiaoiu

uausiooa " unQDiRSBsMiflu " ua= uausiooa " i

09:30 - 10:00 wauJflunssflms uarmsiauawajTU/nnWaines m^uviei - murl 10:00 - 12:00 msamJsmseo " yanilsna:

n. uwnanfyovoonao Inswyaa fi. tis. asuu aiuns3uns : sn. KS. ffaocuil «iJs=0ina

12:00 - 13:30 tiuvnssfims / uamurwliJaiaos ua~suiJs~mvdimsna^3ij

oisna : IJS:BIU : sfl. iJsrBiusou : uisntnPi naosaa 13:30-14:20 inseoxJflnsnhlsintipBaneolTialuauinfi ( The 10 MW Multipurpose TRIGA Reactor at Ongkharak Nuclear Research Center, THAILAND ) WUSSBia : Mr. Brian Thurgood and Mr. Steve Worcester

eqaDTia': ussaiBmHu 2 iJs^eiu : sfl. Pis.6Btr8 ils:eiusou : 13:30-14:20 ( Exploration of Petroleum by Nuclear Technology ) HUSS81B : matins lTofto

gisna : ussmawm» 3 \Js:enu : sn. oannsei TJS:8IUS'DIJ : 14:20-15:10 Industrial Products by Radiation Processing HUSSaia : Dr. Takashi Sasaki aaaona": ussanawifra 4 01s. uuty asiuspui inaaswa 14120 - 15:iO Radloisotope Techniques for Problem Solving in the Oil and Gas Industry WUSS818 : Dr. J.S. Charlton

9 : iJs-6iu : sfl. fls.ima nscimie teas. MRJU 15:10-15:35 Ei : wan8oluIfisioulea6U8iJwarniuiirfufifleian3niJu8jua:auijliIf)sMaS naoHDmannaiiriinseaiJenaiuas SKD11 Hiauanaoiu : maiaon aunsfls 15:35 - 16:00 E2 : msriia/rmfloafioflsaiilflalainniiJaauroflsau 4 aua wiauawaoiu :

iJs:6iu : wfl. uisfis IJS^61USDU : wfl. cis. a^arn ounslaei 15:10-15:35 Bi: iJflnsaiwaaiijalsiatfunajwaaloiavlu/naluswsuoamRnaj3lalari Hiauanaonu : sw. ms. R=5U J 15:35 - 16:00 B2 :

wiauawaoiu :

ansna : * msaJs^ua>iirtinJs:diiInaoaiJin]JUDi«aas'u.viails:m»ilna 16:00 - 18:00 msalhJsiaisaa " uaiHaasmnMaamjajnulnaan 2000 " 18:00- 18:30 msi]s:mjaiijruiJs:BiiJuaoaiJiRiJU3iRaBs'imoils:innlne

2 ffimnv 2541 1 08:00 - 09:00 auunssflms ua: wajiu/nnli]aipias aisna : ussaiawitm 5 ils^eiu : sfl. tis. IIS:61USDIJ : ingJutTa essuoiua 09:00 - 09:50 Synchrotron Radiation Application on Protein X-ray Crystallography HUSS81B : cis. waoMa noias ua: 01s. Dsmou imaosstu v 1 aqaona': ussmawuro 6 IJS:BIU : as. aims

09:00 - 09:50 msltf Electron Beam S:H\janannnssxjMTJ8 ( Application of Electron Beam Accelerators for Industry in Thailand ) HUSS818 : Mr. Gray Buetzow ua: uiaa/isfiu' Ta'riijflna

09:50 - 10:10 nnOiiJviin - murl iTajasssiJ aisna : ussaiawura 7 ils^eiu : uiaplsffa 01s. asm/] 10:10 - 11:00 ( Development of Nuclear Instruments in Thailand ) sfl. oswvi iTona=5sa ua= M. aone iJniaiB"88" aaaona : ussaiawuro 8 ds^eui : as. itjoovnun auitiafls inainuuri aminooff 1 o: 1 o - 11 :oo msiIejniiua:mofluuaj5uRalijl«amsWmmflThlmijao5uiihrHiru ( Area Wide Control of Fruit Fly by the Sterile Insect Technique ) Hussaia : uiaasnnS flsasTnina

aisna: iJs;6iu : w.0. as. flatuson inoloum siausons 11:00 - 11:25 Di : wiauawaoiu : as. onsrtia naoman 11:25 - 11:50 D2: nisMiaQouarMfmiijManissifToiIsnijrisofieijanMmnlflaWaHahaTffisaa PSA

mauanaonu : w.n.nttjo 01s. aitiHST eiisovifjTisna eqaona': Hajiu5oaanm5Ti8ifncttits33/nyiuarmsinT»is iJs:eiu : AS. mygtra uainoiaorf inaTnona 11:00-11:25 A1 :

wiauanaoiu : unoavn iMao65a 11:25-11:50 A2 : tJiauawaoiu : fis. asstiwa uunau

9 : iJs:6iu : IJS:61USDIJ : inoaioflssiflii VISUUHS 11:00-11:25 Ci :

11:25 - 11:50 C2 : unamjihifisoa\sflauluifiiJiHialiiiDfia]JTfiTi:iaaTijaonan mauawaoTu : unaa^aoaM HSansna 12:00 - 13:20 uvunssfims / uanwnnlifaiaos ua^sviJs~mudimsnai

16:10 - 16:40

- \Js:6iuFiai:nssumsocimsiJs:diJ3inms onu. 7 (vwiJgv unawnfl; naiosiaoiu - latnemsa'iunoiuviaooiuilsLntijmaa'iiw (xnmnsooflnd nnswu)

16:40 - fiuum - murl msxJsnjuSinms " >'" nsjn 7 1-2 sknnu 2541 ni 50 U nsoirrwumuns

wan aamsTi 1 wyrnu Dai W5T1 2 SUDimj 08:00-09:00 aimiumj 08:00-09:00 mjunssfimsua:Haonu/nRWai0ias' 09:00-09:50 msussBiaviifiu isao msussaiBviinu isao Synchrotron Radiation msTJ Electron Beam 09:00-09:30 wsuta Application on srwuawamnssijMnB Protein X-ray Crystallography 09:50-to: 10 Whtbuiai - muvl 09:30-10:00 iJs:6iuamlnssflmsiia::msiauawao'iiimflTiJaiia9s7 10:10-11:00 msussBiaviiflu isao msussaiawwu isao wn^uuntn - mirH mswpuuiiirisaoiiaoKTnouDiRaBs' msilaoiruuarmBRuijaoDUHaMfiB \\i\is-mfiir\s msWiriRiiHTiiMuu aoouiilunmj 11:00-11:50 msiauanaoiu5oB aim msiauawaoniiDoa anin msiauawaoiuDoa aiin 10:00-12:00 msamJsiBisao mnlulafruniHafismiDntiniHSHgna DTiBiniaeis'ns'HBinsuaraouoKaaij onainiamsflD/nw Dnaipnafis'msuwnB (2 i§ao) uarrnsinuois (2 isao) (2 isao) 12:00-13:30 outinssflms / waoiumflWaiPias ua: suiJs^rnuaimsnaiNjoii 12:00-13:20 ouunssFims / naoiimiflWaii»as' uar suils^muaiTnsnaioJu 1330-14:20 msussBiBviifiu isao rnsussBiBwifiu isao 13:20-14:10 msussBiBMinu isao iRsaoiJflnsniiJsiJiaioBauaolnaliiainRei ms^sooOlHSiaaij Social Advantage on the Peaceful Use of Nuclear Energy TeiamRMaaQoifiaas' 14:20-15:10 msussBisviiRu isao msusssiamflu isao Industrial Products by Radioisotope Techniques 14:10-16:10 msofnJsna i§ao Radiation Processing for Problem Solving in noiusDuiJesimj/jiJ/nnlufnswiswuniHsugnaua^imilTia the Oil and Gas Industry 15:10-16:00 msiauawaoiuoaB aim msiauawaoiu538 aim DnanmaiasmBmH DflDnssuuarinflTiiTaB 16:10-16:40 (2 isao) (2 i§ao) 16:00-18:00 msafiiJsiB isao uaiRaasinnlulaSmja^HulnaBH 2000 16:40- ^uiliai - muvl Hiuaeenffs 18:00-18:30 mstJs:flijaiirtuiJs^itli)aoaijnRuuDiFia8s'urioiJs:mfiln8 The 7th Nuclear Science and Technology Conference December 1-2, 1998 Kasetsart Golden Jubilee Administration and Information Center Kasetsart University, Bangkok, Thailand

BACKGROUND AND OBJECTIVE

Research and Development in the field of nuclear science and technology in Thailand has led to wide-scale applications in research, medicine, agriculture and industry. Moreover, the energy from a nuclear reactor is a potential resource for the generation of electricity in the future.

The national conference on nuclear science and technology has been organized to promote the multi-disciplinary approaches to the development and application of nuclear science and technology in Thailand. " Nuclear Technology : A Stimulus for Thai Economy " is the central theme for the seventh conference in order to focus on how nuclear research can assist in the development of the economy. It will also include the benefit and the usefulness of nuclear energy to the country.

The conference will provide a forum for the presentation, discussion of up-to-date information and the latest developments in nuclear science and technology which contribute to the economy of Thailand. Program The 7th Nuclear Science and Technology Conference December 1-2,1998 Kasetsart Golden Jubilee Administration and Information Center, Kasetsart University, Bangkok

Tuesday, December 1,1998 08:00 - 09:00 Registration Sutham Areekul Room : 09:00 - 09:30 Opening Ceremony - Address by the OAEP-Secretary General, Mr. Kriengsak Bhadrakom - Inauguration address by the Deputy Minister of Science Technology and Environment, HE. Mr. Porntep Techapaibul - Presentation of National Award to " Distinguish Nuclear Scientist " and " Eminent Nuclear Scientists " - Presentation of the Best Nuclear Research Award - Presentation of Token to " NST7-Supporters " 09:30 -10:00 Opening the " Nuclear Techno-Mart " Exhibition and Poster Presentation / Coffee Break 10:00 - 12:00 Panel Discussion on " Nuclear Technology : A Stimulus for Thai Economy " Panelists : Mr. Piromsakdi Laparojkit Mr. Wisit Charudul Prof. Puangtong Kraiphibul, M.D. Prof. Dr. Siranut Lamseejan Moderator : Assoc.Prof. Dr. Chaiwat Kupratakul 12:00 - 13:30 Exhibition Visit / Poster Session & Luncheon Sutham Areekul Room : Special Presentation 1 Chairperson : Assoc.Prof. Dr. Boonsong Siwamogsatham Co-Chairperson : Mr. Chuchat Thongyoi 13:30 - 14:20 The 10 MW Multipurpose TRIGA Reactor at Ongkharak Nuclear Research Center, THAILAND Invited Speakers : Mr. Brian Thurgood and Mr. Steve Worcester Kumpol Adulvit Room : Special Presentation 2 Chairperson : Assoc.Prof. Dr. Tatchai Sumitra Co-Chairperson : Mr. Poonsuk Pongpat 13:30 -14:20 Exploration of Petroleum by Nuclear Technology Invited Speaker : Mr. Nigorn Mungkung Sutham Areekul Room : Special Presentation 3 Chairperson : Assoc.Prof. Chyakrit Siri-Upathum Co-Chairperson : Mr. Manit Sonsuk 14:20 - 15:10 Industrial Products by Radiation Processing Invited Speaker : Dr. Takashi Sasaki Kumpol Adulvit Room : Special Presentation 4 Chairperson : Dr. Manoon Aramrattana Co-Chairperson : Mr. Siripone Chueinta 14:20- 15:10 Radioisotope Techniques for Problem Solving in the Oil and Gas Industry Invited Speaker : Dr. J.S. Charlton

Meeting Room No.9 : Physical Science Session Chairperson : Assoc.Prof. Dr. Kate Krudpan Co-Chairperson : Dr. Pipat Pichestapong 15:10 -15:35 El : Effect of Nitrogen Ion Implantation on Hardness and Tribology of SKD11 Tool Steel Surface Mr. Saweat Intarasiri 15:35 -16:00 E2 : Neutron Radiography by 4 Types of Neutron Converter Screen Mr. Wichian Ratanatongchai Kumpol Adulvit Room : Nuclear Engineering and Technology Session Chairperson : Asst.Prof. Nares Chankow Co-Chairperson : Asst.Prof. Dr. Supitcha Chanyotha 15:10-15:35 Bl : Polymerization of Polyacrylonitrile within Zeolite Micropores Assoc.Prof. Dr. Tawan Sooknoi 15:35 - 16:00 B2 : Interactive Real-Time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer Mr. Chaiwat Muncharoen

Sutham Areekul Room : Annual Meeting of Nuclear Society of Thailand 16:00 -18:00 Panel Discussion on " Nuclear Technology and Thai Society Beyond 2000 " 18:00 - 18:30 Annual Meeting of Nuclear Society of Thailand

Wednesday, December 2, 1998

08:00 - 09:00 Exhibition Visit / Poster Session

Sutham Areekul Room : Special Presentation 5 Chairperson : Assoc.Prof. Dr. Thiraphat Vilaithong Co-Chairperson : Mr. Wanchai Dharmvanij 09:00 - 09:50 Synchrotron Radiation Application on Protein X-ray Crystallography Invited Speakers : Dr. Palangpon Kongsaeree and Dr. Weerapong Pairsuwan Kumpol Adulvit Room : Special Presentation 6 Chairperson : Dr. Somporn Chongkum Co-Chairperson : Mrs. Jindarom Chvacharernpun 09:00 - 09:50 Application of Electron Beam Accelerators for Industry in Thailand Invited Speakers : Mr. Gray Buetzow and Mr. Apiluk Lohachikul

09:50 - 10.10 Coffee Break

Sutham Areekul Room : Special Presentation 7 Chairperson : Mr. Sirichai Kianmeesuke Co-Chairperson : Dr. Sirinart Laoharojanaphand 10:10 - 11:00 Development of Nuclear Instruments in Thailand Invited Speakers : Assoc.Prof. Virul Mangclaviraj and Asst.Prof. Suvit Punnachaiya Kumpol Adulvit Room : Special Presentation 8 Chairperson : Dr. Neungpanich Sinchaisri Co-Chairperson : Mr. Manon Sutantawong 10:10 -11:00 Area Wide Control of Fruit Fly by the Sterile Insect Technique Invited Speaker : Mr. Surarit Sri-arunotai

Sutham Areekul Room : Medical Science Session Chairperson : Col. Dr. Chainarong Cherdchu Co-Chairperson : Mrs. Kainapa Rattanarujikorn 11:00 -11:25 Dl : From Radiation to Antioxidants Dr. Jarunee Thongphasuk 11:25-11:50 D2 : Diagnosis and Follow Up of Prostate Carcinoma by an in House Prostate Specific Antigen ELISA Kit at Pramongkutklao Hospital Ltc. Dr. Sunetra Dumrongpisutikul Kumpol Adulvit Room : Biological and Agricutural Science Session Chairperson : Dr. Chettachai Banditsing Co-Chairperson : Mr. Kovit Nouchpramool 11:00-11:25 Al : Reducing Microbial Contamination in Herbal Cosmetics and Raw Materials from Natural Source by Gamma Radiation Mrs. Yupa Tiengthavaj 11:25 -11:50 A2 : Quality Evaluation of Meat Products in Relation to Packaging and Irradiation Dr. Athapol Noomhorm

Meeting Room No.9 : Natural Resources and Environmental Science Session Chairperson : Mrs. Sarunya Piadang Co-Chairperson : Ms. Siriratana Biramontri 11:00 -11:25 Cl : Transfer Factors of Cs137 and Sr8S for Freshwater Fish in Tropical Environment Mrs. Fookiat Sinakhom 11:25-11:50 C2 : Radioactive Radon Gas in Ground Water in Songkhla Lake Basin Mr. Suksawat Sirijarukul 12:00 - 13:20 Exhibition Visit / Poster Session & Luncheon Sutham Areekul Room : Special Presentation 9 Chairperson : Mr. Suchat Mongkolphantha Co-Chairperson : Mr. Chouvana Rodthongkom 13:20 -14:10 Social Advantage on the Peaceful Use of Nuclear Energy Invited Speaker : Dr. Yoshio Murao 14:10 -16:10 Panel Discussion on " Roles of RCA on Thai Economic and Social Development " Panelists : Prof. Makumkrong Poshyachinda, M.D. Mr. Nantakorn Boonkerd Mr. Poonsuk Pongpat Mr. Montri Kao-U-Thai Moderator : Dr. Somporn Chongkum 16:10 - 16:40 Closing Ceremony - Presentation of Award to the Winners of : the Student's Compositions on Nuclear Aspect : the High-School Student's Inventions in Science - Report by the Chairman of the NST7 Organizing Committee, Mr. Pathom Yamkate - Closing Remarks by the OAEP-Secretary General, Mr. Kriengsak Bhadrakom 16:40 - Refreshment •V NST7 The7th Nuclear Science and Technology Conference December 1-2, 1998 Kasetsart Golden Jubilee Administration and Information Center, Kasetsart University, Bangkok

Time Tuesday, DECEMBER 1 Time Wednesday, DECEMBER 2 08:00-09:00 Registration 08:00-09:00 Exhibition Visit and Poster Session 09:00-09:50 Special Presentation : Special Presentation : 09:00-09:30 OPENING CEREMONY Synchrotron Radiation Application Application of on Electron Beam Accelerators Protein X-ray Crystallography for Industry in Thailand 09:50-10:10 Coffee Break 09:30-10:00 Exhibition Visit / Poster Session / Coffee Break 10:10-11:00 Special Presentation : Special Presentation : Development of Area Wide Control of Fruit Fly Nuclear Instruments in Thailand by the Sterile Insect Technique 11:00-11:50 Oral Presentations : Oral Presentations : Oral Presentations : 10:00-12:00 Panel Discussion : Natural Resources and Biological and Medical Science Session Nuclear Technology : A Stimulus for Thai Economy Environmental Science Session Agricultural Science (2 papers) (2 papers) Session (2 papers) 12:00-13:30 ExhibitionVisit / Poster Session & Luncheon 12:00-13:20 Exhibition Visit / Poster Session & Luncheon 13:30-14:20 Special Presentation : Special Presentation : The 10 MW Multipurpose Exploration of 13:20-14:10 Special Presentation : TRIGA Reactor at Petroleum Social Advantage on the Peaceful Use of Nuclear Energy Ongkharak Nuclear by Nuclear Technology Research Center, Thailand 14:20-15:10 Special Presentation : Special Presentation : Industrial Products by Radioisotope Techniques 14:10-16:10 Panel Discussion : Radiation Processing for Problem Solving in Roles of RCA on Thai Economic and Social Development the Oil and Gas Industry 15:10-16:00 Oral Presentations : Oral Presentations : Physical Science Session Nuclear Engineering 16:10-16:40 CLOSING CEREMONY (2 papers) and Technology Session (2 papers) 16:00-18:00 Panel Discussion : Nuclear Technology and Thai Society Beyond 2000 16:40 - Refreshment 18:00-18:30 Annual Meeting of the Nuclear Society of Thailand eu

1. lf119-3lJgnW'lJ'33Jl^}l«a'U9-3iYia1'W9'WlflPl S-l

The 10 MW Multipurpose TRIGA Reactor at Ongkharak Nuclear Research Center, THAILAND

B. Thurgood and S. Worcester Ongkharak Nuclear Research Center - The Role of the Consultant Andreas Jacobi, Jr. and Laurent de Haller

2. nTsam'oilTfiiiaajjIfitjmfiT'VjTarj'Siifiatj? s-2

•uni wni

Exploration of Petroleum by Nuclear Technology Nigorn Mungkung

3. Industrial Products by Radiation Processing S-3 Takashi Sasaki

4. Radioisotope Techniques for Problem Solving in the Oil and Gas Industry S-4 J.S. Charlton

5. Synchrotron Radiation Application on Protein X-ray Crystallography S-5 Palangpon Kongsaeree

6. fmM Electron Beam ismjqflfTl'rIfmj/1'wiina S-6

Application of Electron Beam Accelerators for Industry in Thailand

Gray Buetzow and Apiluk Lohachitkul

7. niii^M'wiifi^a-a^aTViYn^wimaEi'sl'W'iJ'SsmfiiyiEJ s-7

Development of Nuclear Instruments in Thailand

Virul Mangelaviraj and Suvit Punnachaiya 8. ni?ii!)^wua^ni^ujja^T^wa1^ani^lvmnwniii1'HuiJ^ifl'W'H^''u S-8

Area Wide Control of Fruit Fly by the Sterile Insect Technique Surarit Sri-arunotai

9. Social Advantage on the Peaceful Use of Nuclear Energy S-9 Yoshio Murao

nmviww

A-i mminum l

vnim iwzivuuz nntytm im flb jm Reducing Microbial Contamination in Herbal Cosmetics and Raw Materials from Natural Source by Gamma Radiation

Yupa Tiengthavaj, Suwimol Jetawattana, Kwanyune Sripaoraya, Suwanna Charunuch and Phongpraphan Susanthitapong

A-2 wa'U9>3fn^fiiEJT3^pi0^€uin

UV\Z M.E.A. Ingles

Quality Evaluation of Meat Products in Relation to Packaging and Irradiation

Athapol Noomhorm and M.E.A. Ingles

A-3 Na'ua^i^mifiujJieianmiiafi'wuiJa^qQiinn'ua-amQnfr^u^ 31

Effect of Gamma Radiation on Quality Changes of Fresh Ground Beef

Saovapong Charoen and Kovit Nouchpramool

A-4

N mfmn 41 ^tlw «?tn iksflniumffjniYY ut\t istiiva N-Fixation of Soybean and Residual Effect from N-Fixation of Soybean to Rice Yield

in Rice-Soybean Cropping System Using N-15 Technique

Chitiraa Yathaputanon, Porapimol Chaiwannakupt,

Jariya Prasartsrisuparb and Thienchai Arayangul

• v A-5 fiTsmuiJ'ssBnBiiTHnnwapin-iPiwin'ua^ivB A. Niger Tcnrjni'S«iEJ?^0Wm<'bT8iapi 58 mim tivmm ims nnmivii inififfuminAif Increased Citric Acid Production of A. Niger by Ultraviolet Irradiation Orawan Suksudej and Chanin Phangarakrachadet

A-6 fn^n«iSQlH!nUfl3J'WnftlV1En««0-3'H'Wa'wiEJNn (Plutella xylostella L.) 64 ibsrnia iifnib>a ims m^wi

Studies on Biology and Ecology of the Diamondback Moth (Plutella xylostella L.) Wanitch Limohpasmanee, Pravait Kaewchoung and Ajaya Malakrong

A-7 g^ 1liJI^5 80 infl tMM imJtjn mnjuu

The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for Biological Control of Soft Rot Erwinias

Ngaranit Sermkiattipong, Leelaowadee Sangsuk, Penkhare Rattanapiriyakul, Surang Dejsirilert and Niphone Thaveechai

A-8 rtnmVWmiVWKft^milYi^VmiliitlSlKKalll Bactrocera dorsalis (Hendel) YiQ'mTalT'm'HSjm 90

Studies on Mating Competitiveness of Sterile Oriental Fruit Fly, Bactrocera dorsalis (Hendel) Wanitch Limohpasmanee and Suchada Segsarnviriya

A-9 TiJ?uniJjniiil?siSyfli

Population Estimation with Mark and Recapture Method Program Wanitch Limohpasmanee and Pravait Kaewchoung B-i dfl^i^QSmeiii'Tf'V'wnie^'HaaTaiavl'uiiitjl'ui'wi'U'ga/iifi'ua^^TQ'laYi 115 *CTU aiitfea OTvtaeJ Hfii

Polymerization of Polyacrylonitrile within Zeolite Micropores Tawan Sooknoi, Artit Ausavasukhi, Wischalee Setasuntorn, Araya Kittivanichawat and Theerawat Mongkolaussavarat

B-2 g^ VU 127 ms George Bereznai Interactive Real-Time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer

Chaiwat Muncharoen, Supitcha Chanyotha and George Bereznai

B-3 nifl'ws^fnJ'su'iJi-anjJUPii^nauasfniJj^Q'y'ua^ PP/HDPE 137

Radiation Improved Mechanical and Thermal Property of PP/HDPE Malinee Chaisupakitsin, Chatwali Thammit and Chaivat Techakiatkul

B-4 •Hij'auiJa-auanTJfljnA 150 nTaliapf ai'Hl'iJifiiQ-jriimpiw'jpiiQU 147 mm

A 150 kV Isolation Transformer for a Neutron Generator Chanchai Dechthummarong, Pijit Pratumtip, Chome Thongleurm, Pathom Vichaimongkol, Rachain Charoennugul and Thiraphat Vilaithong

B-5 ^!JiJiv9JjT^acyfyisumviiiJi3iisi-3Yii^^nIpiEjlotfifif0

An Interfacing System for Radiation Surveillance Using a Radio Communication Network Thanakorn Arunsiri, Suvit Punnachaiya and Attapom Pattarasumun B-6 nit^iuiJ'S'Haaei^mifilYieiffi'HfiJ^i'w^'i'u^aYi'S'ifi'W^mQn^ 173 iua •viiWflMfju qpnfl \\vutaiitit)z ims ml* Yie-atniu Modification of a Cathode Ray Tube for X-ray Microscopy Vimol Supsongsuk, Suvit Punnachaiya and Decho Tong-Aram

v B-7 m^iJa9PiiiV9q-3«9ai^iaTaminjj}Ji 186

imziwuz i^inng tu stunt ut\t

Radiation Sterilization of Natural Rubber Examination Gloves

Suwimol Jetawattana, Nuchanat Na-Ranong and Varaporn Kajornchaiyakul

c-i v Wdtf& 201 mnfiu i ^ l J

137 85 Transfer Factors of Cs and Sr for Freshwater Fish in Tropical Environment Fookiat Sinakhom, Pattra Supaokit, Suntaree Kaewpaluek, Nanthavan Chantaraprachoom, Monta Punnachaiya and Nikom Prasertchiewchan V V c-2 unamjaBrwpi¥-3miPi9'w1^'wiiJiPiia1'yi'UPigIjj'uiiisiafTiiJtT-3'uai 215

BIT* 5wwi^mi ut\

Radioactive Radon Gas in Ground Water in Songkhia Lake Basin

Suksawat Sirijarukul, Thawat Chittrakarn and Tripob Bhongsuwan

c-3 wai)9-a^'wn'3Piua£^a

134 60 Effects of Acid Rain and Fertiliser on Root Uptake Cs and Co by Paragrass P. Chairattanamanokorn, N.W. Harvey and O. Kerdchoechuen

C-4 WtHI9^f!J'UnfPIP19nT5ina9'W^'TU9-1 Cs-134 UBS Co-601'MVUCT'W 239 \ii\nt\ iwm anflo uas Ivifv Effects of Rain Acidity upon Mobility of Cs-134 and Co -60 in Soil

S. Ruangchuay, N.W. Harvey and P. Sriyotha c-5 nnmaa'ummmsfmn'ssflitj'ija^ c-EndosuifanTuem 251

14 Mobility and Distribution of C-Endosulfan in Soils Patana Anurakpongsatora, Pannee Pakkong and Preeda Parkpian c-6 mi^n«imiifia9'wmtJ'U0-3fninfT h

^^nflinIi^iwiJi^ninnja^magri'jjjj''UPiT3S 260

Leaching Studies of Radioactive Cobalt, Cesium and Strontium of Cemented Sludge from Liquid Waste Treatment Plant

Monta Punnachaiya, Fookiat Sinakhom and Pathom Yamkate c-7 cTYiia'uiSEjJJ-90 uas ^I^EJJJ-137 l

filiiftl TT3JPI3 14!5ff? 'O'U'Vlilini Uf\t filial 1T51fl!TiT?

In Situ Gamma-Ray Measurement Using a High Purity -Germanium Detector Tatchai Sumitra, Nares Chankow and Paratee Sarapassorn c-9 ^lui^aeiTvimualmanTmia'n 298

The Analysis of Tritium in Natural Water by Electrolysis Enrichment using Solid Polymer Electrolyte Pisit Suntarapai, Keisuke Isogai and Kaneaki Sato c-io nnuanmm'mvaufiiJ'uiila'uTu'UTmTaa 312 mm fjimnu The Removal of Technetium from Radioactive Liquid Waste Pattra Supaokit, Nanthavan Chantaraprachoom and Fookiat Sinakhom

on TS Electropolishing 321

'U'Vnibsi'tfiJ Ut\Z Kazuyuki Mishima

Radioactive Decontamination of Be-Reflector Handling Tools

by Electropolishing Method

Nanthavan Chantaraprachoom and Kazuyuki Mishima c-12 nnvTss^fiiiJJiiJ^siilo^ni^TaalpiaiBniiaon^ 329 mwrntll flUYnibs^U UflS Kazuyuki Mishima Radioactive Decontamination by Strippable Paint

Nanthavan Chantaraprachoom and Kazuyuki Mishima

C-13 ^ ^^i 340

Radiation Safety Assessment of 1-131 for Medical Personnel

at Department of Nuclear Medicine, Siriraj Hospital

Pentip Khunarak, Kun Suttsiri, Warunee Tueypo, Nut Asawachatrode and Prajuk Tanapiboonpon c-14 ni^iHTiJ1jji€UD0-3W'3ifiapinija5'

Determination of Quantities of Radionuclides in Uranium Series in Soil via Gamma-ray Spectroscopy Somporn Chalermsuk and Rattana Bunsan

D-i flinf^ffii0'w^00ni5u^'U¥i 363 From Radiation to Antioxidants Jarunee Thongphasuk

D-2 niiiwDflEJua^pnjJwanTsin^iTffis^

TfiEii^ei'wiaiPi^iflPSA'MNapil'uT^viaiuifinisjiJ-jqgm^'i 378

vi.n. "Hty-3 tjrumn «m-avlffiiiff]fi ims w.e. mia ife^anfW

Diagnosis and Follow Up of Prostate Carcinoma by an in House Prostate Specific Antigen

ELISA Kit at Pramongkutklao Hospital

Ltc. Sunetra Dumrongpisutikul and Col. Satit Raungdilokrut

jrmtun v\® iJaMfhifn im ijtyiin^f flimm Hwusim i

tin?

D-4 New SNS/S and SNN/S Mixed Ligand Oxorhenium and Oxotechnetium Complexes

Carrying a Pendant Nitro Group on the Monothiolate Moiety as

Hypoxia Tissue Imaging 399

JaipetchT., Pirmettis I., Papadopoulos M, NockB., Maina T., Raptopoulou CP.,

Terzis A. and Chiotellis E.

99m Synthesis, Preparation and Quality Control of Tc-ECD Soontree Laohawilai, Jatupol Sangsuriyan, Nipawan Poramatikul, Chuchat Thongyoi, Taweesak Thantawiwatananon and Tippanan Ngamprayad

D-6 fll'5^n

Radiation Synovectomy 417

its; 1(8114 e^fiiTy'M a^nifwu ftut\m 9?-a«?i? lias ttmw VJUWU Optimization of Samarium-153 labeled Hydroxyapatite Particles as Therapeutic Agent for Radiation Synovectomy Ninnart Virawat, Angkanan Aungurarat, Sumrit Chingjit and Sudkanung Phumkem E-i ^i^KDii 431

Effect of Nitrogen Ion Implantation on Hardness and Tribology of SKD11 Tool Steel Surface

Saweat Intarasiri, Yu Liangdeng, Thiranan Sonkaew, Somchai Sangyunyongpipat, Gobwutt Rujijanagul, Vittaya Thongchuchuay and Thiraphat Vilaithong

E-2 nTsciiain'M^'itJW'3Pi"50'uTp)alitf'ainiiJat)'uw'3Pi^9^4U'UPi 446

Neutron Radiography by 4 Types of Neutron Converter Screen

Wichian Ratanatongchai, Sasiphan Na Songkhla and Somporn Chongkum

E-3 niftiiiJ1iJifU|jiimaij1pi£jmfiyfiT'Wa9'wiflfi4(''Hi

E-4 ^ 11fi 456

The Effect of Cocktail on Radiocarbon Analysis by Direct Absorption of Carbon dioxide Nawarat Wattanapan

E-5 iJfl^a^«9iiBwad9niinnViicB9ilfii'Sri}j^iiticTi'5fisaia9'UYi1u/ 468

Parameters Effect on the Solvent Extraction of Zirconium Chastbongkoch Srinyawach E-6 niiJjnts^uasnQiii^jm-w^glifHCm 484

flffyfyiToif ffoftn uflNQfuTuif u^ai flnti'viB uv\ IJTW

Hard and Soft Agglomeration of Zirconia Powder Chastbongkoch Srinyawach, Archara Sangariyavanich, Nitaya Suparit and Papot Pruantonsai

E-7 nT3iiunii:if9ilnm!J}J99nflinu3

E-8 hUIB Sequential ICP-AES 515

ay

Accuracy Study for the Determination of Some Rare-Earth Elements in Monazite

and Bastncisite by Sequential ICP-AES

Nitaya Suparit, Chanchay Punelapdacha and Dusadee Ratanapra

E-9 numw'uimfmfi RNAA 531 R The Development of RNAA Technique for Cadmium at PPM by Ion Exchange Alice Sirinuntavid and Chouvana Rodthongkom

E-io nii#wvjiiBiififisj

Development of an Analytical Technique for the Determination of Uranium-238, Uranium-235 and Uranium-234 by Alphaspectrometer Arporn Busamongkol and Ratirot Phareepart

E-ll fni1lfl'51^'HllJ1}JlCw1lJ^wl'Ufril1Ha94]p1£JlB91U^^'SlP1'59'W 549

Analysis of Protein in Soybean by Neutron Activation Technique

Chutima Kranrod, Nualchavee Roongtanakiat, Varavuth Kajornrith and Areeratt Kornduangkaeo E-12 msi^Baiin^^ima^iunminrinyf'UNiJ 563

Instrumental Neutron Activation Analysis for Human Hair

Wichian Ratanatongchai, Wanchai Dharmvanij and Somporn Chongkum

E-13 ni^iifi'5i2j'HiJ1jJifu5afia'wims;as;uS'mj^'-3a^''wnimpi'n'3Pi?a'w Am/Be 571 luvtt s55inM Tntpa Qffii'Gfinfi'tfEJ tins; turns sawn Determination of Silicon and Aluminum by Am/Be Neutron Souce Wanchai Dharmvanij, Chanchai Asvavijnijkulchai and Somporn Chongkum

E-14 nmifiiiswBiqlmiJaantiaaTaaiEibifiaEjl 581

Elemental Analysis of Shells by Nuclear Technique

Sasiphan Na Songkhla, Usanee Santatiwongchai, Surapong Pimjun, Chanchai Asvavijnijkulchai and Somporn Chongkum

E-15 ni'3im'3is'mi''3Jjia'wn'vutj^''3aiYifi'Qf)f)ii'3i'3f-3man':B 590

Investigation of Pink Tourmalines by X-ray Fluorescent Technique Archara Sangariyavanich, Sasiphan Na Songkhla and Surapong Pimjun

E-16 ni'Siiniis'Hnaf'W^iWB'j'SjJKi^TpifjiBtan'vna'Haaancri'Tt'Ucf 596

X-ray Fluorescence Analysis of Natural Corundum Chowunchun Prapunsri and Thiraphat Vilaithong

E-17 mfiifi'sis'H^j'W'SiJj'WPiiJfjJifUJJinTfial'wmfi'Ufi'QiPiia'u 604

Bulk Analysis of Cement using Neutron Techniques

Pantip Ampornrat, Tatchai Sumitra and Nares Chankow

v v t E-18 nnni'HQCuni^'WiiJaa-aivamB-a'ua-Jinfa-j'iJgn'scuiJ'iJQ-i/i 620 T Fuel Burnup Calculation of TRR-1/M1 Reactor

Mongkol Junlanan and Sunanta Patrashakorn E-19 IVi'Jio'wnjjQ'WCTfiTsIa 628

A Study of Multiple Scattering and Flux Attenuation of Fast Neutrons

Inside a Cylindrical Sample by Using Monte Carlo Simulation Technique

Udorarat Tippawan, Somsorn Singkarat, Suvicha Ratanarin and Thiraphat Vilaithong

E-20 IlJ'SUfliJjilfl'SlSJ'HmiJnPifjJ^minUJJlGDA 642

Gamma-Ray Spectrum Analysis Software GDA Paitoon Wanabongse

E-21 ms1w0§4WQifl0snfivfasrtrli4miflifi0-i 651

Application of Computer Graphics Phulsiri Ingtrakul (s) The 10 MW Multipurpose TRIGA Reactor at Ongkharak Nuclear Research Center, Thailand

B. Thurgood and S. Worcester General Atomics, TRIGA Group, 10240 Flanders CT, San Diego, CA 92121, U.S.A.

General Atomics (GA), has been selected to lead a team of firms from the United States, Japan, Australia and Thailand to design, build and commission the Ongkharak Nuclear Research Center near Bangkok, Thailand, for the Office of Atomic Energy for Peace. The facilities to be provided under this turnkey contract are comprised of: ® • A Reactor Island, consisting of a 10 MW TRIGA reactor that takes full advantage of the inherent safety characteristics of uranium-zirconium hydride (UZrH) fuel; • An Isotope Production Facility for the production of radioisotopes and radiopharmaceuticals using the TRIGA reactor; • A Waste Processing and Storage Facility for the processing and storage of radioactive waste from the facility as well as other locations in Thailand.

The centerpiece of the Center will be the TRIGA reactor, using inherently safe technology provided by the uranium-zirconium-hydride (UZrH) reduced enrichment fuel. The reactor will be cooled and moderated by light water, and reflected by beryllium and heavy water. The UZrH fueled reactor will have a rated steady state thermal power output of 10 MW, and will be capable of performing the following : • Radioisotope production for medical, industrial and agricultural uses • Neutron transmutation doping of silicon • Beam experiments such as Neutron Scattering, Neutron Radiography (NR), and Prompt Gamma Neutron Activation Analysis (PGNAA) • Medical therapy of patients using Boron Neutron Capture Theraphy (BNCT) • Applied research and technology development in the nuclear field • Training in principles of reactor operation, reactor physics, reactor experiments, etc.

The basic design of the reactor, reactor structure, auxiliary systems, reactor instrumentation and control systems and other balance of plant systems have been completed and detailed design is underway. Fuel loading and commissioning is expected by the end of 2001.

^ TRIGA is a registered trademark of General Atomics TH9900002 ^i TH9900002

Ongkharak Nuclear Research Center - The Role of the Consultant

by Andreas Jacobi, Jr. and Laurent de Haller Electrowatt Engineering Ltd., Zurich, Switzerland

Abstract:

The Ongkharak Nuclear Research Center Project is known to have started on 26 June 1997. At that date the Contract for the turnkey delivery of the three nuclear facilities, the Reactor Island (Rl), Isotope Production Facility (IPF) and the Waste Processing and Storage Facilities (WPSF), was signed by the Office of Atomic Energy for Peace (OAEP) with General Atomics (GA). The involvement of the Consultant - Electrowatt Engineering Ltd. (EWE) - already started more than 2 years earlier than the official start of this ambitious project. Since mid 1995 EWE has been serving in a variety of functions and has been requested to perform numerous tasks in support of OAEP. By acting in the function of the Consultant, EWE was aiming firstly to help the project to proceed as quickly as possible. Secondly EWE was overseeing constantly that the quality of the Center, once finished, will meet the present state of the art, will be licensable in Thailand (or elsewhere) and will be internationally recognised as a safe, reliable and modern research and production installation.

The role of EWE covers a multitude of engineering disciplines, such as architecture; civil, mechanical, nuclear, I&C and electrical engineering; nuclear and reactor physics; chemistry and radiopharmacy; economy and price estimation. Besides, EWE has to use its skills in conducting and/or supervising large projects, e.g., by appropriate scheduling, QA surveys, licensing support, document control, etc. Furthermore, EWE is actively involved in know-how transfer to Thai engineers and scientists by working in close co-operation with OAEP's project personnel and - if required - by giving special training courses.

This paper presents some highlights as well as routine activities performed by EWE so far in the Project. (Exploration of Petroleum by Nuclear Technology) to.. tins Nigorn Mungkung Software Support Manager, Schlumberger Oversea S.A., Bangkok, Thailand 8-2

J(

mail vi.flf.2464

^NHwill?i5m I^uri u?(y'Mgli4ima

vim mm

Tertiary Tertiary «S;SnilJTUm?B?tUl'Vianiill?fffU5iyflf-3ifi^'M

aUiUBSragi tYunTSaTSIIlUUUnTS'HaJSf CU (Logging)

fi.flf. 1927 (vi.sf.

2470) Henri Doll I^tiimufintl Electrical Log 'U

Yi.ft. 2484 ]«aSH^?I^T4fn?'V11fn7tfn51!)'Ha^B?t3 I«aH Gamma Ray Ht\% Neutron

Tools l'U0-afnnSatUtnJ1ji^lK'U9n'ii Electrical Log iJitUIUJlJ VI.fr.2502 Neutron Log fjfllh

JJilli'UfnflJ^smUfmW'HT'U (Porosity) uaWUlhl IT114 Gamma Ray

Sand HV\Z Shale Gamma Ray pti'Unl#0Emn"^mYI'U Electrical Log

Tfltl Gamma Ray 4/ a* *3 40 238 232 3 BI^ «it)fiy fi© K ,u ims;Th Density Logs lflt40flT5K^-3^H!n5nJJ3Jt4?lfny(f-3ft lll * V i < Moddle Energy Gamma Ray TPI«J Gamma Ray Yllla'0890n1llmm »^llJ'ds nsm

Electrons ^JQ^J'tfli'HTJ m?f[njlftf)yia^-3n4U0^ Gamma Ray tfn-ainflfmib'VlsmJ V Electrons

Neutron Logs lllinf fm*niJiinfUnJ0^ Hydrogen

Hydrogen \\,V\Z Carbon Industrial Products by Radiation Processing

Takashi Sasaki Nuclear Technology and Education Center Japan Atomic Energy Research Institute

1. Introduction

Radiation processing is a method for producing chemical and physical changes in substances by exposure to ionizing radiations. The ionizing radiation could be in either form of gamma-rays, high energy electrons, or Bremsstrahlung (X-rays). Radiation sources being practically and commonly used are Co-60 or Cs-137 gamma- ray sources or electron accelerators up to 10 MV in their energy levels. X-rays are essentially the same in the nature as gamma-rays. It should be noted that the process is essentially a low temperature one in that relatively small quantities of energy are required to produce significant effects. In addition, radiation processing does not make products radioactive. In early 1950's, polyethylene was found to be crosslinked and become thermally stable or not melt-flowable by exposure to ionizing radiations. This finding was followed by radiation-induced graft polymerizations and curing of unsaturated polyester resins. These findings attracted the polymer industry very much to apply radiation chemistry for modification and processing of polymeric systems. Despite considerable amount of R & D accomplished in this field for industrial applications by mainly using Co-60 gamma rays, only a few systems have reached commercial production. The usefulness of high energy radiation for polymeric systems has been increased by the availability of electron accelerators. In 1957 Ethicon Inc., a Johnson and Johnson Company, adopted electron beam sterilization of medical sutures. The Sequoia Wire Company also adopted the irradiation of wire insulation around the same time. With the development of electron accelerators specially in lower energy levels, electron beam curing systems acquired an industrial reality in late 1960's. The total number of electron accelerators installed worldwide for polymer processing may reach one thousand at present. Major applications are crosslinking of wire and cable insulation, crosslinking of plastic films and foam, and curing of coatings. An industrial electron accelerator is known to run continuously and reliably while being able to be turned off when not in use. On the other hand, the sterilization of disposable medical devices as well as food irradiation has mostly been done using gamma radiations from Co-60. There have been about 200 gamma-irradiation facilities worldwide in 1997. This article describes the basis of radiation processing of polymers and two major applications, crosslinking and electron beam curing.

2. Basis of Radiation Processing of Polymers.

2.1 Reaction Mechanisms Ionizing radiation transfer their energy to matter through electrostatic interaction of fast- moving electrons with the electrons of the irradiated substance. Mainly ions and excited molecules are initially produced through primary and (repeating secondary ionization or excitation. These species are rapidly converted into free radicals that are, in most cases, the active chemical species to initiate further reaction:

AB+ + e ionization AB A/W AB> * exitation

AB+ + e • AB* neutralization AB* • A* + B • radical formation

It should be noted that the formation of radicals is temperature-independent, which means that the following reactions can take place at room temperature or even at lower temperatures. Radiation-induced reactions concerned with polymeric systems can be categorized in four groups as shown in Table 1.

Table 1 Radiation-Induced Polymer Reactions

System Reaction

1) polymer crosslinking chain scission (degradation) 2) polymer - low mol. wt. compound e, g. chlorination 3) monomer polymerization 4) polymer - monomer graft copolymerization (reactive polymer) curing(graft + polymerization)

As described in the previous chapter, crosslinking and curing have been widely industrialized using electron beam accelerators. Radiation-induced graft polymerization is very much effective for modification of polymers.especially chemically stable polymers such as polyolefines. 2.2 Factors affecting Radical Reactions 2.2.1 Effect of Oxygen Free radicals are generally much more reactive with oxygen than with monomers and form rather stable peroxide radicals or further hydroperoxides which inhibit radical polymerization. Therefore, any radical polymerization process, whether radiation-induced or catalytically initiated, should be performed under an inert condition. Crosslinking of molded plastics with electron beam can be performed in air because of less amount of air inside the materials. However, as the irradiation time increases at a lower dose rate as is the case for Co- gamma rays irradiation, oxidative decomposition may occur.

2.2.2 Dose Rate Effect The rate of polymerization, Rp, is dependent upon the concentration of free radicals, [R«], and the concentration of the reactant, [M]. Assuming a steady state of free radicals and bi- molecular termination of polymerization, the following relationship can be derived: Rp «[R.][M] ~ [I]1/2[M] where, [I] is the intensity of electron beam or the dose rate. This relationship, well known as the square root relationship, is not always valid for practical cases, which indicates the assumptions are too much simplified. It should also be noted that the rate of gel formation is not necessarily proportional to that of polymerization. Crosslinking reactions which are based on recombination of polymer radicals are independent of the dose rate in principle, but the oxidative decomposition may increase with decreasing dose rate in the case of irradiating in air, as described above.

2.2.3 Structures of Polymers While some polymer's crosslink during irradiation, others degrade as shown in Table 2. Actually, both reactions occur simultaneously and either reaction will predominant depending upon irradiation conditions. From Table 1, it can be said that a polymer of which monomer unit has tertiary carbon most likely undergoes scission by ionizing radiation.

Table 2 Classification of Polymers

Crosslinking Type Degradatiion Type

Polyethylene -CH2-CH2- Polyisobutylene -CH2-C(CH3)2- Polypropylene -CH2-CH(CH3)- Polytetrafluoroethylene -CF2-CF2- Poly acrylamide -CH2-CH(CONH2)- Polymethacrylamide -CH2-C(CH3)(CONH2)- Polyacrylate -CH2-CH(CC-2R)- Polymethacrylate -CH2-C(CH3)(CO2R)- Poly(vinyl chloride -CH2-CHC1- Poly(vinylidene chloride) -CH2-CC12- Natural rubber -CH2C(CH3)=CHCH2- Poly-a-methylstyrene -CH2-C(CH3)(C6H5)- 3. Crosslinking 3.1 Principle of Radiation Crosslinking The interaction of radiation with a polymeric material results in producing mainly polymer radicals and hydrogen radicals. When pairs of polymer radicals combine to form 'crosslink' between two carbon-carbon atoms, the molecular weight will increase at the initial stage. As this process occurs repeatedly, the three dimensional networks will be formed. For example, the following reactions mainly occur upon irradiation on polyethylene that is one of typical crosslink type polymers (Table 2).

-(-CH2-CH2-)-n AMf-** ~ CH2-CH2-CH2- + f (1)

-(-CH2-CH2-)-n A/\h-+* -(-CH2-CH2-)-n* (2)

~ CH2-CH2-CH2CHCH - + e- • -(-CH2-CH(CHCH)2-)-n* (3)

-(-CH2-CH2-)-n* • ~CH2 + • CH2~ (4)

-(-CH2-CH2-)-n* • ~ CH2- CH ~ + H • (5)

- CH 2-CH ~ + H • ~ CH=CH ~ + H2 (6)

~CH 2-CH ~ + ~ CH 2-CH • - CH 2-CH ~

- CH-CH2 ~ (7)

The direct chain scission occurs as the reaction (4), but the recombination of the resultant radicals will be predominant. The reaction (7) is the formation of a new carbon-carbon bond, i. e. crosslink. Crosslinking or degradation can be promoted or retarded by irradiation conditions. As described previously, the presence of oxygen retards the formation of crosslinks. The formation of three dimensional networks in a polymeric system causes beneficial property changes such as: increased tensile strength increased form stability and resistance to deformation increased resistance to solvents improved shrink-memory property

3. 2 Industrial Applications Wire and Cable Insulation Materials Electron beam crosslinking of wire and cable insulation is widely used in industry. More than 30 % of the industrial electron accelerators in the world and more than 60 units in Japan are being used in this field (in 1996). The most common insulation materials are low density polyethylene and polyvinylchrolide. Table 3 is the comparison of electron beam and peroxide crosslinking of wire and cable insulation. go®

Table 3 Comparison of EB and Peroxide Crosslinking of Wire and Cable Insulation

Item Electron Beam Peroxide Energy consumption low high Line speed (m/min) fast (-500) slow (-200) Factory space less Product sizes wide-variety fixed Process control current and speed heat flow Maintenace low cost higher cost Start-up instant (no scrap) slow (many scraps) Voltage rating (kV) up to 5 50 Shelf life of insulation excellent good Capital investment high moderate

Polyethylene Foams Since crosslinked polyethylene does not flow or deforms less at an elevated temperature higher than the melting point, electron beam crosslinking has been applied to produce polyethylene foam. Fig. 1 is a block diagram of the process. Polyethylene is blended with a foaming agent and then molded into a sheet or tubular form at a temperature range above melting point of polyethylene (Tm) and below the decomposition temperature of the forming agent (Tf). The molded materials are irradiated followed by heating up to a temperature above the Tf to form bubbles in the molten polyethylene. Table 3 is a list of characteristics of radiation-crosslinked polyethylene foam. The foam is widely used for packaging, interior of cars, building materials and so on.

Table 3 Charasteristics of EB Crosslinked PE Foam

Semi-rigid Shock Absorption Properties over Repeated Impact Low Thermal Conductivity Excellent Impact Sound Insulation Low Water Adsorption and Excellent Buoyancy Extremely Low Dielectric Constant & Loss High Dimensional Stability (Shape Retention) Orderless and Non-Toxicity Easy Processability Fine Cells and Smooth Surface (Polyethyl'ene Extrusion Blending Crosslinking (Sheet) with EB f Foaming Agent J—

Foamed Foaming by Formable Sheet Y PE Sheet Heating Fig. 1 Block Diagram for Production of PE Foam

Heat Shrinkable Tubes and sheets These materials are very large users of the electron beam for the essential crosslinking step that imparts the shrink-memory property. Fig. 2 shows the block diagram of the production process. After the material is irradiated to crosslink at ^( PolymerD a certain level, it is heated at a tem- Irradiation / + (Crosslinking) perature higher than the melting point of the polymer, followed by expan- Heating above m.p. sion by external force and then quick ( Expansion J cooling under the force to maintain the expanded shape. The product will Heating Quick Cooling above m.p. contract to its original form when \ !! Removal of tension heat is applied. The uses of shrink- f Products J able materials are widespread as shown in Table 5. Fig. 2 Process for Heat Shrinkable Materials

Table 5 Application of Shrinkable Materials

Packaging for Food and Products Insulators for Electric Parts and Joints Cnnectors for Telecommunication Cables Insulation of Oil Pipelines Corrosion Protection of Welding Line of Steel Pipe Precuring of Components The use of electron beam in the tire industry has been veiled in secrecy. However, 30 units in the world (1989) and 25 units in Japan (1996) were believed to be used in this field. As shown in Fig. 3, the components are being partially pre-cured before being built into , and are finally cured by conventional tire-manufacturing methods. The precuring improves green strength of rubber sheets and permits use of less material with easier handling while still producing a better quality tire.

Rubber(s) j • Compounding -^ ( Additives j

NR S, Carbon, SBR ZiO, etc etc 1 Innerliner (Bead Wire) Bead Insulation Tread Ply Fabric J Sidewall

M/r^

Assembly

Molding

Vulcanization

Fig. 3 Process

Vulcanization of Natural Rubber Latex This field is not yet industrialized in a large scale but is expected to have potentials to grow up in near future. Semi-commercial production of rubber gloves from radiation vulcanized natural rubber latex (RVNRL) began in March in Japan by using gamma-rays at an irradiation service center. Also developed are medical devices such as optical laser balloon, drainages, and surgical gloves. The advantages of the RVNRL are as follows: absence of nitrosoamine low cytotoxicity absence of sulfur and zinc oxide transparency and softness simple process go®

4. Electron Beam Curing 4. 1 Principle of Electron Beam Curing The electron beam curing process essentially involves the application of a thin coating of a viscous prepolymer-monomer mixture (liquid) onto a substrate, followed by passage under an electron beam to solidify the coating. The original meaning of "cure" or "curing" is merely a physical change from a liquid state to a solid state. However, as described above, the reaction involved in the process is normally radical (co-)polymerization between double bond in the pre- polymer (oligomer) and monomer(s). The reaction is schematically illustrated in Fig. 4. The reaction is very fast (a matter of less than one second) due to high concentration of radicals in the mixture under a high intensity of electrons. Table 6 summarizes the advantages of the process.

N Monomer(sV) ^

Coating Unsaturated Wet Film Cured Film Prepolymer Composition

J (^Pigment, etc)

Fig. 4 Schematic Block Diagram for Electron Beam Curing

Table 6 Advantages of Electron Beam Curing

Hardening at Ambient Temperature Energy Saving Applicable to Heat-Labile Substrates 100 % Solid System (Solvent-free) Less Materials and Non-Polluting Non-Catalyst Systems Long Potlife of Resins Better Weather Durability of Products Rapid Start-up and Shut-off of Power Source Rapid Curing --- High Line Speed Less Plant Space Prepolymers Radiation curable prepolymers are generally mono- or multi-functional reactive oligomers with a molecular weight of one thousand to several thousands. They provide the primary properties of the cured films such as high abrasion resistance, high tensile strength good solvent resistance and acceptable levels of hardness and flexibility. Unsaturated polyesters are well known as one group of thermosetting resins and have been used for FRP (fiber reinforced plastics) and coatings. They are normally being used as mixtures with styrene, and comparatively cheap in price. UPE-styrene mixtures can be used for wood coatings, but the cure rate is rather slow. Acrylated prepolymers (Table7) are very popular and can be cured much faster than UPE- styrene mixtures, but are generally costly. Polyene/thiol systems are very unique compared with other ones and have little effect of oxygen inhibition on the cure rate, but have troubles in odors.

Table 7 Typical Acrylic Prepolymers

Prepolymer Characteristics

high weather durability Unsaturated acrlics Ac chemical stain resistance Ac Ac Urethane acrylate flexibility abration resistance Ac~OCNH )~AC 6 O Polyester acrylate hardness stain resistance

O Polyether acrylate flexibility elongation

Epoxy acrylate good adhesion chemical stain resistance

Ac : Acryloyl group

Monomers Prepolymers, being generally highly viscous or almost solid, are necessary to be diluted with monomer(s) to have suitable working viscosities. A monomer will influence cure rate, mechanical and physicaJ properties, adhesion residual odor, and also toxicological properties of the solutions or cured films. A variety of acrylic monomers have been developed and are available on the market. Cationic Initiation As mentioned before, polymerization can be initiated by a cationic mechanism udder a certain limited condition that is practically impossible for curing of coatings. Since the types of prepolymers that can be cured by the radical mechanism are limited, efforts have been done to develop new type of photo-initiators for enabling to cure epoxy resins by the cationic mechanism. Various kinds of aromatic onium salts of Lewis acids have been developed for this purpose. These salts are thermally stable, but photolyze to strong Lewis acids that initiate cationic polymerization. These onium salts are also usable for EB curing, although the decomposition mechanisms of them are indicated to be somewhat different with those in the UV system. Major advantages of the cationic systems are that the dose rate and the presence of oxygen do not effect the cure rate. More recently, various kinds of vinyl ethers have been developed to take advantage of their high cure rates.

4.2 Applications The electron beam curing technology covers a wide range of applications as shown in Table 8.

Table 8 Application of EB Curing

Coatings Wood Finishing (Forest Products) Furniture, Door, Flooring Plastics Electric parts, Plastic films (Antifog, Antistatic etc), Magnetic media Paper Gloss coating, Record albums, Folding cartons, Release paper Steel and Metal Substrates Color steel panels, Can, Automobile components Cement and Ceramic Substrates Roof tiles, Slate tiles, Ceramic tiles, Gypsum tiles,

Printing Inks Intalio (security) printing, Paper package for beverages. Plastic sheets

Adhesives Laminates (paper-paper, paper-plastic, paper-wood, plastic-steel) Flocking, Metalization Pressure-sensitive adhesives 84)

Wood Coatings Boise-Cascade in the United States installed semi-commercial plant in 1967. Late on, companies in the western Europe introduced this technology. Although these earlier lines used scanning-type accelerator, Universal Woods Inc. later installed a linear-filament type accelerator. This company has the line where simultaneous lamination of paper and curing of top-coatings is performed by electron beam irradiation. The line, using UV and EB systems, is called a dual cure sytem, and schematically illustrated in Fig. 5.

Sander Sander Paper Top EB Adhesive V Coat EB UV II Coater A _ UV Fig. 5 Dual Cure System for Wood Panel Coating.

Coatings for Metal and Inorganic Substrates It has been reported that this technology can offer tremendous energy saving over thermal curing systems. However, industrial use of the technology has been rather limited by poor adhesion properties of EB-cured coatings on inorganic substrates. In the thermal curing processes the adhesion properties can be improved by thermal annealing of interface strain in the coatings. Nippon Steel Corporation, Toray Industries Inc. and others made a joint research that resulted in a successful production of electron cured high grade precoated steel sheets in 1982. Recently, this technology has been further developed for manufacturing tunnel interior panels. Another success example in production of precoated steel sheets has been made by Nissin Steel Co. The products have many varieties of three groups; EB-1 with clear image or high gross, EB- 2 with multi-color elaborated designs, and EB-3 with high functional PVC surface layer. EB curing technology has also been applied in Japan to produce cement roof tiles, gypsum tiles (for walling), and cement boards. In Germany, Otto Durr/ and Polymer Physic have developed an EB irradiation system for curing the coating of car wheel rims. These examples have shown that low energy electrons are capable of traveling in a wide range of angles and curing coatings on shaped articles.

Magnetic Medias Most of major manufactures worldwide introduced laboratory EB units, and a great deal of R& D work has been performed. In 1986 TDK announced the initiation of industrial production of floppy discs, which was the first case in the world. The products have such durability as allowing 40 million passes per track to withstand and such reliability as being capable of use under extreme conditions and environment. A few EB lines are believed to be in operation for production of floppy discs. Silicone Release Coatings At present various acrylics modified silicones are available. It is claimed that the systems are commercially acceptable for application to a wide range of paper and plastic films for use in pressure sensitive adhesive labels and the sealant industry. In fact, Scholar Release Products is producing EB cured release papers.

Adhesion/Lamination One of the earlier EB curing applications in this field was production of flocked plastic substrates by Bixby International Corp. (1975). Later in 1979, Metallized Products in the U.S. installed an EB line for metallizing basecoat and protective overcoat. More recently, Hallmark Cards, Inc. have developed a transfer metallization system called EB-Aluglas process, where the laminating, curing and delaminating steps are combined into one continuous operation.

Pressure Sensitive Adhesives Development of radiation curable pressure sensitive adhesives (PSA) have also extensively performed, since PSA have a wide range of industrial and non-industrial uses. Most of radiation curable PSAs appeared in literatures is composed of non-reactive polymers and monomers, whilst only a few systems of typical radiation-curable formulations have been developed. It has been believed that several EB lines in the world one line in Japan has been installed for manufacturing PSA products.

Printing and Graphics AGI Inc., based in Chicago, U.S.A. took advantages of EB technology in the packaging printing such as record album jackets in early 1980's. This example was followed by the Tetrapak that delivered some twenty EB units to its factories worldwide. In 1986, Mitsumura Printing Co. started to print on polyolefine sheets with EB. It is claimed by the company that EB products better stain and solvent resistances without primer coating over UV processed ones. RADIOISOTOPE TECHNIQUES FOR PROBLEM SOLVING IN THE OIL AND GAS INDUSTRY

J.S. Charlton, B.Sc, Ph.D., General Manager Tracerco Australasia

SUMMARY The current usage of radioisotopes in problem solving, process optimization and control in the oil gas industry is reviewed. Recent developments are described with application ranging from sub-sea, through measurements on the production platform, to studies at onshore terminals and oil refineries.

1. INTRODUCTION highly penetrating radiations may be used and for this reason the sealed source techniques described are Radioisotope technology has been used for almost based upon the use either of gamma-ray or of neutron half a century by the oil and gas industry to solve sources. problems and to help optimize process operations01. The use of radioactive isotopes to investigate the 2.1 Gamma-Ray Absorption Techniques effectiveness of well stimulation procedures and to measure the sweep-out patterns of oil and gas in A large number of useful applications is based upon secondary recovery processes is well known'23'. The the phenomenon of gamma-ray absorption. The basic applications of radioisotopes to study features of plant principles are as follows: and process operation has been less widely reported though the economic benefits deriving from such A source of gamma-radiation is positioned on one applications are very great. side of the vessel of interest and a radiation detector is positioned on the opposite side. They are then Nevertheless, there has been continuous development moved together up or down and the intensity of the in the range of application and in the design of radiation transmitted through the vessel is recorded as equipment to facilitate the use of the technology at a function of position. For a narrow beam of remote environments - such as an oil or gas platform. radiation, the intensity, I, transmitted through a Techniques for studying the operating characteristics medium of thickness x and density d is described by of processing plants and refineries have also the equation: undergone progressive improvement I = Io exp(-mdx) .(1) Applications range from down-hole studies on the well and reservoir, through sub-sea examination of where Io is the intensity of the incident radiation and production platforms and peripherals, to topside m is a constant called the mass absorption coefficient. studies on the platform and on onshore installations. If the separation of the source and detector is kept Although there are many different kinds of constant, the intensity of transmitted radiation is a application, for purposes of description they can be function of the density of the medium. Thus, as the divided into two broad categories techniques which source and detector scan through vapour a high utilize sealed sources of radiation and radioactive radiation countrate is obtained whereas, when the tracer techniques Down-hole applications, as has 'scan line' intersects a liquid or solid phase a lower been noted, are amply described in the literature and radiation countrate is observed. Changes in the for this reason they will not be considered further in intensity of the transmitted radiation therefore reveal this paper. levels and interfaces in vessels as well as internal mechanical structure 2. SEALED SOURCE TECHNIQUES The changes experienced in moving from regions of The essential feature of all sealed source techniques is low intensity to high intensity are not perfectly sharp. that the radioactive isotope remains permanently Sometimes, the reason is simply that the levels or sealed within a capsule and makes no contact with the interfaces are diffuse, but there is also an effect from plant or process material. Radiations from the source radiation scattering because wide-beam, instead of are directed at the plant vessel of interest and by narrow beam source-detector geometry is usually observing changes in the transmitted or the scattered used This is necessary because the shielding required radiation we can draw conclusions about the contents to produce narrow beam radiation would make the of the vessel Because oil production units and source container too heavy and unwieldy to use industrial plants arc of substantial construction, only In its simplest form, this technique can be used to Instruments based on the gamma-ray absorption identify and measure liquid level in a tank. phenomenon are commonly used both in offshore and Alternatively, if the source and detector are fixed in in onshore locations. Table 1 provides some one position (Figure 1) then the level in the tank will indication of usage. be recorded as it passes this point. This is the principle of the high or low level alarm ("level switch"). By using an extended detector and by angling the source beam to span the detector length, DUTY NUMBER the system can be converted into a level gauge.

Level gauges generally work on the principle of On Shore Topsides Sub-Sea complete obscuration of the gamma-ray beam by the fluid in the vessel. However, if the path length through the liquid is kept short, the gamma-ray Level Alarm / transmission is a function of the liquid density Level Gauge

Figure 1. Principles of Installed Nucleonic These so-called "nucleonic" gauges possess a number of Gauges For Level and Density advantages over more conventional instruments: Measurement (a) The instruments have no contact with the process material and operate either outside of the vessel or in sealed dip tubes. Thus, there are no problems in operating with corrosive, viscous or toxic liquids or with materials at high temperature and pressure

C'ttttCtlT (a! Level Alarm ib) Proportional Level (b) There are no moving parts and the instruments Indicator are of rugged construction. Little or no Scurce container with maintenance is required and the reliability of retraction mfthortsm the systems is high. These are important considerations, especially so for instruments Sources r dip pipe installed sub-sea where access is difficult. ~\ Sad,at ion j dttpefors (c) The systems are intrinsically safe from an electrical point of view. Ic) Liquid Interface Position Indicator (d) Instruments can often be installed on a vessel 1 -10 e>tp ( upr I while the vessel is on line thus averting the need for a costly shut-down SHelded For these reasons, nucleonic gauges are now standard for some of the more difficult control applications Kicroconputtr Examples are given later in the paper. Voltage sicnul proportional to femperafure Relays opfrole dorms ct critical (Jens ty value 2.2 Neutron Backscattcr Technique Ano!cqu£ 'jiq-'w! prop Techniques based on the phenomenon of neutron id I Density Gouge backscatter may complement, or be used as alternatives to gamma-ray absorption methods The principle underlying these techniques is described with reference Figure 3. A Portable Gamma-Ray to Figure 2. Absorption Pipe Scanner

Figure 2 Measurement of levels and interfaces using a Neutron Moderation Technique

SO Vapour - 40

Fast-neutron - 30 source x_ Oil ; - 20 ^/ Watei - 10 Slow-neutron detector PortotrU ttKtcofwc

\ Oit/Waier Interface D«tector output \OiLVapouf interface Lines which contain deposits and which are partially full 0 K 20 30 40 50 of oil or water can sometimes be studies using the Di&t«nc« from Baa* of Vvsael gamma-ray absorption technique and neutron backscatter technique in combination. Figure 4 shows a typical result obtained from scans carried out on a Radioisotope neutron sources emit energetic or "fast" partially full slug-catcher. The neutron backscatter neutrons Of all chemical elements, hydrogen is technique was used to determine the level of the outstanding in its ability to slow down or moderate hydrogenous liquid - in this case, condensate - and from neutrons to lower energies Thus, when fast neutrons this information, together with the results of a number of from an isotope source are directed into a hydrogenous diametric gamma-ray transmission scans made around material, the number of slow neutrons produced is, to a the pipe the radial distribution of the deposit was good approximation, proportional to the hydrogen inferred. concentration

Figure 4. Measurement of Deposit Thus, if a probe comprising a slow neutron detector and Distribution in a Slugcatcher a fast neutron source is moved up and down over the surface of a vessel containing hydrogenous material the detector response provides an indication of the position of the level of the material Interfaces between materials having different hydrogen contents may similarly be detected

3. APPLICATIONS OF SEALED SOURCE TECHNIQUES.

3.1 Onshore and Topsides Applications

The gamma-ray absorption technique has been used The gamma-ray absorption technique is also used to widely to determine the extent and magnitude of scale study foaming in separators. Foaming is generally build up in oil pipelines A portable system (Figure 3) combatted by the addition of an anti-foaming agent. is used to survey sections of the line to determine the However, anti-foams are expensive: the correct anti- overall density of the material inside it. Provided that foam must be selected and it must be used at the correct the line is running full (or completely empty) and the oil concentration. The gamma-ray absorption technique density is known, the additional attenuation of the provides a means of directly studying the effect of anti- transmitted signal due to scale thickness may be foam addition The principle of the measurement is estimated. Scale thicknesses can generally be measured illustrated in Figure 5 which shows typical results to within a few millimetres obtained from scans on horizontal vessels The presence of foam above the liquid level modifies the transmission A common use of nucleonic gauges on topsides and profile. Figure 6 shows the results obtained from a onshore installations is the measurement and control of separator with different dosages of a particular anti- interfaces in separators and other vessels. These1 foam. With the higher dosage, the interface is much applications merit further description since the control of sharper and the vapour region less dense, indicating that interfaces can be difficult and radioisotope gauges often the foam is effectively suppressed The ability to study present the only viable solution. the effects of the anti-foam directly and without any disruption to the process is clearly advantageous and Figure 7 shows an instrument arrangement which has can result in significant economic benefits by reducing been used very successfully on oil/water separators. anti-foam usage and optimizing the operation of the separator

figure 5. Gamma-Ray Scans of Separators; Principles Figure So Gamma-Roy Transmission Scan Through on empty Figure 7. A Nucleonic Interface Detector Horizontal Vessel for Oil Wafer Separators

S«ot«0 dip BottM of vusel tub* 'C«n-r, of *tw«( (auMM P*td I fapafvcwtv

Figure Sb Gamma-Ra> tansmission Scan Through Partially Full Horizontal Vessels

Figure 6 Gamma-Ray Transmission Scans A radioactive source is inserted into the vessel in a of a Separator to Investigate the Efficiency of AnHfoam Dosage sealed dip tube Usually the tube is inserted horizontally through an available nozzle, though other configurations have also been used The system incorporates a shielded container into which the radioactive source can be withdrawn at such times that vessel entry is required An elongated radiation detector is positioned on the outside of the vessel to receive the radiation from the source. Radiation from the source is attenuated more by the (denser) water than by the oil (Equation 1) so that the detector output signal is a function of the oil/water interface position

A portable neutron-backscatter instrument is often used to calibrate the system by providing independent measurements of the interface position.

Installed gamma-ray gauges also find extensive use in the control of foaming levels An example is illustrated o s7*.Nce OOVN vr in Figure 8 Figure 8 supplanted by a gamma-ray absorption method, which is Gas compressor protection using a described in Section 3.2. nucleonic level control and alarm ' system 3.2 Sub-sea Applications

Vapour ^_. ro compressor f\ The technology used topside is also used below the sea, though of course the design of the equipment is Radioact. However for this measurement and nucleonic gauges clearly have a part to application the neutron technique has been entirely play For example, we have recently fitted sub-sea level gauges to a sub-sea separation unit. Radioactive sources is illustrated in Figure 9. A sharp pulse of radiotracer is are suspended in sealed dip pipes projecting into the injected into the line and mixes with the process stream interior of the various vessels and diver-accessible A pair of radiation detectors is positioned downstream detectors are mounted externally. The detectors are able from the injection point at measured separation The to measure liquid level in the first stage gas separator, distance downstream of the first detector from the interface position between oil and water in the second- injection point is such as to allow complete lateral stage separator and oil and water levels in a mixing of the tracer in the stream As the tracer pulse compartmentalized storage vessel. Data from the passes down the pipe the detectors respond in turn and detectors are fed to a central sub-sea computer and their output signals are fed to a chart recorder or used to control all the levels in the process. computer. The time interval between the centroids of the two response curves, which corresponds to the mean One further application of sealed source technology is transit time between the detectors is measured. the recently developed "Gammatrac" system for monitoring the progress of pigs through sub-sea From this and the measured separation of the detectors pipelines. The approach here is to deploy at suitable the mean linear velocity of the tracer, and hence of"the intervals along the pipeline gamma-ray detection flowing medium, can be readily computed. The volume systems which are equipped with radiation - activated flowrate can then be calculated if the mean cross- LED displays A gamma-emitting radioisotope is fitted sectional area of the pipeline is known into a pocket in the pig on the launch platform and the pig is launched. As the pig passes each detector station the LED display turns from white to red. Visual Tracer injcctioo point D«(»ctor separation, d inspection of the detectors by a diver can then confirm P'pe If re that the pig has passed down the line. Should the pig fl M,,,»g length, I PI Crou-s*ction« become stuck the section of line in which this has flowatc U ana. « occurred can be identified. Thus, by strategically deploying the detectors the free movement of the pig Duu analysis through critical sections of line - such as through newly installed valves can be checked.

\.'o!urr>e flowrat* U - Further development of this system which will enable even more accurate tracking of the pig is in hand. Figure 9 The Radiotracer Pulse-Velocity 4. UNSEALED SOURCE TECHNIQUES Technique

Unsealed source, or "radiotracer" techniques differ This technique has been used in the offshore oil and gas fundamentally from those involving the use of sealed industry to measure oil, water and gas flowrates For sources of radiation In this instance, radioactive example because of statutory limits on the amount of gas material in a form compatible with the process fluid is which can be flared it is important to measure these injected into the process stream The subsequent flowrates Accordingly, we have measured the flare gas movement of radiolabelled process material through flowrates on many platforms for calibration of installed pipes and process vessels can be monitored using metres and to provide confirmation of the accuracy of strategically positioned radiation detectors. This forms calculation of the tonnages flared. We have also used the the basis of a number of methods for studying mass pulse velocity method to monitor the injection-water transport and fluid dynamics of process systems flowrate in waterfloods The technique can also be used to detect bypass flows and offers a rapid method of 4.1 Flowrate Measurement identifying passing valves

Flowrate measurement is one of the most useful 4.2 Residence Time Studies categories of application. There are several ways in which radiotracers can be used to measure flow <5) : The pulse injection of radiotracer also facilitates the arguably the most-useful is that known as the pulse measurements of residence times and residence time velocity technique distribution(fl) If a pulSe of tracer is injected at the inlet to a vessel, a detector mounted on the outlet will The basic arrangement for pulse velocity measurements produce a response curve which is representative of the residence time distribution of elements of fluid in the Catalytic Cracking Units vessel. Analysis of this curve yields important information both about the mean residence time (MRT) The versatility and power of radioactive tracer and the mixing characteristics of the vessel The method technology, as applied to problem solving, is perhaps has been used to study the performance of oil/water nowhere better illustrated than in the study of Fluidised separators. Residence times of oil and water phases are Catalytic Cracking Units (FCCUs) on oil refineries measured separately To perform the measurements, radiation detectors are placed on the inlet pipe and the Fluid Catalytic Cracking is one of the most important oil, and water exit pipes A pulse of organic radiotracer processes on petroleum refineries. The process is used is then injected upstream of the inlet detector and the to convert (upgrade) heavy oils into gasoline and other time of its entry into the vessel is recorded The detector light hydrocarbons The efficient operation of the FCC on the oil exit records the residence time distribution Unit is crucial to successful refinery operations since (RTD) curve Since separation is not perfect, some of small increases in unit efficiency (increased gasoline the tracer also appears at the water exit causing the yield) can lead to very significant increases in revenue. detector located there to respond This procedure is then repeated using a water soluble radiotracer Because of the economic importance of FCCs, they have been the subject of extensive study, both to trouble- Analysis of the residence time distribution curves shoot problems and to optimise operations. permits calculation of the degree of plug flow of the Radioisotope techniques are particularly suited to such two components and also provides measurement of the studies because of their sensitivity, which allows flow- separation occurring in the vessel patterns in large- scale processes to be successfully traced, and because of their unique ability to effectively 4.3 Sub-sea Leak Location visualise the distribution of materials inside operating plant A further application of the use of radiotracers is the location of leaks in sub-sea umbilical cables. Umbilical This paper describes two case studies which are cables between offshore platforms and other illustrative of the many ways in which radioactive tracers installations are essential links covering distances up to have been used to study FCCs 50 kilometres The cables are generally run in bundles contained in an outer sheath Each cable in the bundle 4.4.1. General Principles may be as small as 5mm but a leak on such a cable can be a safety hazard to personnel or the environment and Radiotracers can be used to study the movement and can cause loss of production due to downtime A quick flow distribution of all of the process streams: solid and accurate method of pin-pointing the location of the catalyst, vaporised feed, steam or air. Radioactive leak can save considerable time and money Tracerco material, in an appropriate physical and chemical form is has developed such a technique A piece of radioactive injected into the process material - usually as a sharp gold wire is secured inside a plastic "pig The pig is pulse. In this way, a representative portion of the inserted into one end of the leaking umbilical cable The flowing material is "labelled" with radioactivity and we other end of the cable is sealed and pressure is applied can then follow its movement around the unit using to the insertion end The only fluid movement in the external radiation detectors positioned strategically on umbilical will be towards the leak vessels and pipework As a result of the high sensitivity of modern radiation detectors, the amount of radioactive The pig is carried along the cable by the flowing fluid material injected is small so that the process is not and when it reaches the leak it stops From outside the perturbed or disrupted Nor is there any measurable umbilical bundle a radiation detector mounted on an hazard to plant personal The vaporised feed, steam and ROV monitors the progress of the pig and accurately air flows are commonly traced using gaseous locates the position at which it stops This portion of the radioisotopes Argon-41, Krypton-85 or Krypton-79. umbilical can be brought on board the supply boat and repaired saving the replacement of a costly umbilical The catalyst flow is reliably traced using a sample of the bundle system catalyst which has been irradiated in a nuclear reactor to produce the radioactive isotopes Lanthanum- 4.4 Flow Distribution Studies on Fluidised 140 and/or Sodium 24. Because the catalyst is, in effect gofl

its own tracer, the above labelling procedure opens up the possibility of studying the behaviour of different CAIALYST TRACfcH particle-size fractions of catalyst within the unit.

4.4.2 Methodology

For the sake of brevity, discussion is restricted to studies on the riser, reactor and stripper sections of the FCC Unit, though it must be pointed out that the technology has been applied with equal success to investigate the performance of other parts of the unit, notably the regenerator and catalyst stand-pipes. Figure 11 Flow up the riser. A typical test arrangement for studies on the reactor, Detector Responses riser and stripper is shown in Figure 10. By measuring the time-separation of the detector responses we can calculate the velocity of the catalyst through different sections of the riser.

R C 1,1 nf Jfr.TOfl 1 POTIONS If we subsequently repeat the measurements, this time injecting a pulse of gaseous radiotracer into the feed inlet to the riser (Figure 10), the vapour velocity is measured. Comparison of the results of the two sets of measurements permits the catalyst/vapour factor to be determined. The dispersion of the catalyst and vapour can also be measured quantitatively. The responses of the detectors on the riser can usually be modelled by a dispersed plug-flow model and from this, by (for example) computing Inverse Peclet Numbers we can measure the deviation from perfect plug flow. Clearly, by repeating the velocity and dispersion measurements at some future date we have a means of checking the effectiveness of any plant modifications which may have been made to improve the flow characteristics in the riser.

4.4.3 Case Studies

The principles and methodology outlined in the Figure 10 Equipment Layout for Radioactive preceding sections can be applied in many ways Some Tracer Studies illustrative examples follow:

Tracer is injected as a sharp pulse at appropriate locations and its movement is followed by observing the 4.4.3.1 Flow Maldistribution in the Stripper response of the detectors installed on the unit. Suppose, for example, that it is desired to study the movement of The responses to a pulse injection of catalyst of catalyst up the riser. The labelled catalyst is injected as Detectors D14 - D17, placed at N, S, E and W locations a pulse at the bottom of the riser. The acceleration and around the stripper are shown in Figure 12. dispersion of the catalyst in the riser can be measured by studying the responses of detectors Di - D 4 (Figure 11). 4.4.3.2 Investigation of the Effectiveness of a Riser CATALYST TRACER Termination Device

The purpose of the riser termination device is to direct the catalyst flow downwards to the stripper. Ideally, there is total disengagement of vapour from the catalyst: the vapour goes overhead, the catalyst into the stripper bed. In reality, of course, complete separation rarely occurs and, as a result catalyst may be carried overhead in the vapour stream. By studying the results of the radiolabelled catalyst tracer study it was possible to identify a serious deficiency in terminator performance Figure 12 Catalyst Flow Down Stripper. Detector Response Curves Detectors D8 and D9, located neat the top of the reactor (Figure 10) exhibit response curves which are sharply If the catalyst flow down the stripper was uniform, then defined and which contain at least two components the responses of the four detectors would be identical (Figure 14). This, clearly, is not the case and by comparison of the curves we are able to identify excessive catalyst flow in the South quadrant.

CATALYST TRACER To investigate the reason for the maldistribution an injection of Krypton-85 was made into the stripping steam ring (Figure 10). The responses of Detectors D14 - D17 of this injection are shown in Figure 13.

STRIPP1NQ 6TEAM TRACER

Ttut M MCOMOS DCTCCTORS t.1

Figure 14. Investigation of Riser Termination. Response of detectors on the T««C M SCCONO1 OCTECTWS H.li.«.f? Reactor.

Figure 13. Steam Flow up the Stripper. The time of arrival of tracer at the detectors, coupled Detector Response Curves with the sharpness of the response curves indicates that a substantial fraction of the catalyst is passing directly up It is obvious that there is a gross maldistribution of the the Vessel. Further weight to this observation is given by steam with a disproportionate amount going up the the response of D10 on the overhead line (Figure 15) North side of the vessel. Presumably, the rapid upflow of steam interferes with the downflow of catalyst - hence, the excessive catalyst flow in the South quadrant

From this evidence, it was deducted that the stripping steam ring had suffered damage - a finding which was verified by visual inspection at a subsequent plant shut- down. the oil and gas industry and which will ensure that growth continues in the future CATM.VST TRACER

6. REFERENCES

1. Howell, L.G and Frosch, A ."Detection of radioactive cement in cased wells", Trans. AIME 136 (1940) p 71.

2. Mott, W W And Dempsey J.C., "Review of radiotracer applications in geophysics in the

IIMC IM sr.G United States of America", Radioisotopes DCTfCTOn Tracers in Industry and Geophysics, IAEA, Vienna 1967 pp 111 - 131. Figure 15. Investigation of Riser Termination. Response of Detector 3. Priest, MA. "Improved Procedures for on overhead Line. Injecting Radioisotopes During Fracturing Operations", Journal of Petroleum This shows a marked carry-over of catalyst in the Technology, January 1989 pp 46-54. overhead vapour. From these results it was deduced that the termination device was either of ineffective 4. Charlton, J.S , "Radioisotope Techniques for design or was malfunctioning. The device was examined Problem Solving in Industrial Process Plants", at shutdown and was found to be partially dislodged Leonard Hill, Glasgow and London (1986) pp 302-303. Radioisotope technology is a powerful tool for investigating many aspects of the performance of 5. Edmonds, E. A. and Charlton, J.S. "Experience FCCUs. Projects have been carried out world-wide, and in the Use of Radioisotopes, Offshore usage of the technology continues to increase. The Installations and Pipelines", Oil loss Control in development of increasingly sophisticated data the Petroleum Industry, John Wiley and Sons acquisition systems is a key factor in the growth of (1985) pp 199-217 radioactive tracer applications. It is now relatively common to deploy up to thirty detectors on a study thus 6. Guidebook on Radioisotope Tracers in providing a very detailed picture of the fluid dynamics Industry, IAEA, Vienna, (1990) pp 39-101. of the process.

5. CONCLUSION

Radioisotope techniques have a generality which makes them of great value throughout the oil and gas industry world-wide. The techniques offer on the one hand a unique window through which the inner workings of production plant can be observed and on the other hand a method of studying the distribution and flow patterns of the process material. These insights into the operating plant, which cannot be obtained in any other way, can realise large savings on continuous production plant by diagnosing faults on line and by providing input data for process optimisation.

It is these considerations which have been responsible for the expansion in the usage of radioisotopes within jjag

Synchrotron Radiation Application on Protein X-ray Crystallography

Palangpon Kongsaeree Department of Chemistry, Faculty of Science, Mahidol University Rama 6 Road, Bangkok 10400

Synchrotron radiation was originally designed for high-energy physics research on elementary particles and very rare occasions on diffraction and spectroscopy research. However, in the last 10-20 years, synchrotron radiation facilities, with high brilliance and rich variety of X-ray beam characteristics, become available for fundamental and applied research in biology, chemistry, and physics. Some of the applications of the synchrotron radiation can be broadly categorized and summarized below:

a) Fundamental physics and chemistry Photoabsorption and photoreflection Photoionization Innershell excitation Photoemission Fluorescence and light scattering X-ray diffraction and scattering Topography Circular dichroism Inelastic scattering Infrared spectroscopy UV reflectometry

b) X-ray applications Macromolecular crystallography X-ray microscopy Coronary angiography Microtomography small angle X-ray diffraction and scattering X-ray magnetic scattering Surface scattering/ X-ray reflectivity Time-resoved fluorescence Lithography Extended X-ray absorption fine structure (EXAFS) X-ray absorption near-edge structure (XANES) Trace element analysis High-pressure physics etc.

Among many applications of synchrotron radiation, more than 30% of the beamlines are devoted to structural biology research, including crystalline and non-crystalline diffraction, spectroscopy and imaging techniques.

Instrumentation

As high-energy electrons travel in a circular trajectory, synchrotron radiation is emitted. To create a high energy beam, electrons are accelerated in a linear accelerator (LINACX and then transferred into an intermediate circular accelerator (a booster synchrotron), which increases the energy of the electrons to the level of GeV. Consequently, the electrons are injected into a larger storage ring in a high vacuum. A lattice of bending magnets is set up around the storage ring to keep the electrons travelling in a circular path. When the electron beam passes each magnet, the path of the beam is bent, and synchrotron radiation is emitted and can be used in research.

SR and macromolecular crystallography

Synchrotron radiation has played crucial roles in macromolecular crystallographic research in the past decade. With several unique properties, synchrotron X-ray has several advantages over conventional X-ray sources. Crystals with large unit cells, weakly diffracting or small crystals benefit from the high brilliance; multi-wavelength anomalous dispersion (MAD) benefits from the tunability, and time-resolved studies benefits from the high intensity over a broad bandpass. The role of synchrotron radiation is evident by the fact that more than 60% of the X-ray studies reported in the journals Science, Nature, Cell, and Structure used synchrotron radiation. X-ray crystallography has been proved to be a powerful tool in structural biology to study many cellular components including proteins, enzymes, DNAs, etc. An atomic view of molecular structure yield us better understanding on how these complicated micro- machines function. An analysis of reaction mechanism of an enzyme may yield information crucial for chemists, for the first time, to have a control over Nature by designing a molecule to fit into the active site, and thus inhibiting its function. Hence, structural information in high details is very beneficial on our understanding and high brilliant of synchrotron radiation makes a study at the level of atomic or near-atomic resolution possible with high accuracy. The significance of synchrotron radiation on macromolecular crystallography will be illustrated including recently determined X-ray crystal structures of chorismate mutase and cyclohexadienyl dehydratase enzymes. In the shikimic acid pathway, chorismate mutase catalyzes the [3,3] Claisen rearrangement of chorismic acid to prephenic acid, the first committed step in the biosynthesis of the aromatic amino-acids phenylalanine and tyrosine. The structure of the chorismate mutase domain ofE. coli P-protein complexed with an endo-oxabicyclic inhibitor has been solved for a monoclinic crystal form. The monoclinic crystals form, which belong to space group P2P with a = 83.93, b = 79.40, c = 53.10 A and (3 = 109.08°. The structure has been refined to an R-factor of 19.7% (R-free 26%) at 2.3 A resolution. The r.m.s. deviations for the bond distances and bond angles are 0.008 A and 1.3°, respectively. The catalytic mechanism of the Claisen rearrangement by chorismate mutase will be presented. Also, the evolutionary relationship of chorismate mutase in different organisms will be discussed.

N

The opportunistic human pathogen Pseudomonas aeruginosa, a Superfamily-B organism, possesses dual pathways in the synthesis of L-phenylalanine. Cyclohexadienyl dehydratase (CDT), encoded by the pheC gene of P. aeruginosa, together with monofunctional chorismate mutase-F (CM-F, EC 5. 4.99. 5), represent an overflow pathway of L-phenylalanine biosynthesis CDT of P. aeruginosa has a broad substrate specificity that gag

accommodates both prephenate and arogenate as substrates and converts prephenate to phenylpyruvate or arogenate to L-phenylalanine. The crystal structure of CDT from P. aeruginosa has been determined to 1.8 A resolution using MAD phasing technique. The protein has been crystallized to two different spacegroups with very different crystallization conditions. The enzyme is a homo-trimer in solution. In one crystal form, subunits of the trimer are related by a crystallographic threefold, while in the other crystal form, three crystallographically independent molecules are related by a non-crystallographic threefold. Each subunit folds into two distinct domains separated by a deep cleft, each domain has a common p/ct nucleotide-binding motif. The structure is extremely similar to periplasmic amino acid binding proteins, and amino acid binding sites are also conserved between these two protein classes. The structure and function relationship of CDT will be discussed along with its possible enzymatic catalysis.

N "Application of Electron Beam Accelerators for Industry in Thailand" Presented by: Gray Buetzow - RPC Technologies, Inc. Apiluk Lohachitkul - Thai Klinipro Co., Ltd.

The presentation will review a brief history on the development of commercial electron beam linear accelerators and the evolution of several of the largest and most important applications. Two interesting new applications for commercial accelerators will be presented and one of the new applications will be highlighted.

The presentation will feature and discuss in detail the world's first medium energy, high power commercial accelerator for the sterilization of medical products. This system is installed at Thai Klinipro Co., Ltd. a large manufacturer of disposable medical drapes and gowns.

Radiation Therapy The development of linear accelerators for the treatment of cancer began in the early 1950's. The first patient treated for cancer by a linear accelerator occurred at Hammersmith Hospital in London in 1953. Stanford University physicists in 1955 developed the first U.S. linear accelerator and treated a young boy in 1956.

Linear accelerators began replacing Cobalt 60 as the preferred method of radiation therapy in the late 1960's. Large multinational corporations began investing in the technology. Siemens, Philips, General Electric, and Varian Associates all introduced product lines of various electron and photon (x-ray) energies. Currently there are over 5,000 systems installed worldwide treating tens of thousands of patients daily. Electron and photon energy ranges for cancer therapy vary from 4 MeV to greater than 20 MeV. The same basic technology developed in the 1950's is still in use today. Modern medical therapy systems are much more reliable and the procedures highly sophisticated.

Industrial Inspection Systems Two industrial applications for high energy industrial linear accelerators developed in the U.S. in the late 1960's.

Nuclear power plants required thick-walled castings for high temperature water lines and high pressure vessels, each of which required 100% x-ray inspection. Cobalt 60 could be used for thin walled components, but did not have the penetration ability for many of the thick-walled critical nuclear power plan components. Modification and simplification of medical linear accelerators resulted in industrial x-ray systems which generated energies between 2 MeV and 15 MeV x-rays of high intensity.

During this same period, the US. Department of Defense was developing a new type of rocket motor. The fuel for this rocket motor was solid like clay and cast in steel or carbon fiber casings. Like any cast material, defects in the solid propellant could form while cooling and these defects needed to be detected. Industrial x-ray film was adapted to meet the needs these new high energy x-ray sources. Varian Associates is the leader in high energy industrial x-ray inspection systems.

TWO NEW APPLICATIONS FOR INDUSTRIAL LINEAR ACCELERATORS

Two new and very interesting applications are developing for industrial linear accelerators.

Cargo Inspection Systems Customs agencies around the world are struggling to keep up with the explosive growth in trade while monitoring goods crossing their border. Most goods are shipped in standardized 20 ft. and 40 ft. shipping containers which offer a fast, safe and secure means of moving large amounts of cargo. Customs agencies, on the other hand, have great difficulty in quickly inspecting the goods shipped in steel boxes. Consequently, smugglers have excellent success in getting their goods into the country with little chance of interdiction.

Siemens and British Aerospace were instrumental in developing and demonstrating large x-ray inspection systems which screened cargo containers, trucks, and automobiles. At the heart of this technology is the linear accelerator. Medical computerized tomography technology was adapted for linear accelerator energies and the very large area to be imaged. Containerized cargo is radiographically screened at seaports and trucks/automobiles at border crossings. Fully loaded cargo containers can be screened in a matter of minutes while it may take many hours to unload and manually examine a cargo container's contents.

Ten border crossing and sea port and airport inspections systems were sold last year.

Electron Beam Sterilization Systems for Medical Disposables Virtually all disposable medical devices must be sterilized after being manufactured and sealed in protective packaging. The limitations of sterilization technologies available dictate that this process be done in large, expensive, centralized facilities. Most manufacturers are required to send their products outside to these contractors, incurring transportation costs as well as time delays of up to two weeks.

Currently the two primary methods for sterilizing medical products are: 1) exposing product to radiation emitted by the radioactive isotope cobalt 60; and 2) saturating product with ethylene oxide (EtO) gas. Both of these methods are slow and the gas method is under severe environmental pressures. Linear accelerators generate an intense electron beam which is capable of sterilizing disposable medical products in a matter of seconds as compared to many hours for cobalt 60 and up to ten days for EtO. Electron beam sterilization is an industry accepted method and regulated by national and international agencies.

Gamma fCobalt 60) R /T. "a . CI O )

Exposing microorganisms to penetrating radiation has the same terminal sterilization effect as EtO. The product, in its shipping carton, is loaded into a container attached to a conveyor system. The conveyor moves the container into a shielded radiation chamber where it slowly rotates around the isotope. The sterilizing dose is administered based on a pre-selected period of time of exposure. After the dose is administered the container is moved out of the shielded chamber where the product carton is unloaded.

Commercial use of cobalt 60 to sterilize disposable medical products began in 1979. Atomic Energy Commission, Ltd. of Canada (now called Nordion International) supplies 80-90% of the world's demand for cobalt 60. Nordion also designs and constructs complete irradiation facilities.

As the shift from EtO progresses, medical disposable manufacturers are redesigning their products for conversion to radiation sterilization. Polymer materials manufacturers are developing radiation-resistant resins to expand the number of products that can be irradiated. Although cobalt 60 isotope has become the most dominant method of radiation sterilization, electron beam systems show great potential for growth.

Electron Beam The electron beam sterilization process passes an intense, but highly directed, beam of radiation through the medical disposable shipping package or shipping carton which has been placed on a standard conveyor system. Microorganisms are killed by the same total dose as administered by the cobalt 60 method. The biggest difference between the two processes is that a sterilizing dose with an electron beam can be delivered in seconds.

Five significant market factors have renewed interest in electron beam sterilization:

1. Increasing costs associated with the EtO gas process and cobalt 60 sources and facilities. 2. Growing public concerns about transportation and disposal of radioactive materials. 3. Serious environmental and cancer-causing concerns associated with EtO. 4. Improved linear accelerator system reliability and serviceability. 5. Greater throughput capabilities.

In-line Electron Beam Sterilization System

Under the RPC Technologies in-line system concept, the sterilization system is located in the manufacturers' plant where the disposable product is assembled and packaged in the normal fashion. The sterilization process becomes an extension of the production line. A conveyor routes the packaged product through a shielded chamber in which the linear accelerator is located. The product passes beneath the electron beam, receiving a sterilizing dose. RPC Technologies and Molnlycke Health Care created an industrial accelerator product which will meet the industry needs for lower cost sterilization.

The benefits of this concept are:

• The convenience and speed of sterilizing the product on the factory floor. • Absolute quality control over the complete manufacturing process, including sterilization for those producers now using outside contractors. • No transportation time to and from the contract sterilizer. • No holding time. • Better control of inventory, reducing manufacturing costs. • Very high throughput, meeting the just-in-time manufacturing philosophy. • It is the lowest cost method compared to contract sterilization.

Thai Klinipro Co.. Ltd. - Samutprakarn Thai Klinipro is a leading manufacturer of non-woven surgical drapes, gowns, and sleeves. The company is growing rapidly and is expanding manufacturing capacity. Currently the company is distributing its product in Western Europe. After packaging the product, it is placed in shipping cartons where large quantities of cartons are then shipped to Europe for sterilization and distribution. Because the sterilization process was in Europe, it was not economical to return the product to Thailand for distribution and sale.

If the product could be sterilized in the factory in Thailand, then all of Southern Asia could become a new market. RPC Technologies and Molnlycke Health Care (a joint venture partner of Thai Klinipro) proposed to install a prototype Minilac® In-line Electron Beam Sterilization System into the factory. The electron beam energy of the Minilac and throughput capabilities would meet the current needs of Thai Klinipro production.

The Minilac was installed into the concrete shielded bunker November/December 1997 along with the product conveyor system. The first "beam-on" occurred in December 1997 and sample products were being sterilized by February 1998. This installation is the first medium energy, high power electron beam sterilization system in the world.

Technicians who maintain linear accelerators need a knowledge of analog and digital circuitry, microwave components, water circulation systems, physics, and computers. Thai Klinipro maintenance personnel worked on the prototype system prior to installation in the factory as well as participated in the installation and acceptance of the system in the factory. Training of the maintenance personnel was a very high priority because RPC technicians are located in California and if the on site maintenance personnel could not fix a problem, they must have a clear understanding of the system in order to accurately describe the problem over the telephone to RPC field service engineers.

Technical Challenges and Problems Installing a prototype system in a factory environment has its technical risks. Thai Klinipro, Molnlycke Health Care, and RPC Technologies felt that the prototype Minilac system, with some upgrades, would meet the performance and reliability requirements of the factory.

Continuous system operation has revealed design weaknesses of some subassemblies and components. The microwave source (RF driver) has been replaced with a solid-state subsystem which is more reliable and stable. The electronics which drives the accelerator electron gun has been upgraded to improve reliability and performance.

Major systems beyond the linear accelerator also have been upgraded. The product conveyor system needed to have the flexibility to handle packages of several different dimensions including thickness. Mechanical adjustments to the conveyor system between production runs of different product dimensions, need to be made quickly and accurately. Some minor changes to the bar code reading system which tracks products and records system operating parameters have been made

Prior to installation, assumptions were made as to what preventive maintenance procedures were to be performed and the frequency of those procedures. Since the operations of the systems, these procedures have been refined and modified. We believe that the preventive maintenance procedures will continue to be modified at least for the next year as we learn more about the system strengths, weaknesses, and procedures. On site maintenance personnel will play a critical role in the refinement of preventive maintenance procedures and ultimately the overall system reliability and performance.

Summary Commercial electron beam RF linear accelerators have served very important functions in industry for over thirty years. Radiation treatment of cancer patients and non-destructive testing of thick-walled nuclear power plant components and solid propellant rocket motors have been the primary applications. However, two new applications have emerged which have great potential: cargo inspection systems and electron beam sterilization of disposable medical products.

A local Thai disposable medical products manufacturer, Thai Klinipro Co., Ltd., has recently installed the world's first medium energy, high power linear accelerator to sterilize their product in-line on the production floor. The economic advantages of this sterilization concept are enormous and it is believed that in-line sterilization will have worldwide acceptance throughout the medical device industry. TH9900003 TH9900003

DEVELOPMENT OF NUCLEAR INSTRUMENTS IN THAILAND

Virul MANGCLAVIRAJ(1) and Suvit PUNNACHAIYA(2) (1) School of Electrical Engineering, Institute of Industrial Technology, Suranaree University of Technology, Nakhon Rachasima 30000, Tel : (044) 224230 Fax : (074) 224220 (2) Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand, Tel : 2186773 Fax : 2186770

ABSTRACTS

Realizing the need of nuclear instruments for teaching and research, the development of nuclear equipment was initiated in 1963, a few years after the inception of the Office of Atomic Energy for Peace known shortly as the OAEP. It began with the design of a bench top Single Channel Analyzer (SCA) using electron tubes followed by transistorized survey meter for gamma ray and charged particles monitoring. Modular conceptual design of nuclear instruments was introduced a year later. The dimensions of the bin and modules were designed based on the materials available locally. Bin and various nuclear modules such as single channel analyzer, sealer/counters, pulsers, high voltage supplies, timers and linear ratemeters etc. were developed. In 1965, however, the standard Nuclear Instrument Module or NIM according to USAEC Report TID-20893 was adopted. A great number of nuclear instruments were produced in standard NIM for researchers in OAEP and distributed to universities and other research institutes. Cooperation between OAEP and the department of nuclear Technology (DNT), Chulalongkorn University on the development of nuclear instruments began in 1975. The program was accelerated through research projects and theses assigned to graduate students at the DNT. In addition to standard NIM modules, standard Eurocard modular nuclear instruments were also developed, thus reducing the size and weight of nuclear equipment. This system is known as "mini bin". In 1987, the DNT began the development of computer based multichannel analyzer (MCA). In the past twenty years, several instruments were developed for nuclear researches at the DNT and other research institutes. Besides the research and development of nuclear equipment, the instrumentation group at the DNT is also involved in refurbishing, upgrading, modification and adaptation of existing instruments for specific applications and reuse. High-end technologies in data communication, electronics and digital signal processing will be applied in future nuclear instrumentation development. l. vrrui

fonlu

llJ

2.

2 n?s;UTUfn5fnijfint4 n (detection) (measurement) .detection measurement

detector Amp. PHA r.—* preamp.

HV

bias

radiation detector signal processing and measuring system data analysis

Jiirli

3 JIIHIIIJ [l]

fl. IS (integral counting system) ifiwfinflfl'JnJJi'injiNfT ;'Wa4^1U (differential counting system) mm imuui uasf-jtion fl. ?SllllT'«l-3mmuTfl0w5lPIUctf (coincidence counting system)

2 |lllllllJ fl0 ]fl1^lTl'i>3lJlJlJnU'34'0? (single unit) ^lu^Yi 2.f1. 0OfllllllJ

(modular electronic) (bin) 2.V. fl. single unit 1). modular

3.

30 Tlfut^i [2]

2506

(Single Channel Analyzer; Model 1111 ) it s (desktop) UBS OflfTuiflUlJII^l (rack mount) (Survey Meter, Model 2101)

mR/hr ff-3 100 R/hr

Dekatron Nixie

3 Single Channel Analyzer Model 1111 4 Survey Meter, Model 2101

lull H.ff. 2507

t V ( modular electronic ) imfuiJVJ

(Decade Sealer, Model 1201) (Linear Raicmeter, Model 1501) ^ 5 nas 6 enuami qJ

5 Decade Sealer, Model 1201 %\\r\ 6 Linear Ratcmetcr. Model 1501 worn?) w.pf. 2508

USAEC Report TID-20893 mgYip Standard NIM (Nuclear Instrument

Module) [3] «tf-u?uw smj bin)

n.n. 2518

f)v^

7 lias 8

i

2521 u

fl9 w (Pulser, Model NT1701) (Training Ratemeter, Model NT

1201) 9 uas 10

S:

9 Pulser Model NT 1701 10 Training Ratemeter, Model NT 1201

4.

amnnie"untf .ff. 2523 ua

Apple II mtJiime)^nu IBM iilvmimj Iviil w.ft. 2530 Im (MCA) ims;eiln?aI'Ti«uimat)?

-. VTA -.V

11 12 Eurocard

(survey meter)

(dosemeter) (mini sealer) (demonstration set) liaS •WaioK0? (pulser) lufjanil'Ufia'njtynQi'Wfl^fi (pulse pair generator) Q (SCA) imsejiJnianifmsmia'io'Ke-j (MCA) (interfacing unit)

1. (Research and Development)

2. (Upgrading) 3. ow (Adaptation) 4. (Modification) 5. fniihfmiJlJ"l1#l'HiJ (Reuse)

4.1

mi

(DSP) 4.2 mimummoiofi504Jj0Yiij0giftjj Imiri

mi?nm3iu^ii40UJji1iwiJ?s;Ifjifiy t&iri miutn^rniflf

A

4.4

1 4.5 D I^an liu (PMT)

13 14 NT 2604 15 NT 1802 ^iJ^ 16 NT 1031

5.

5 tl

30%

fie y in9

17 fmUn uaswwin

uaswmn

r\\y\ 17

6.

1. Edition Ten Product Catalog. Canberra Industries, Inc. Meriden, U.S.A. 2. tfitfmiuwawuttamfumemjpffniiieij 30 tl.

nd 3. G.F. Knoll. Radiation Detection and Measurement. 2 Ed., John Wiley & Sons, New York, 1989. 4. IAEA-TECDOC-530. Nuclear Electronics Laboratory Manual. International. Atomic Energy Agency, Vienna, 1989. Area Wide Control of Fruit Fly by the Sterile Insect Technique

itasintu 8.4 1.8 aruTj rnicru 8 utruH 'CTU 5 (2538

4,882.83 a "I U inn Hfls1tl?llw^W?linJi|lllliSinQil]fls; 17,856.07 aiUUIYl (2540

Ifuvmnibs

oijjfni

n 17 cfsi Q 0 n 1 ij 1 anternation Atomic Energy Agency: IAEA)

ivu ij?jinff ^ijiJ mnvln oiufm vB iiasnii«inai iili4yii4 vlniltlun

I141J 2540 w

i wouwioiJJ n.ffff. 25282542528-25400 ifimlifiejwinjumTiLly y 22 itvv m utntJ 2525-2533 <»i

V 'J 2528

2534-2540 54.7 % uasTuii 2534 wimfnsvh?n?jafi?wvm9 n.i% 4% .linJ 2540

ifliuiYifi m mmi?is?ni'uijfvm

2^30 i l

y • i ftflWW\lYll,?\9\l,mi (isolate) wrnim^mi

vi.ff 2531

mofipiinjufn? 5,ooo It1 itusii vi.ff 2540 7,000 I?1 2532 vmw\v\l,mm^\}?imttm4i\iHn\un\lw\i}\i\

tje^ v1^YitTii4Us;u'']>3 5,000 li imsil vi.ft 2540

7.000 1? ivunu

Vl.ff 2536

1^4^ll^fmsll'^<3lms;'uoy•H^ill9^lvtttf'H3lf1v1^J^ 20,000

i 3/ i 2540 l«lcWJJll40y]fn5WllTJU"31Ull3'U 30,000 li

IJ2541 1«11J^1l'UT4lfl1^n1 y • fiiirej-qiviu1 mefi«iiTJUfn? 20,000 1? 6,oooli 9\9cJtD'i^in^ ©iLno^li-a ^vciwi^lviii 20,000 64,000 Ii

2 UVN fig vi :; 20 tfmw-j

10 amfoiiiliJiifiotm ^iingilinyi'g ^vtiflnmji utis

jvm

^lj' lfi8fmmwn«qMii^flifiinuNfll^l'51unei8'3i]?5Uitu 5-7

1M

(Methyl eugenol)llll4?n'3flO wrfJjrfTS^'lilJJfl^ 11^niJ«nY1TWai7ilJiSU10i 10-20 flU

7 5i4 U'I

MIBT? l^fffi^BCViflTiCacetone techrique)

ivu

82 % ii£isna>ifnnfniiJEi88li4i]ii?nyiijfn7viitn8m^8 30.3 2541 2. tj 2531 nufn?>ii?nfj 59.2% 2541 wufmThsno 1.4

3. liiil 2 31.9% ii3sivunulviiJ254i

2527 54.7% unslull 2541 7.4%

100

<••• so \

60

40

20 • • • -B \*~ ^^^-^ * ; 3-^ ==« 0 ~1 1 —r— 1 —-A1 r~. -f ir 253 0 253 1 253 2 253 3 253 4 253 5 253 6 253 8 n ?54 1 So®

Social Advantage on

the Peaceful Use of Nuclear Energy

by

Yoshio Murao

Director, Nuclear Technology and Education Center,

Japan Atomic Energy Research Institute,

Tokyo, Japan ua~msinwis ....A

B

D iia~msmwis (A) TH9900004 TH9900004

•uiiyem

tfiun-nunaisfmiifmBivmuastn 1m. 5907273-4 2/nf)«Yiinflnrrwfibn'm m 1m. 5795230 fie 581 ti^TiWfiv 1m. 5899850 ^0 9065 o In?. 5899850 WB 9056

nloo

. 152-2539)

2.5 n

90 1 log cycle 7.5 nlamiu

1,000

12 iwau 10 nTmnso

m5!i Reducing Microbial Contamination in Herbal Cosmetics and Raw Materials from Natural Source by Gamma Radiation

Yupa Tiengthavaj, Suwimol Jetawattana ,

Kwanyune Sripaoraya , Suwanna Charunuch , Phongpraphan Susanthitapong

1/Cosmetics Control Division, The Food and Drug Administration Tel. 5907273 2/Biological Science Division, Office of Atomic Energy for Peace Tel. 5795230 ext 581 3/Toxicology and Environmental Laboratory, National Institute of Health,

Department of Medical Sciences Tel 5899850 ext 9065 4/Division of Cosmetics and Hazardous Substances, Department of Medical Sciences Tel 5899850 ext 9056

ABSTRACT

Six kinds of natural cosmetic raw material powder (Zedoary, Siamese rough bush, soft chalk mixtured, tuberous plant, cuttle-fish bones, creat) and five of herbal cosmetics (facial scrub powder, facial wash powder, tooth powder) were studied. Samples were irradiated in dry state by gamma radiation and kept to investigate microbial quality for twelve months. Minimum dose of 2.5 kilogray can reduce the exceed number of microbial loads in some samples at least 90 % or 1 log cycle from the beginning. The dose at least 7.5 kilogray can diminish the exceeded 1,000 colony/gram of contamination in all samples to the desired level. No change in number of survivors during storage were detected. No skin irritation effects were observed up to 10 kilogray and major physicochemical properties (pH and color) were not significantly changed in all samples except tooth powder. l. nun

iiiJ^wf«THT4n milVmui vifomm nm uifuymssHU filuinflwu iflaaiwiin vweinijj wvi m

vi. ff. 2535

9 (w. ff. 2536)(2)

152-2539)<4)

yn-j ivu \nntT

1jJSuinumiuiJi5iJiil'Ujji«ifiiw

Miaun5iojjfmjJifnuiiHV4lunoj iifuuais'Huniia-jfmiJunjauflauYiso arm

v iiiitiJjiiiiila-jnumiiJuiilaurnnfnawanifi' nJimu a f vnn

(2537)

51 flioein waiifins'Hvn-j^aSiQVifJiviii'ii uCfiw-) 25 pfiam^ Iiimuieiii'm 23 (85.19%) filulavu/ifla 13 w'J9m^ljji'uiJJi«?siii 2 ehatin (15.38%) tfylvlaj 11 en 9 tin m v (3)

1914

Antoni (1973), Armbrust Uf\t Laren (1975) lias Jacobs (1984) biomaterial

Reid lias Wilson (1993)lflinflni1 'Ulllll'UncnUTUMcnfJlluPI')

Preservatives 'Uetia^'Hia llJ itTiafJ D-3'Vni'Hfl0-3Umifnilfl3Jfn5li)iqjl^lim

6-9

io4

tnua (2538b) 1piffnwini5ViiaioBawYi1olut)iiiwi4liin«u«ioi^minjjui iwmnwuiunfu^i

6 ibsifivi Ifiuti tniStn mwau OTUIJ oi^nniaulu oin^o ua nn n 90 iiJaiWua vtla l leg cycle 6.82 nlainio MiajjifiniiPinflwiJ^aiiviitfiiiyjnwiatinljjinu l.oooifiiawnijj vrfe 4i A d

(uan. 152-2539)

iw

•Huion-3

1 log cycle 90 %

2.

1. (Quasi experiment) flllJfjU exposure 1^1 (Non-probability sampling) eh a tin If) en Is vi (Criteria) lumi

2.

2.1 niMVIfl'HMIlflfU'yf (Criteria)

2.1.1 ^f 2.1.2

2.2 ilfmmuehednfliw I (1fia?hiJn-ni4fifus:fm3jfm9iMiiiiastn)

2.2.1

llcl i flntn uibitlufliilum end

(l)

?iijvliii40fjn'ii looo niu (fliuiu 5 wiam (2) V fiT»i4j;^iniJ0m^}Jiiii-a1pfq^ncii?T^n^as;0i^ ^HiflfJifiiouiiJ nmz 100 niw uns; 900 fnu wo l ^Q0fii^ uaiilfiiJinn^^ioniiSa (Seal) ^leifmufgu (fliuiy 6 ^i

2.3 uu^^gfJi-JBgniiliJ 2 pfiu

eriw^ l iJfjjifliwigm-jiu'nifji^tr 9EJi-jas;il?s;jJifu loo niu ff^ fntT^ifiilimVIO m9«nyilJ?U1«JBH

JJ0D. 152-2539

2 lJi3J1tU^10EJ1-3 0fJ1-3asiJiS}JlfU 900 fill) ^iMtt

polyethylene O^

25 fifw uaiwufiilino^i'Hft'uyi \ji1il«ifjf^^^il?3Jiflj 2.5 ,5.0, 7.5, 10.0 nlainio (uas 25.0

Gammacell model GC220 aemfmilHftff (dose rate) 13.11

PllfJ Radiochromic film FWT-60-00 01UfhfniUl\m

605 nm.

d " " 2.4 muniiwiafJU'Ki flf^^ 2 uas 3

200 nfu ff^tfiiTn^iuvia^^iTJiJiJJiflimQnviw me

3.

nw 5 wf\ wim

io3 - io6

flfjjJ Bacillus SlWEH 3 fll9EJ"l-3fl9 1J9EJ1JA ITUUHfh Uf\Zftl}\l\vi13t\)f\WU~\ I presumptive coliform ifVUinfllijTUfhM'Ufl

niiQiEJi^^iJ?3JiQjadi-3'U9fj 2.5 niamio d 90% MID l log cycle l log cycle

2.5 v spore forming bacteria 111 114in^« 19til-3 iiJVI MUUQm 1J9EJ 2.5 nlniniOl3wwi\4ilJ«i;iiilMRnfl1jivilJ presumptive coliform

ijJinu 1,000 Ifilnfi«8fiijj?njj^inwisii4«8^fni iiPisiJfuiful'^CTedi^'ueti 7.5 nininiy Swa 1,000 ifila'u^eniwlu'vifi^am^cififi^jJiaEil'ui^^iuiu'm'u 1,000

7.5 0^ 10 filninifjflK'nilMfinflwui?9li4«i8di^1iJinw 10

2.5, 5.0, 7.5 ims; 10

3,6,9 lias 12 10

if iiw 2.5 nimmo if ma^me^W' (test of primary irratation)

(a inn 5.0,10 ims 25

n

n

vtiu V V VXt 'M^Sl1Ua-33J1i)in^iam-311-3'HJJfl9Ei1lJ?TflTH dry state Uflsetflum'inJSllfl S-3 "w'wm5llu

3 wla 6

panel aeJi^^afj 10 10 niainia

(wan. 152-2539) ss

^ loo

10

fi iliintuini Miafmunw iiluw io3-io6 7.5 nlninifl' SwflTiii'HiliJJifu^uviioiJuitlauinu 1,000

(wan. 152-2539)

(wan. 152-2539)

iiu H-JHIIO (Talcum) 10

3

2.

3.

uns mwu? Ififi lfiiuwafififucviviuf3«jfnvi

UHS

Gammaceil-220 5111

6.

. (2536). 1 Cw. pf. 2536) 119-3

2. nis;inn-3insi?ojtT6u. (2536). 9 (w. fl. 2536) ifg-3

v\. ft. 2535

3. T'u. (2537).

gwa^in aim inn

4. ttiyn-3iy3Ji^i§Tuwa?inflj(:ng¥i?nMfiii}j (2539)

h . 152-2539 11

5. ?TTun^ivsjJiPif5TV4wH«nfucn9^invrn??jj (2525).

fl!0"U : Ulk^U JJQfi. 443-2525

6. fpua [\l9\tl

8. Antoni, F (1973). Manual on radiation sterilization of medical and biological materials,

Technical Reports Series No 149, International Atomic Energy Agency(IAEA). Vienna. P. 13

9. Armbrust, R. F. and Laren, N. H. (1975). Radiopasteurization in the processing of non sterile

pharmaceutical preparation and basic material. In radiosterilization of medical products 1974

(Proc. Sym. Bombay, Dec. 9-13, 1974), IAEA, Vienna. P. 379-382

10. Jacobs, G. P. (1984). In cosmetic and drug preservation : Principles and practice (edited by J.

J. Kabara), Marcel Dekker, New York. P. 223-333

11. Reid, B. D. and Wilson, B. K. (1993). Radiation processing technology for cosmetic : A

report on a Canadian study. Radiat. Phys. Chem. 42(4-6):595-596. 12

ehaun

Total colony Presumptive Pathogenic bacteria' Skin

count coliform and Fault producing irritation

3 (<1000CFU/g) (<10/g) organisms

1.75 x 106 <10 IJJVUJ linSflitHflB^

niao 4.39 x 10" 2.4 x 103 IWWJ luiSfiltliflB'J

3.65 x 105 <10

1.50 x 105 1.15 x 102 Iiiviu

l.lOx 105 <10 "liivm

3.76 x 106 <10 ID'VIU luisfiitiifia-i

4.10 x 103 <10 Iiivcu

8.40 x 105 2.2 xlO2 ljju;fnfjifia-3

7.25 x 103 <10 IJJ'VIII

6.62 x 106 <10 lu'vm

8.00 x 10! liiviu

wan. 152-2539

(Faecal coli, Staphylococcus aureus, Pseudomonas aeruginosa,

Salmonella spp.)

{Closthdium 100 niu 13

(kGy)

0.0 2.5 5.0 7.5 10.0

1.75x10 8.55x10 2.20x10 4.39 x 104 2.21 x 104 7.35 x 102 3.65 xlO5 2.09 x 104 6.75 x 102 1.5OxlO5 <10 <10 aunna l.iOxio5 s.iOxio3 i.i6xio3 3.76 x 106 6.69 x 103 3.40 x 103

4.10 x 103 I 8.40 x 105 9.25 x 104 6.65 x 103 II 7.25 x 103 <10 <10

II 6.62 x 106 1.09 x 105 8.60 x 103 II 8.00 x 103

(CFU/g) 14

pH

lOkGy

6.34 6.32 1)00 6.35 6.23 6.40 6.35 6.68 6.45 7.43 7.51 7.90 7.83

8.54 8.70 5.82 5.44 8.53 8.53

II 6.39 6.76 II 4.04 3.15 15

LL o o

2.5 5 7.5 10

Radiation dose (kGy)

LL o 81

2.5 5 7.5 10 Radiation dose (kGy)

B:iJ9t), C: 16

unz M. E.A ingles

umfi'lulamm^i8i5tJ IIVJUBITI 12120 1m. 524-5476 TviJPni 524-6200

NPI ims

c e nuu MA 1-uti^iAiaitTwn PVNP »-jSiJiiJifUfniu0ij1pi9Ofi1 Bfl 20% uaslulwiiuu 80% mu 5 °C ntantn 8 ^iJflTH mOMyBKQfittmi^^fniUl^U 1 kGy lias 2, 4 kGy

a^ncwifni^nfltToiJ'yjn «I1PITH u

40 luufus;^ MAP 44 iu mQMjjyiuii^'fauuu^ysyifnfmfls MAP uaswiiJfniQiof^ft l kGy fls

48 i^niQn^uti^i'uti^ NPI itas; PVNP Senqmiinuimn 8 kGy B^SQiymitnuirnnunnfiQi 8 ^d?nw fhusniBEh-a'tflfmefm'vnut^fl 4 kGy u 2 m™i)3flioth^'UJ''l&ntif'-afl TH9900005 TH9900005 17

Quality Evaluation of Meat Products in Relation To Packaging and Irradiation

Athapol Noomhorm and M. E.A Ingles

Agricultural and Food Engineering Program, Asian Institute of Technology, Pathumthani, Thailand 12120

ABSTRACT

The effects of low-dose radiation (<10 kGy) were evaluated based on the changes in the

quality of meat products and the performance of films used. Fresh pork sirloin meat and smoked

sausages were vacuum-packed in NPI pouches and modified atmosphere packed PVNP films with

20% CO2 and 80% N2 gas and stored at 5°C for eight weeks. Fresh samples were irradiated with I kGy while smoked sausages were irradiated to 2 and 4 kGy doses. Quality evaluation were

conducted every week. Mechanical properties of films were determined at the start and at the end

of the storage period.

Vacuum alone extended the shelf life of fresh meat to 40 days while MAP to 44 days.

Vacuum packaging or MAP with 1 kGy made meat still acceptable up to the 48th day. Packaging system with NPI and PVNP were able to protect sausages against deterioration for 8 weeks. While two kGy with vacuum and MAP extended the storage life of sausages for more than the eight weeks of storage, 4 kGy dose can double the shelf life of unirradiated samples. Sensory tests showed no effects on the acceptability of the irradiated products. Tensile and tear strength of all

films used decreased after storage period. Irradiation did not significantly affect these properties of film, transmission rates for gas and water vapor through NPI and PVNP. 18

INTRODUCTION

Good manufacturing practices (GMP) is one of the backbones in the food industry. With the numerous reported cases of food-borne diseases, various areas in food manufacturing are given emphasis. Because processing poses possibilities of bacterial contamination, new methods of packaging have been developed to counter the threats. Modifying the existing atmosphere of the packaging by removal of gases (vacuum packaging) was found to preserve the color characteristics of food materials, decrease rates of oxidation and spoilage (Newton and Rigg, 1979; Lynch et al., 1986), maintain product quality (Ho et al., 1995) and extend the storage life of fresh meat (Rousset and Renerre, 1991) while flushing specified amounts of oxygen, nitrogen, carbon monoxide and/or other inert gases was reported by Young et al. (1988) to inhibit enzymatic spoilage. In particular, Gill and Harrison (1989) discovered the effectiveness of carbon dioxide against spoilage and pathogenic bacteria. Aside from extending the shelf life, safety of food consumption is ensured.

In any packaging system, the performance of the packaging materials used has the most critical role as they are responsible in the protection of the products inside against abuses and microbial contamination (Pszczola, 1995). The thickness and the strength of the films ensure the protection of the product from physical and mechanical damages. As meat products are stored in low temperature and high humidity areas, the permeability of the materials against water vapor would assist in preventing the entry of moisture. Particularly for MA-packed produce, the permeability of films to gas is important in regulating the gases inside the pouches. Nonetheless, microbial activity will soon overcome the effects of packaging and proceed to degrade meat tissues. Elimination or reduction of spoilage and pathogenic microorganisms at the start of storage would further assure the extension of shelf life and the safety of meat. Application of ionizing radiation is efficient in removing the microorganisms present (Brody, 1996). Irradiation at low-doses (<10 kGy) was found to eradicate and inhibit the activity of pathogenic bacteria, like Salmonella (Noochpramul and Loaharanu, 1974). Although total microbial count decreased with increasing radiation dose, organoleptic changes observed at higher doses may affect consumer acceptability (Lacroix, 1995). A radiation dose of 3 kGy was found to reduce the population as well as preserve the sensory attributes of meat products. 19

Although significant studies have been conducted on the effects of irradiation on food materials, very few has dealt on its effects on the performance of packaging films. It should be considered that these materials come in contact with the food and any changes in their properties may significantly instigate unfavorable changes in the quality, shelf life and safety of food. It is this light that this paper aims to determine the changes in the quality of meat products: fresh and processed meat and the performance of the packaging films used as influenced by the packaging method and irradiation dose.

MATERIALS AND METHODS

An experiment conducted by Maneesin (1995) showed that compatibility of packaging method and materials contribute to the effectiveness of packaging system. The study found out that of the packaging materials used in the meat industry, laminated films of nylons were better compared to the usual polyethylene pouches. In particular, laminated film of nylon and polyethylene with ionomer resin (NPI) was found to be best in combination with vacuum packaging due to the sealing properties of ionomer resin and nylon. It also has good permeability properties. Also, laminated film of polyvinyledene chloride-coated nylon and polyethylene (PVNP) was most compatible with modified atmosphere packaging due to its thickness and its ability to restrict the movement of gases. Based on these results, the above films were utilized for this experiment.

Sampling and Packaging Procedures Fresh sirloin cuts were obtained from Freshmeat Processing Co., Ltd., Nakorn Pathom Province, Thailand on the day of slaughter. Smoked sausages were purchased from C.P. Interfood (Thailand) Co., Ltd., Samutprakarn Province, Thailand.

Fresh meat samples were cut in 2 i 0.5 cm thickness and packed in conventional method with stretchable films and plastic trays, vacuum-packed in NPI plastic pouches at 90 psi and modified atmosphere-packed in PVNP pouches with 20% CO2 and 80% N2. Smoked sausages were packed at 100-gram per pack in vacuum and modified atmosphere packaging using NPI and PVNP. All control samples were packed in low density polyethylene (LDPE) films. 20

Radiation Treatment and Storage

The y-irradiation source was Cobalt using Gammacell 220 facility (Nordion International

Inc., Kanata, Ontario, Canada). With a dose rate of 0.22 kGy/min, fresh samples were treated with

0 and 1 kGy while smoked sausages at doses 0, 2 and 4 kGy.

Storage condition for all samples was 5 i 2 °C. Changes in the microbial population present, acidity and pH levels, texture and color attributes and sensory scores were evaluated every week while the performance of the packaging films was assessed at the start and the end of each storage period.

Microbial Population

Following the steps outlined by DiLielo (1982), bacterial count was obtained using decimal dilution and total plate count method. A maximum bacterial density of logl0 7.0 cfu/gm was used as deciding factor for spoilage (Kraft, 1986: Molins et al., 1991: Brewer et al., 1994).

Physical and Chemical Properties

The moisture content of the meat samples was determined using CEM methods (AOAC,

1984). Fat extraction was made with 70 ml hexane as the extracting agent at 120 °C for 5 hours.

The differences in the weights after the first and second drying process were used to compute the moisture and fat contents of the meat samples.

Ten grams of samples were blended with 90 ml distilled water for 1 minute. The slurry produced was then utilized to measure the pH which was recorded within two minutes after slurry production.

Samples of meat products were weighed at the start and at the end of storage to the nearest

0.001 gram. The differences in the weights were used to calculate the percentage drip loss

(Seideman et al., 1979).

Appearance, particularly color, is one of the major deciding factors used by consumers in determining the acceptability of meat products (Jeremiah and Greer, 1982; Molins et al., 1991).

Color attributes expressed in the changes of the values of 'L' (lightness-darkness), 'a' (redness- greenness), and 'b' (yellowness-blueness) were monitored every week from the start of storage.

A modified procedure used by Bourne (1978) was employed to evaluate the hardness of the meat and meat products using the Instron Universal Testing Machine (UTM) with Kramer 21

Shear cells having a cross head and chart speeds of 50mm/min and 200 mm/min, respectively and a maximum load of 500 kg.

Eight panelists aged between 28-40 years old were asked to assess the color, odor and overall acceptability of the fresh meat and meat product in an eight-point scale with eight as the highest score. Smoked sausages were boiled for 5 minutes before serving.

Film Properties

The films were evaluated in terms of thickness using the average of ten readings (to the nearest 0.0025 mm), tear and tensile strengths following procedures outlined by ASTM D1922-93

(ASTM, 1993) and ASTM D882-91 (ASTM, 1991), respectively and transmission rates of water vapor and gas through the films by ASTM D1434-82 (ASTM, 1982). Conditioning of films was made at 27 C and 65% RH for at least 48 hours prior to film property determination.

Statistical Analysis

Analysis of Variance (ANOVA) was used to analyze all gathered information with Least

Square Difference and Duncan's Multiple Range Test (DMRT) to differentiate the means.

RESULTS AND DISCUSSION

Microbial Population

Generally, after slaughter, fresh meat contains around log|0 5.0 cfu/gm. Due to this high count, the usual shelf life is between 3 to 5 days. With log10 7.0 as the maximum bacterial density for termination of storage period (Thayer et al., 1995), vacuum packaging was found to preserve fresh meat samples for 40 days, twice the life of those packed in plastic trays and flexible films.

Modifying the atmosphere by flushing 20% CO2 and 80% N2, resulted in a shelf life of 44 days.

Enfors et al. (1979) supported this result emphasizing the bacteriostatic effects of CO2 and later confirmed by Gill and Harrison (1989).

Probably due to the low-dose (1 kGy) applied no pronounced differences were observed after the application of irradiation (Tables 1).

The smoked sausages in LDPE vacuum and MA pouches unexposed to irradiation were found to be stable until the fifth week while those in NIP films displayed storage stability until eighth week (Table 2). Unlike the fresh meat, irradiation was effective in reducing the microbial 22

population present in smoked sausages. A reduction of 28.46% and 68.79% was observed upon the application of 2 kGy in vacuum- and MA-packed smoked sausages, respectively while a decrease of 71.12% and 68.79% was found in vacuum- and MA-packed samples with 4 kGy dose, respectively.

Physical and Chemical Properties of Meat Products Both the fresh meat and smoked sausage samples showed no significant changes in the moisture content. The slight increase in the fat contents of the smoked sausages was found due to the sensitivity of lipids to irradiation treatment. This phenomenon was supported by the report of Desrosier (1970). Although reports revealed the formation of off-odors upon the application of irradiation (Blumenthal, 1997), no such reactions were observed during the experiment.

The changes in the acidity of the samples determine the rate of degradation by enzymatic and microbial reactions. Normally, the pH of meat after slaughter is between 6.4 to 7.0 (Rosset, 1982), but because meat would continue to undergo physiological reactions, pH levels changed with storage time. In this experiment, all samples, regardless of packaging method and irradiation dose, pH levels decreased, although irradiated samples proceeded to a slower rate. In the like manner, the weights of samples changed with storage period as a result of movement of water from the inner tissue to the surface as affected by humidity and temperature. Of the packaging methods, vacuum packaging was found to cause a greater loss in exudate than MAP (Seideman et al., 1979 and Lawrie, 1983). Fresh sirloin cuts had percentage drip loss of around 3.93% to 11.32% with the samples packed in flexible films having the highest loss. This may be caused by the difference in the type of packaging material and the absence of proper sealing of the flexible film. Between vacuum packaging and MAP, the former resulted in higher loss due to the shrinkage of film and product as the gases inside the package were removed. The same results were observed with the processed meat. Smoked sausages in vacuo with LDPE films exhibited the greatest loss at 2.87%, but the application of irradiation decreased the rate of water loss in the sausages. 23

Table 1 Microbial population in fresh meat samples, log10 cfu/gm.

t

0 4.2553 4.2788 2.6021 4.1461 ND 4 4.8633 4.7243 2.9685 4.2553 ND

8 5.9243 5.0000 2.8451 4.7709 ND

12 5.9191 4.8451 3.2040 5.2041 2.4624

16 5.9445 5.2553 4.3802 5.0414 3.6811

20 6.3424 5.3424 4.6128 5.3010 3.7709

24 7.2304 5.3979 4.5798 5.4771 3.8921

28 - 5.4624 4.8261 5.6335 3.9685

32 - 5.9345 4.9085 5.7634 4.2041

36 - 6.6232 5.0414 5.9030 5.1139

40 - 6.9685 4.3424 6.3222 5.3222 44 - 7.0792 5.7324 6.8921 5.9912

48 - - 6.4914 7.3617 6.7853

' ND - Not detectable

Table 2 Microbial population in smoked sausages, log,0 cfu/gm

Weeks in WPBO PW4 3.5682 3.4624 2.4771 1.0000 3.1461 3.2041 ND ND 4.6901 3.7559 2.7160 1.4771 3.8692 3.3010 ND ND 4.8388 4.3979 3.2041 1.7782 4.9191 4.0792 2.2041 ND 5.2304 4.6532 3.2532 2.3979 5.2553 4.5798 2.7782 ND 5.8633 4.7160 3.5441 2.4771 5.9777 4.7782 3.0414 ND 6.6335 5.5979 4.5139 2.6532 6.5911 5.3802 3.6721 ND

7.3451 5.8624 5.3010 2.7160 7.2947 5.9243 4.3802 2.4314

5.9121 5.5051 2.6021 5.9956 4.6902 2.3979 6.2928 5.5315 3.0792 6.5315 5.0414 2.4914

' ND - Not detectable 24

As gathered by Brewer et al. (1994), vacuum packaging was the best method in preserving the color characteristics of the meat samples. Fresh meat samples packed in vacuum showed good color retention and the application of 1 kGy made the color attributes stable throughout the storage period. Smoked sausages in LDPE pouches both in vacuum and modified atmosphere had lesser degrees of redness ('a' values) as compared with the other treatments. Packing in vacuum produced a more stable color quality than MAP while application of irradiation with 2 and 4 kGy created some fluctuations in the intensity of the different color attributes. In the MA packages, exposure to

2 kGy produced sausages with lighter color than other samples.

The texture characteristics of the meat products, on the other hand, were behaving in accordance with the results obtained by Berry and Leddy (1984) and Matulis et al. (1994) which said that the resistance of meat products to force is directly proportional to the fat content. Because the fat content in the meat samples did not vary much, degree of hardness was not significant among treatments.

For the sensory evaluation, it was also found out that vacuum-packed fresh meat slices were preferred over MA-packaged ones. The production of off-odors, particularly in unirradiated ones was attributed to the presence of bacteria emphasizing the impact of radiation in the elimination or reduction of microbial population causing degradation and spoilage. For the smoked sausages, vacuum-packed samples were more stable than those in MA pouches in terms of color attributes. Irradiated samples, although there were slight changes in the color characteristics, were preferred by most of the panel members, particularly during the later part of the storage period.

Film Properties

The properties of the films used were tested based on their tear and tensile strengths, thickness and gas and water vapor transmission rates. Tests showed distinct variations in the initial and final properties of each film (Tables 3 and 4). Elongation and tear strengths of fresh meat varied with direction: longer elongation was observed with samples cut in machine direction (MD) than in cross direction (CD). While opposite trend was detected in case of sausage samples. Tensile strengths of both products provided higher value in CD direction. Permeability, expressed in transmission rates, varied with type of packaging materials. Among the film used, PVNP exhibited the least gas permeability with oxygen transmission rate at 3.65 m /m -day, followed by NPI with

5.77 m/m-day, LDPE with 6.05 m An -day and flexible film with 11.76 m /m -day. These

differences were influenced by the various properties of films laminated together to form these 25

packaging materials, like nylon which is stable in high temperatures and is reported impermeable to gas. Polyethylene film is soft and flexible but water impermeable (Hanlon, 1984). Whereas ionomer resin is heat stable and chemically inert, nylon with polyethylene is highly resistant to grease, oil, water vapor and gas.

At the end of the storage period when films were exposed to low temperatures and high humidity, all underwent changes. Tensile strengths reduced as well as elongation and tear strengths. Transmission rates increased due to the exposure of films to high humidity conditions (Rigg, 1979; Lambden et al., 1985). The application of irradiation reduced the film permeability but this change was not significant as indicated by statistical analysis. These results showed that the high-energy produced during radiation process did not affect film performance which coincided with Desrosier's experiment (1970) reported that irradiation has no effect on packaging materials at doses below 20 kGy. t-0

Table 3 Properties of packaging materials used in fresh meat samples

Control in flexible fflm vmawHftKasteta m MAPinPVNP

F9m Properties fnitul Final FaatCeai&K *#• Edition Condition Condkkm OkGy JkGy Cowftw ikGy

Thickness, mm 0.010 0.012 0.076 0.075 0.075 0.089 0.088 0.089

Tensile Strength, kg/m

cross direction 469.86 317.73 561.88 480.95 461.27 420.79 415.95 399.82

machine direction 354.17 273.64 423.53 416.67 394.91 459.51 414.09 397.06 Elongation, mm

cross direction 23.95 15.21 37.43 26.67 25.00 36.67 41.67 33.33

machine direction 40.44 25.63 63.33 65.00 56.67 38.33 55.00 37.50

Tear Resistance, gm

cross direction 408.00 371.50 32.00 39.00 34.66 72.00 86.00 88.00

machine direction 512.00 466.25 37.42 42.38 35.25 78.88 83.00 96.00

Transmission Rates

Water vapor, 60.72 102.24 19.68 20.60 16.72 5.28 8.08 4.56

g/m"/day

Oxygen, m /m'/day 11.76 16.44 5.77 8.34 5.66 3.65 7.81 5.94 Table 4 Properties of packaging material used in smoked sausages

Vacuum Patftggng ModiM AttKMpbere Padogmg LDPE m U PVNP Film Initial Final MM Recondition Initial m Fmal Condition **.. «-<. . CaamoB Properties condition Coalition OfcGy 4feGy OkGy 2kGy 2kGy VOHSSOD <. 4bGy Thickness, mm 0.0530 0.061 0.076 0.075 0.075 0.076 0.053 0.056 0.089 0.089 0.09 0.09

Tensile Strength, kg/m2

cross direction 235.76 204.70 561.88 504.55 508.75 508.15 235.76 207.88 420.79 397.23 388.70 396.90

machine direction 206.29 183.97 423.53 390.39 369.26 369.43 206.29 181.03 459.51 432.70 398.50 405.10

Elongation, mm

cross direction 313.33 383.33 37.43 31.67 33.33 30.54 313.33 275.00 36.67 40.00 40.00 36.67

machine direction 182.96 220.00 63.33 65.00 51.67 55.00 182.96 163.33 38.33 33.33 35.00 31.67

Tear Resistance, gm

cross direction 980.50 950.48 32.00 30.50 32.00 31.88 980.50 960.00 72.00 82.32 82.00 95.36 machine direction 856.25 830.00 37.42 33.34 32.38 34.86 856.25 842.88 78.88 86.64 83.36 86.32 Transmission Rates

Water vapor, g/m /day 4.320 6.040 19.680 23.040 15.480 12.880 4.320 7.200 5.280 5.760 4.92 3.84

Oxygen, m An /day 6.05 7.140 5.77 7.51 7.28 6.87 6.05 7.189 3.65 7.477 5.14 4.74

to 28

CONCLUSIONS

1. Between vacuum packaging and modified atmosphere packaging, the latter was effective in preventing the loss of water in the meat products and extending the shelf life by inhibiting the growth of microorganism.

2. Irradiation was efficient in reducing the microbial population in meat products: reduction of

28.46% and 68.79% in smoked sausages treated with 2 kGy in vacuum- and MA-packaging, respectively, 71.12% and 68.79% decrease in vacuum- and MA-packed samples with 4 kGy dose.

3. Packaging and irradiation did not significantly affect the moisture, fat content and the texture characteristics of the fresh meat and smoked sausages. Both were not effective in inhibiting the decrease of the levels of acidity of the sample, though irradiation slowed the rate of decrease.

5. The exposure of films to low temperature, high humidity storage resulted in lower tensile strength and elongation, but slightly increase the permeability to water vapor and gas.

6. Irradiation decreased the transmission rates of gas and water vapor through the packaging films

as well as the tensile and tear strengths and the elongation but all of the changes were not

significant.

REFERENCES

AOAC. 1984. Official Methods of Analysis. 14th ed. Association of Official Analytical Chemists,

Washington D.C., USA.

ASTM. 1991. Standard Test Methods for Tensile Properties of Thin Plastic Sheeting Reference

No. D882-91. American Society for Testing and Materials.

ASTM. 1982. Standard Test Method for Determining the waster vapor transmission rate—Dish

Method Reference No. D1434-82. American Society for Testing and Materials.

ASTM. 1993. Standard Method of Test for Propagation Tear Resistance of plastic film and Thin

Sheeting Reference No. D1922-1993. American Society for Testing and Materials.

Berry, B.W. and Leddy, K.F. 1984. Effects of fat level and cooking method on sensory and

textural properties of ground beef patties. Journal of Food Science 49:870-876.

Blumenthal, M.M. 1997. How food packaging affects food flavor. Food Technology. 51(l):71-74.

Bourne, M.C. 1978. Texture profile analysis. Food Technology 32(7):62-66. 29

Brewer, M.S., Field, R.A., Ray, B. And Wu, S. 1994. Carbon monoxide effects on color and

microbial counts of vacuum-packaged fresh beef steaks in refrigerated storage. Journal of

Food Quality 77:231-244.

Brody, A.L. 1996. Integrating aseptic and modified atmosphere packaging to fulfill a vision of

tomorrow. Food Technology 50(4):56-66.

Desrosier, N.W. 1970. The Technology of Food Preservation. AVI Publishing CO., Inc. Westport,

Connecticut.

DiLielo, L.R. 1982. Methods in food and dairy microbiology. AVI Publishing Co., Inc., Westport,

Connecticut.

Enfors, S.O., Molin, G. and Ternstorm, A. 1979. Effect of packaging carbon dioxide, nitrogen or

air on the microbial flora stored at 4°C. Journal of Applied Bacteriology 47:197-208.

Gill, CO. and Harrison, J.C.L. 1989. The storage life of chilled pork packaged under carbon

dioxide. Meat Science 26:313-324.

Hanlon, J.F. 1984. Handbook of packaging engineering. McGraw-Hill Co., Inc. New York.

Ho, C.P., Huffman, D.L., Bradford, D.D., Egbert, W.R., Mike], W.B. and Jones, W.R. 1995.

Storage stability of vacuum packaged frozen pork sausage containing soy protein

concentrate, Carageenan or antioxidants. Journal of Food Science 70(2):257-261.

Jeremiah, L.E. and Greer, G.G. 1982. Color and discoloration standards for retail beef and veal.

Agricultural Canada Bulletin.

Kraft, A.A. 1986. Meat microbiology. In: Muscle of Food. P.J. Betchel (ed.). Academic Press Inc.,

New York, p. 239.

Lacroix, M. 1995. Antioxidant properties of natural substances in irradiated fresh poultry.

FAO/IAEA.

Lambden, A.E., Chadwick, D. and Gill, CO. 1985. Technical note: Oxygen permeability at sub-

zero temperatures of plastic films used for vacuum packaging of meat. Journal of Food

Technology 20:781-783.

Lawrie, R.A. 1983. Meat Science 3rd Edition. Pergamon Press, USA.

Lynch, N.M., Kastner, C.L., Caul, J.F. and Kroft, D.H. 1986. Flavor profiles of vacuum

packaged and poly vinyl chloride packaged ground beef: a comparison of cooked flavor

changes occurring during product display. Journal of Food Science 51:258-262, 267. 30

Maneesin, P. 1995. Product-package compatibility of sliced ham: Effects on product quality and

film properties. Unpublished AIT thesis No. AE-95-10. Bangkok Thailand.

Matulis, R.J., McKeith, F.K. and Brewer, M.S. 1994. Physical and sensory characteristics of

commercially available frankfurters. Journal of Food Quality. 77:263-271.

Molins, R.A., Manu-Tawiah, W., Amman, L.L., Sebranek, J.G. 1991. Extending the color

stability and shelf life of fresh meat. Food Technology 45(5):94-102.

Newton, K.G. And Rigg, W.J., 1979. Effect of vacuum packaging and film permeability on

storage life of meat. Journal of Applied Bacteriology 47: 433-437.

Noochpramul, K. And Loaharanu, P. 1974. Elimination of Salmonella from fermented pork by

gamma irradiation. Office of Atomic Energy Office, Bangkok, Thailand.

Pszczola, D.E. 1995. Packaging takes an active approach. Food Technology 49(8): 104.

Rigg, W.J. 1979. Measurement of the permeability of chilled meat packaging film under

conditions of high humidity. Journal of Food Technology 14:149-155.

Rosset, R. 1982. Chilling, Freezing and Thawing. In: Meat Microbiology. M.H. Brown, ed.

Applied Science Publishers, Ltd., London.

Rousset, S. And Renerre, M. 1991. Effect of CO2 or vacuum packaging on normal and high pH

meat shelf life. International Journal of Food Science and Technology 26:641-652.

Seideman, S.C., Smith, G.C., Carpenter, Z.L., Dutsen, T.R., Dill, C.W. 1979. Modified gas

atmosphere and changes in beef during storage. Journal of Food Science. 44.1036-1040.

Thayer, D.W. Boyd, G. and Huhtanen, C.N. 1995. Effects of Ionizing radiation and anaerobic

refrigerated storage on indigenous microflora, Salmonella, and Clostridium botulinum

Types A and B in vacuum-canned mechanically deboned.chicken meat. Journal of Food

Protection. 58(7):752-757.

Young, L.L., Reviere, R.D. and Cole, A.B. 1988. Fresh red meat: a place to apply modified

atmosphere. Food Technology 42(9):65-55, 68-69. TH9900006 31 TH9900006

fl iflicy lias Inino jj i nniii 10900 5795230 Tniim 5613013

2 nas 3 nTmrna

m590f115lfl'tfV(

2 uas 3 nlainio

1-2 ims; 1-3 log cycles mjjaimj T^IEI^BIUQVI Lactobaciiius spp. fmmufifhJfinaj 2 nlam5w tnuiTtiiiiaitiivo Escherichia con tins Staphylococcus aureus ^So^ji^MJJfl wn«lliwuilo Salmonella spp. fin TBA number •UQJUOT'llJflmtlfJ^llJatTuJ^lWU^ t^ pH

• y • J^'^HnTJ

ai'Nfri30' 32

Effect of Gamma Radiation on Quality Changes of

Fresh Ground Beef

Saovapong Charoen and Kovit Nouchpramool

Biological Science Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

Tel.5795230 Fax.5613013

ABSTRACT

The effects of gamma irradiation at doses of 2 and 3 kGy on bacteriological, chemical and sensory quality of fresh ground beef were investigated and compared with non- irradiated controls. Changes in bacterial counts, pH, lipid oxidation (TBA number) and sensory

o quality of those samples were determined on the next day after irradiation and storage at 3 C.

The results indicated that irradiation at 2 and 3 kGy reduced total aerobic bacteria counts by 1-2 U3£ 1-3 log cycles, respectively. Lactobacillus spp. was also decreased significantly. Irradiation at 2 kGy eliminated Escherichia coli and Staphylococcus aureus.

Salmonella spp. was not detected in both non-irradiated and irradiated samples. TBA number of irradiated fresh ground beef ball was significantly increased whereas pH values tended to be decreased.

The sensory test showed that color and odour scores of fresh irradiated samples and colour, odour, flavour and texture of fried irradiated samples were not significantly changed from those of non-irradiated controls and were accepted by the panelists. Dosage at 2 kGy appeared to be sufficient for improvement of bacterial quality of fresh ground beef. 33

unvn

usnnifii u

m0

motJ fi.fr. 1993 V m E. con O157:H7 ( Mermelstein, 1993 )

109 staphyiococcus aureus

entrotoxin

2424)

( Clavero et al., 1981; Fu et al.,

1995; Thayer et al. 1985 )

1'U9njJil?s;mffn 103 ( vi.fr. 2529 ) aM iJvi In trnwn

3-8

y 34

y 2.1 h

500 s 300 nfu Gamma Cell 220 2 nat 3 nla 3 0

n 39

2.2

coliform, Escherichia coli, Lactobacillus spp.,Staphylococcus aureus ilftZ Salmonella spp.m5WT1fll*151/9^ Speck (1976) y i y fmiiun?9 Mesophiles yhlufjjfnUfjUgaiVtfmvi 37 °

17 "^ Pseudomonas spp. VI'l'tatJmJfl'linijTflTflllDm'llJ P1A agar M^'OiniJJJ^ 90JMfjW 20 ""S 2.3 fniw^ifliinnsvfvn-JifiS •vhfmilfmSVnJnnflJ Thiobarbituric acid l«al^lB«U9^ Vyncke (1975) UftSlVlfh pH AOAC (1984)

2.4

10 nvi UQi' nan 4 uivi 9 -6 =

5 =

4-1 = ANOVA Larmond (1977) 35

0T'']

i.3Oxio - 3.00x10 vifefifhmamYhmj i.i9xio7 ifiTauwenfu Psychrotropes fillfinfUWinrmUllflYHitJ Mesophiles ijJinu 1 log cycle 1-2 log cycles 6.6Oxio4- 2.ooxio6 Tfilauwentij wfeSfhmamvhnii 6.2ixio5 2-3 log cycles i.2Oxio - i.ioxio Iniafiwonfjj MfoSfiimamyiinu 2.5ixio iJlJJIQJ Lactobacillus spp. ims Pseudomonas spp. 'lumO'JQfrflllflijJQIof^ Sfil 3.50x10 ims; 8.i4xio4 Tfi1ayfi0nf3J?njjai«iiJ mimt/f-jtiJfjJiQi 2 uas 3 Lactobacillus spp. 3f(fl-3 3 U9S 4 log cycles Pseudomonas spp. fl^lfl^ 3 log cycles

y 2 nlmfntmUJI^CIYhinmTta Escherichia coli UBS Staphylococcus aureus 1«M3J« 3 nlmniWtnwiTtiiiisnoi^O Coliforms, Escherichia coli , Staphylococcus aureus Pseudomonas spp. 1^MW« Wam7W5'3flW')0t)i-J11>3mtlimj;ljJ«l«?'^^fl1U'3l4 39 y ^ Salmonella spp.

lJ^ 1 im^-JHUIIO-lf^SunjJin^fiwOflT TBA number lias pH y y f^ 2 llfis; 3 nTaiflSO >iilMfl1 TBA number VQAlUQIlftft'UftqM

*H as pH

TBA number uas pH U8>jm0T'itf«iJfiuwnw'i

nnu • - ^ " 36

uB^ inii i.i9xio7 Ifilaueianni tf-iiflufl Tiwari ims Maxcy (1971)

U.S. FDA (1984) imsi3T3iiuoff«fniS^aT4yi1tn»Jinu 2xio - 5xio iit (2524) 5 2.5xio5 -

2 nimnifj ffnui^onfifliUQVjiiijfi^i'fomMUPifi-jl^' 1-2 log cycles liasiliifntJlVO Staphylococcus aureus ims Escherichia coli iflMJJW iTiyi^S Salmonella spp. lU4miflllJWUTfaluni8«14fl1uf^Uas1wniwf^ mi«nt)^^it)il?jjiaj 2 nlainiw fniJi5Cia«il?uim Lactobatiiius spp. uas Pscudomonas spp. 1(30-5 3 log cycles l^fJIOilM Pscudomonas spp. v v 2 "tfCfifl i48nflinfls;3waw'0mim'ii^E)U8^m8JT?iuf8 fnn u^

( Stuzt et al., 1991 UBS ^miau, 2537 ) fli TBA number malonaldehyde waiiiWUflBivm miflifjf-J^'MllKfil TBA number 5u 2 nas 3 V m0T'3 ( ivmiHAfi , 2539 ) imSJWawnQl'nmO^'w'lOU'n ( Luchsinger et al., 1996 ) •n^fiBiflmB-iflinB^jjaBfnf^snnmiRitJ^^iJfuiQJsf-jn-iiSiJinn'ii rhlwilgfmn

V 8 a n ii eiru m a >31 m w vi fN 37

Sfh TBA number fY-1 1.6 - 2.5 SfianiJJ malonaldehyde snOfTUlflfjJ

tfvi n-3imifii TBA number

n 1.0 1!KJlll^4^lJ^H5JJVIU'i^m0^K-Jlll^4?S^lJ^H5JJVIU'i^m0'^'^«lllIw2naui^^' J ( Mattison, 1986 ) UW

Sudarmadji Ufi^Urbain (1972) TIO-JIUQI ll?JJ1Qif^^ 2.5

• ( threshold ) ^w

3

mo

1-2 log cycles

Escherichia coli Uf\Z Staphylococcus aureus Ifi i

mapping lias; process control Wl?fJ'U

1. 9?tn "tfiniTUYlT (2524)

2. fnsmUfiflB'lifQiff'lJ (2529) iJlSJfnfffl^syin^tnBIIfUijUfllJlJ^ 103 (W.tf. 2529)

3. iJien i\)amfT5wT s (2524(2524)

4. i?n5tuj mqjfosflisfja (2537)

}J H TJ Yl tn 3 tJflN II3 "114 fl?Um 5. ifmvufl isifcy uas Irmio ^uihzya (2539)

6. A.O.A.C. (1984) Official Methods of Analysis. 14th ed., The Association of Official

Analytical Chemist, Virginia. U.S.A.

7. Clavero, M.C., et al. (1994) Appl. Enviro. Microbiol. Vol.60, p. 2069-2075.

th 8. FDA (1984) Bacteriological Analysical Manual for Foods 6 ed., Food and Drug

Administration. Bareau of Food Division of Microbiology, Washington D.C. .

9. Fu, A-H., et al. (1995) J. of Fd. Sci. Vol.60 No.5, p. 972-977.

10. Larmond, E. (1977) Laboratory Methods for Sensory Evaluation of Foods, Publication

1637. Canada Department of Agriculture, Canada.

11. Luchsinger, S.E., et al. (1996) J. of Fd. Sci. Vol. 61 No. 5, p.1000-1005.

12. Mattison, M.L., et.al. (1986) J.of Fd.Sci. Vol.51 No.2 , p. 284-287.

13. Mermelstein, N.H. (1993) Food Technology Vol.47 No.4, p. 90-91.

14. Speck, M.L. (1976) Compendium of Methods for the Microbiological Examination of

Foods American Public Health Association, Inc., U.S.A. .

15. Stuzt, H.K., et al. (1991) J.of Fd.Sci. Vol.56 No.5 , p. 1147-1153.

16. Sudarmadji, S. and W.M. Urbain. (1972) J.of Fd.Sci. Vol.37 , p. 671-672.

17. Thayer, D.W., et al. (1986) J.of Fd.Sci. Vol.60 No.l , p. 63-67.

18. Tiwari, N.P. and R.B. Maxcy. (1971) J. of Fd. Sci. Vol. 36 , p.833-834.

19. Vyncke, W. (1975) Feete Scifcn Antrichm Vol. 77 No. 6, p. 239-240. 39

inmihio 1Ifjnuifrt! (nlmnio] 0 2 3

Mesophiles 1.30xl06-3.00xl07 6.60x104-2.00xl06 1.20xl03-1.10xl06 ( 1.19xlO7) ( 6.21xlO5 ) (2.51xlO5)

Psychrophiles 7.40x106-4.90xl08 5.40x104-2.00xl06 5.40x103-3.50xl05 ( 1.29xl08) ( 6.55x105 ) ( 2.34x105 )

i Lactobacillus spp. 1.30xl04-1.40xl0? <10- 1.70xl04 <10 - 3.60x10 (3.50xl06) ( 3.83x10*) (7.21X101 ) 1 Pseudomonas spp. 5.80xl03-6.50xl05 10-2.50xl02

(8.14xlO4) (40) (<10) Coliforms 1.10xl04->2.4xl05 <0.3 - 0.9 <0.3 E. coli 7.0x102-4.6xl04 <0.3 <0.3

2 4 Staphyloccus aureus 3.0- l.lxlO <0.3 <0.3 Salmonella spp. Not Detected Not Detected Not Detected

CFU/g 13 MPN/g 40

TBA number (wn.

malonaldehyde/ nn.) I TBA number pH

pH

44 ii Tiijjgiefn TBA number uas; pH

TBA number nas pH ( P > 0.05 )

* iHuiw^JI (fHmnw)

0 2 3 t? mail) 6.73 6.82 6.89 7.25 7.22 7.29

nluj msflu 6.15 6.05 6.01 meqn 7.20 7.10 7.21 7.15 7.13 7.40

dl or a/ 4 7.19 7.11 7.19

10 10

( P > 0.05 ) 41 TH9900007 TH9900007

15N mnun

i mwua fninmfmirmm S\^WJ nnu. 10900 In?.5794114

USWiVU DTSEJl-SQI

hi - nimn

'5N isotope dilution technique

- 15 im-jirnviilgnpnu lu'Hu^^Smi^iinaiiimsiijffunaii^inrim^^^S 15N mivififi0-3viu'inoimao-3(?if^1'ulpmiou

36.72% 1)0-31'ul^ilDul'U'Un M10 8.1 niflflfu N/l? Oll'HflOa («

12% luilmnims; 27% lutlvmo-a "K^

8, 16 ims 24 ninnfu N mM milfrijo ^jilo O^ITT 8 nlanfuiuiw^mj/l? nunu

14-29% 42

N-Fixation of Soybean and Residual Effect from N-Fixation of Soybean to Rice Yield in Rice-Soybean Cropping System Using N-15 Technique.

Chitima Yathaputanon, Pornpimol Chaiwannakupt,

Jariya Prasartsrisuparb and Thienchai Arayangul

Nuclear Research in Agriculture Group, Agricultural Chemistry Division, Department of Agriculture,

Chatuchak, Bangkok 10900.

ABSTRACT

A field experiment was conducted for long term rice-soybean cropping system at

Chiangmai Field Crop Research Center, to estimate nitrogen fixation of soybean and residual benefit of the soybean stover to a following rice crop. Nitrogen fixation was extimated in the soybean using N dilution technique and non nodulated groundnut as a standard crop. To estimate the residual nitrogen benefit to the rice crop was calculated by nitrogen-15 yield of rice where the soybean stover was either removed or returned. In the first year soybean fixed 48.42% of their nitrogen which producing 50.31 KgN/ha. Residual effect of soybean stover returned was

36.72% of nitrogen in rice which equal 50.62 KgN/ha come from the soybean returned (stover plus root and nodule under the ground where the soybean stover was returned). The residual nitrogen-15 in the second year was too low to detect. No nitrogen fertilizer applied to the following rice plot where the soybean stover was returned, grain dry matter yield were up to 12%

(Is year) and 27% (2" year) grater than in the plots where the soybean stover was removed.

These benefits were comparable with applications of 50, 100 and 150 kgN/ha nitrogen in the form of urea. 50 kgN/ha urea applied to the following rice plot where the soybean stover was returned produce the highest grain dry matter yield which were higher 14-29% than the plots where the soybean stover was removed. 43

50

jf IJV (De et al.,1983; Nambiar et al., 1982; Giri and De,1979) lU0^infl1flfn?wl-3luTnilflU«in0imftW1TJinvn^^uyi1«1^ ^ ririlM Eaglesham et al. (1982)

1u nn

u tnuiia

3J 60

flD.6

U1 90

1ul?11l1O'U-15 5% atom excess

condenser UfJS spray trap mfilV stainless steel 15N International Fertilizer Development center 44

I5N/14N Kmio-NflioufliotJ-nfln LEYBOLD -

HERAEUS CM 330 UflSlflf O-nfl Emission Spectrometer W11 JASCO N-150

S Texture tflu Sandy Loam pH=6 OM=0.63% P=112ppm K=72ppm

S=20ppm CEC=5.18meg/100fl1W Sand=58% Silt=26% Clay=16%

2 ilnn tJas 2 qqma n

V RCB S 4 «5i

l iJgntnmMn -WIJ^I^O^IVIJJ 60

2 3 iJgniinlvifl mi^mulMii 90 4 ilfJoowr

Split -Split plot in RCB U 4

Main plot:

fl11UQ5Yl 1

2

3

4 Sub plot : iJuluinilflU 4 fminiiYi l Irfijw o nlaniN luimmj / \i 2ief^t) 8 nlanfii "hjlprnflu/ii 3 Imjtj 16 nltinfu liiiwmu / TJ

4 IH^w 24 nlnnfu IUIWIIBU /1?

Sub - sub plot:

a"" 1

2 45

N-15 8u. x ION. mJa^ieiiflviiJS'U'uiPi 2u. x 2u. 50 «K1J. lllui^ qgmavi l

y t 20CKJJ. isvnuum 20 im. uasilaotrmjYn'uiiJm

45% P2O5 s«n 9.6 nn. p2o5 60% KjO O^TI 6.4 nn. Kp Well tTQVJ^IuT^ilflUiTTHflJUlJfl^wnwH^liY^tJJJlit) 46% N 3.2 nn.N noli imsiiiila^iol'Klviillif^fj 5% at. ex. N-15 jjilo 8?)7i 3.2 nn.N.

4 ffiw (sub plot) \j

V 1 j^ pi'n^ffiu'osS^^ 4u. x 5u. 4 isiwu lJ \49nioinSluuplas!tfii4 (sub plot) uii-j'wvi^geniilu 2 muvnu (sub-

V 1 sub plot) 1fimiila™?iwafl'os5miYi'U9-a 1 fTTudoo iviinii 2w. x SJJ. m

nu IJJ. x 2JJ.

45% P2O5

19.2 nn. P2O5 m\i ims1iJiinm5tJiJfifi9li« ewn 9.6 nn.icp w v 46 % N D?)7i 0, 8,16, ims 24 nn. N woli Ifiunii-ilff 2 nf-3 n asiviinu f-j^ 2 amnmen'ne-a iIn«Tunl4f?sos 25 x 25 ^u. (total nitrogen)

H2SO4 WU^lisnuiB Kjeldahl (acid digestion) ^oSinfjillflf) Bremner (1965)

H2 so4 itfjj^^^fuMfjC 150 °c nm 2 "WIIJJ^ uasogamnuwigwiwwtaliJYi^'Hmi 350 iiluntn 2 •ffiIu-3 vh iJiuiifunwiuf^iniastntj^nnvii^i iJfufmui'uij^uuo^ N uaijjTifigwnjTTu 15N/MN Dumas (dry combustion) ^ofuitlllT^KJ Dumas (1834) ims Fieldler llflj; Porksck (1975) flit) Emission Spectrometer (Jusco Model N-150)

i ^ 2536 - BtJQIflJJ 2538 46

2536 - BtmfllJ 2539

flntmsm

(Hvi I n l iJvi l

8.05

(48.42% Ndfa) 5N-Dilution

<9 A a V V

fio 7.90 (47.46%Ndfa) *d \ tv «v w

(tl^ n

36.72 iviinu 8.10 ffiuwfi^fini-3ioifimi3!'Dfifiiic!Bin<8'n1'VNfi 22.13, 19.29 nas 24.97 3.27, 2.43 ims 3.66 d*- <^

15N mat

I5 N

15N 5N 5N

(A!Y\ 2)

5% at.ex. 3.2 nn 15N lumivififie^iJ^ 2

15N (lf\ '5N Emission Spectrometer ims Mass Spectrometer) 47

w il?

0.0701%N w&ifmilgn'fmiviiJYi 2 V

(I)

0.083 I%N R SfiimntJiviinu O.O763%N

i4iMTj

?m VIUQI •monaijTU r V i> i yi (vilJuivmuvn'NiiJai) «w uaslu) rninu 16.68, 8.91, 6.56 ims 8.69

284 minu 357 4.46 nlnnfuiviifiiisivifisli imsntyi 384 97 n1anfuma?i?i9li nai 430, 387 ims 957

mint) 3.18, 4.42 uns 8.63

oimaQ^ •ii•iifniviff i 2)

mm wim

(oimaa-3) fsytyw^ ims (I)

(R) 48

I ivhfhj 20.4-22.9, 4.5-7.9, 1.6 - 1.9 lias 4.7-5.2 J R

v < wawaw (iiTHiInmnw) •uo^rimaQ-jmnnii 292-348

iviinij 202-228 nianfu^ei? if^Silfinaiiwlwiifluminii 2.6-3.2

n ]fitJ'Hfl-3flnn'nmuintnHfiwas?itu9-3iiin1vifi 217-232 nlanfumaflploli 42-52 nlanijjiunfipiQii ufoi^mjfifiiJifminnvhf 296-404,23-28 ims 499-562 nlanfuwei? wSiJ?}jnQj1

^Snamtinyi^iJqn1uqgiu?nuasogini](j N

2 ilvi l

8 ims 16 214 nlafnupieii (•onn 740 iilvi 954 nlnnfuwQii) ims: 147 («in 850 t3"u 997 nlnnfu^iaii) ^iwan^ij imsmalfr^tj 0 ims 24 nlanfu

91 nlnnfuwaii («in 760 nta 851 ieii) uns 77 nianfu^ial? («in 782 ii5vi 858 nlanfueiaii) wuj^i

y » if irns 24 nlanijjlul?m!)i4?ia1i I«oSv3TniTniua«<(jnmjj

i v SfHijfifl#nimjiJU no fUanfyfrn'ta1 Onn 605 nJu 715 nlanfupieii) nas 102

iuwoli («in 748 ILIVJ 850 nlanfueielf) enuaimj

ujeSfmlffiju 8 uas 24 afi'i muiiw 125 nlanijjwoli («in 910 ifl%4 1035 nlanfuwoli) u?is 166 853 iilu 1020 nlnniuwoli) fliuth^u un^molrfijtj 0 ims; 16

api'unmjjnju 120 nlflniupieii (snn 688 iilu 808 nlanfuw'eli) uns 87 nlanfjjpioli (flin 775 i3u 862 nTaniuw'eli) «nwm

24 306 nlaniunoli (snn 710 tilvi 1016 nianfuwQl?) uas 0, 8, 16 lii

w 754 - 854 lias 688 - 774 nlnnfJJWQI? 0, 8, 16 11ns 24 1 uinn^i^n'U0t)^SiTtidiflajvii-3tT^'8s;iiHi4ipi-iiiy0iij'5nnilal^tJtfiS wa gwijjoQma0^^2miui(i(inoinaiifli4giiiJa-3l'Mfii^a;piminij 851 nlanfu

• y t wol? g 808 lias 754 niafiijj^oi? tnuansu 715 nlanfuwsl?

SliJ 8 y

954 50

afl uasvlnffn vi5Hfiimin^yyiiJg]nltiqg]u?nuas8gmi|{j dlvin

t V

2tlvi l

] 8, 16 s 24 nl?ini:')jllul«T5i9

^ 2) 5 U

2 iJ^ 2 m?lifi]tJ89inni-3 n 0, 8, 16 ims; 24

(I-R) ii^npi^nuom^mijl^iw ^iw meltr^w9?in o nas 8 I-R ^iJgnwiuoimaB-jSfi'npf^tjfi (170 ims 89 nisfifupieii) menJiwumouniifii I-R viiJfjn

16 ims 24 nlaniJjl'u'taiiq'uwBi? fin I-R ^iJgn^nwoimliB^Sfinwifjw (82 uz\z 90 51

afl uasvlnffn enn-avi 6 th

l uas:1ffi]{j0flneh-3 ^ ny liinu 2 Uvi 2

0, 8, 16 ufis 24

2)

TJvi 2

u\

•ihi-cchiwae-a VIUTI 48.42% mmvhnii 8.05 vmri 36.72% 8.10

90 nianfii/iil'uiluin 170 8, 16 aas; 24 TumnJanim

214 nlamjj/b'Tutluin lias 89 n

IJT3 - rQma nai 52

V

Bremner, J.M. 1965. Total nitrogen, pp. 1149 - 1236. IN Method of Soil Analysis, Part II : Chemical and Microbiological Properties. Amer. Soc. Agron. 9 : 1149 - 1236. Dumas, J. 1834. Elemental analysis of organic substances. J. Pham. Chem. 20 : 129 - 156. De R., Yogeswara Y. and Ali W. 1983. Grain and fodder legumes as proceeding crops affecting the yield and Neconomy of rice. J.Agric.Sci.,Cambridge 101, 463-466. Eaglesham A. R. J., Ayanaba A., Ranga Rao V and Eskew D. L. 1982. Mineral N effect on cowpea and soybean crops in a Nigerian Soil. II, Amounts of N fixed and accrual to the soil. Plant and Soil 68, 183-192. Fieldler, R. and G. Proksch. 1975. The determination of nitrogen - 15 by emission and mass spectrometry in biochemical analysis. Anal. Chem. Acta. 78 : 1 - 62. Giri, G. and De R. 1979. Effect of proceeding grain legumes on dryland pearl millet in N.W. India.Exptl.Agric. 15, 169 - 172. Nambiar, P. C. T., Rao M. R., Reddy, M. S., Floyd, C, Dart, P. J. and Willey, R. W. 1982. Nitrogen fixation by groundnut {Arachis hypogaea) in intercropped and rotational systems. In BNF Technology for Tropical Agriculture, Eds. P II Graham and S C Harris, pp 647- 652. CIAT, Cali, Columbia. 1 ilfuifu N fmeif-a N2 mnginiff uas

Pimm N (n.n.N/W) mieif ^ N2 WciflfWN'D'li jeigunviiJgm'nu

wvq^vi 1 %Ndfa n.n.N/h" N ma?) + Y\ lu (n.n.N/1i)

I R I-R n.n.N/b' thmao* 4.5 b 16.7 a 48.42 8.05 17.54 a 14.54 a 3.00* 36.72 8.10 3.3 b 8.9 b - - 16.07 a 13.36 a 2.71 ns 22.13 3.27 ffomnfljiflf3 N2 4.4 b 6.6 c - - 12.49 a 10.09 a 2.40 ns 19.29 2.43 vim 8.7 a 8.7 b - - 15.39 a 12.80 a 2.59 ns 24.97 3.66

% C.v. 38.6 26.7 - - (a) 26.9 - -

(b) 17.0

if! a/ 95% %Ndfa = %Nitrogen derived from air

I = incorporate

R = Remove

I - R = Hfipi'Nisffi'Nwawapi N CO 54

) iffwinfvwiwimjnau (14.14. uaswawaei

N 1)

-3 (n.n./H) mum N (n.n.N/ii)

d fa + ID fftl + llJ mafi + wu + ID

285.4 b 357.4 b 4.5 b 16.7 a

383.6 a 430.0 b 3.3 b 8.9 b

104.2 c 386.9 b 4.4 b 6.6 c

w - 957.0 a 8.63 a 8.7 b

% C.V. 33.0 30.5 38.6 26.7

95 % 55

3 mum (MM.mm) ifluinnvhmmjnaiJ (u.u.wuuasiTu) ims

iiBUDQ^uaPi flu imslu) N2 m (ilvi 2) Mawnilvi l n"mvi l Irrijogiitj efanriu °) iwviTiinnje^qfjfna^ 2

•VYTjqftmfiYI 1 ihvmmm^ (n.n.Ai) (n.n.Ai) ftj+lu 111 i R I-R I I I R I-R

N = 0 309 b 292 b 16.3 ns 202 a 3.20 a 20.4 b 20.2 ab 0.2 ns = 8 292 b 289 b 3.1ns 228 a 3.17a 20.8 ab 19.0 b 1.7 ns = 16 315 339 a -24.1 ns 216 a 2.72 a 21.7 ab 22.2 a -0.5 ns = 24 ab 302 b 45.5 •* 204 a 2.62 a 22.9 a 18.6 b 4.3** "Srnivifl 348 a N =0 207 a 9.8 ns 296 c 1.85 a 4.5 b 3.7 a 0.8 ns = 8 217 a 188 a 39.8 ** 330 be 2.12a 6.1 ab 3.1a 2.3 ns = 16 228 a 198 a 29.5* 373 ab 2.10a 6.7 ab 4.1a 2.6* = 24 228 a 208 a 23.4 ns 404 a 2.72 a 7.9 a 4.0 a 3.9** 232 a N =0 37 a 4.7 ns 23 a 0.25 a 1.6 a 1.1 a 0.4 ns = 8 42 a 51a 0.3 ns 26 a 0.27 a 1.9 a 1.4 a 0.1 ns = 16 52 a 37 a 13.2 ns 28 a 0.27 a 1.9 a 1.5 a 0.4 ns = 24 50 a 52 a -5.7 ns 26 a 0.22 a 1.9 a 1.9 a -0.0 ns V 46 a N =0 - - 531 a 4.70 a 4.7 a 3.8 a 1.0 ns = 8 - - - 562 a 5.20 a 5.2 a 2.6 a 2.6* = 16 - - - 499 a 4.70 a 4.7 a 3.5 a 1.3 ns = 24 • 500 a 5.10a 5.1a 3.1a 2.1 ns

95% I = In) R= v I - R = 56

l uaseVmijti N ii N/mqgvi l wawantfn (nn./b')ilYi l I R f^R I R

S 850.8 a 759.8 a 91.0 ns 794.5 a 624.0 a 170.5** M 808.3 a 688.0 a 120.3 ns 764.0 a 671.3 a 92.8** G 715.8 a 605.5 a 110.3 ns 760.5 a 662.3 a 98.3** F 754.5 a 688.0 a 66.5 ns 792.8 a 655.5 a 137.3** j = 8 S 954.3 a 740.5 a 213.8** 753.3 a 663.8 a 89.5** M 1035.5 a 910.0 a 125.5* 794.0 a 745.8 a 48.2** G 893.0 a 725.8 a 167.3** 707.8 a 630.8 a 77.0** F 850.8 a 770.8 a 80.0 ns 730.8 a 657.3 a 73.5** = 16 S 997.0 a 849.8 a 147.3 * 762.8 a 680.8 a 82.0 ** M 862.3 a 774.8 a 87.5 ns 790.8 a 683.5 a 107.3 ** G 850.5 a 748.3 a 102.3 ns 836.8 a 687.3 a 149.5 ** F 854.5 a 774.5 a 80.0 ns 769.5 a 651.8 a 117.8** = 24 S 858.5 a 781.8 a 76.8 ns 736.5 a 646.3 a 90.3** M 1020.0 a 853.5 a 166.5* 833.0 a 720.5 a 112.5** G 870.0 a 737.0 a 133.0* 762.8 a 642.8 a 120.0** F 1016.3 a 710.5 a 305.8** 760.8 a 646.0 a 114.8**

s = oimne-3 M = F = •mniTui'iJfh I = tnjrmuinfvmf R =

I-R = uQGft,M,uuioin = >i rmuruj = i lupt-iximM, = i = s

•* 8I9T •«39fr> E£S8'£l «£l£-8I * 81S'£ «806>I «SJf8I O • * S9fS B£6I"Sl «8S£03 •* Z.06S B 09691 B 89833 JM su 595-3 EgSfZ.! B £3Z."6I S PZ = fr B£66£I Be£S'8l suoiS'Z B £^>l «£8691 J i o

§09'£ B8H--9l B£S0'03 ** 0££> BS8£'SI «SU"6l S

91 = QJtL£WQ B099"3I ^ 8£SST su 8WI B88£"5I E S£67.I J BOWII «0£Z."W • SSre «S36TI B08T9l O B080>I ^05^81 * SOZ.'£ B SOS'SI B0I3"6I JM 'Z B0£0"9I ee66'8t su £6£T «8IS"9I 8 0I6"8l S 8 = • * S6I'fr B00/.£I BS68Z.I su^s-2 B 00871 B88£'5l d I *u L6?Z B S600I B£6^I O

B8l8£I e00S"8I • 000'£

Z W[l (£|yN"UU) N WgMBM I U^t^/N'UU) N WBMUM I U&bftW/ ^u N fi[jL£WQsaii t uS

Z,9 TH9900008 58 TH9900008

V V A.niger

uasonwum mjfiini

nnui 10900 5795230 fie 552 5620118

meJi

uv fl0 15 U1Y1 llQlJi^^WI

(control)

95 97 isolates fl9 isolate 2-19 "K 2 mi

Increased Citric Acid Production of A.niger by Ultraviolet Irradiation

Orawan Suksudej and Chanin Phangarakrachadet

Biological Scinece Division, Office of Atomic Energy tor Peace, Chatuchak, Bongkok 10900

ABSTRACT

These studied aimed to select the optimum time of UV-irradiation for mutation of A.niger . Citric acid producing ability of isolates were tested in order to screen mutant. It was found that the survival less than rl % was obtained from UV-irradiation for 15 mins. From the screening of citric acid producing ability, 97 isolates were shown the percentage of citric acid significantly higher than control at 5 % level. The highest amount of citric acid from isolate coded 2-19 was 2 time higher

than control. 59

UYIWI

(mutation) genotype tYiimcivi0m)ijmiiiJamjuiJf^in#1ms:mjTijmq?i uasiilmf mivm-avavii hv flsenn

Hiroi nas fl«US(1979) Monascus anka pigment mumu 4-7 ivii

Aspergillus niger

70 s; 12 18 Aspergillus niger u

1. fniumj 470

2. i 2.1 m?Qlfins;'HVn-3(5a\4Vi1ol^lllfi Plate, Micropipette imsTip, Loop, giJUtfg (Incubator), Iflfg^uulfllau, Haemacytometer, Hot Plate, Laminar Air Flow, Autoclave, Microwave, pH meter 60

2.2 fnnmnsjviyn^ifiD miin 3. OivnilfitHWO l#Ufi Potato dextrose agar 4. fliimS l&iri Iwauijlafliofl W(NaOH), demvta (KH2PO4),lL0JjlumWJjluifl?Vl (NH4NO3),Phenoptalene 5. O^mfUYil'iH'UfmibsimflWa I&lfi Lflfo^illlfliflOJJ'H'JlflOI.Ilbufnim-Ui^ll Window UBS

SAS

l. SmnrjtnYiminsfljjlufmfnuftfl uv U1W0 A.niger VM PDA slant Vimvil spore suspension I«Ul?fJ spore 110-3 A.niger 1JU PDA slant fl-alu 0.05 % tween 80 ll^lJiilJfliO^^tJWinmiJn^^'dni^Oll^ Via-J^nfi^lJitTQlJ^fiiB-J 1^rill

0,3,6,9,12,15,18,21,24,27,30 uifl UIIIJTJJJ^ 30° c iilunai 2 TU

A.niger WVimnmViiWUTi \if)imi'\ 1 (fllUlluO-3 Alexander HflS Detroy, 1980)

2. ihlifO A.niger MM PDA slant JJIl^itiU spore suspensionlfltJliJtJ spore 1)04 A.niger MM PDA

slant a^lu 0.05 % tween 80 U#llh1llniO-3#™H11)"nU"Uvi

fl^^4^^4 spore \

PDA slant

3.

3.1 spore suspension lflm?tJ spore 0.05 % tween 80 \i\ih\llM spore Iflf/Hf haemacytometer Itfi^ lO'spore/ml.llllJflJJI 10 ml. lHjJ1fl5 50 ml. "hi flask Uinfl 250 ml. lUthvi 170 rpm lllvintn 7 TOI

3.2 v v < 5 ml Imulu flask uinf) 50 ml.iwjj^inaviis ml. phenoptaiine 2-3 Myfi ui!iJ1?ii?iivinii NaOH o.i N v t if v

U (mutant) Otii-3SiJtJ^1flqJYn-3?rQ^1S;^lJfmJJlff]3J\jf0fJf1ff]3J\ S 95

UV IOT A.niger ^UfYfuivi Table ^ 1 VdJ-31 ne 15 ui^ mowinvinin'l'UfmQ'itjf^ uv 15 i 10tJ£1£ 1 Alexander Ht\t Detroy (1980)

Table 1 A. niger counts at various time of irradiated Irradiated time (min) Number of colony** 0 ; 10x10*

3 33xl05 i

6 5 I 30xl0 | 9 23xl05

12 12xl05

15* 1 93x104 18 1 74x104 21 53xl04

24 47xlO4

27 31xlO4

30 18xlO4 ** Mean values from two experimental • of A.niger less than 1% Time that survival 62

2. V 13 ^0 ITHffliuivi 242 isolate A-x (nu 24 n^u)

Table 2

D fl0 isolate 2-19

Table 2 The lowest and highest amount of citric acid produced from UV treated A.niger compared

with control in different experimental group

Group % citric acid

Control Lowest prodproducini g ability isolate Highest producing ability isolate A 153b 1.05c 2.09' B 0.41' 0.34' 1.441 C 1.02' 0.50' 1.37" D 1.32' 0.74' 3.33'" E 0.83' 0.54c 1.19' F 1.16' 0.64c 1.83* G 1.05' 0.44" 2.04* H 1.46* 0.41' 1.97" I 0.74" 0.63' 2.24" J 1.50' 0.82' 2.08* K 1.57' 0.43' 1.81" 1 L 1.27' 0.71' 2.11 M 1.52' 0.62° 1.87* N 1.42' 0.76' 2.42* O 1.34' 0.40' 1.50* P 1.27' 0.37' 2.04* Q 0.96' 0.39' 1.51" R 1.17' 0.41' 1.49a S 1.20' 0.78' 2.03* T 1.16' 0.52' 1.65' U 0.98' 0.62' 1.08" 1.50" V 1.07' 0.59' 2.07* W 1.57' 0.90' 2.33' X 1.03' 0.36' Means followed by the same exponent letter in one group are not significantly different at the 5% level Highest producing ability isolate is D 2-19 63

l. A. niger mi nu

15 M1Y\

i V 2. fmmmbsmi5fi"mm) A. niger 242 isolates 3.

(control) 95 97 isolates uatisoiate 2-19 2m'n

2534.

. 2526. ^ f, ^m'Mi. 288vi. Alexander, N.J. and R.W. Detroy. 1980. Mitochondrial mutation for clcohol production. Biotechnol. Lett. 5:165-168. Hiroi, T., T. Shima and N. Ogasanara. 1979. Hyperpigment-productive mutant of Monascus anka for solid culture. Agr. Biol. Chem. 43(9):1975-1976 64 &°©

(Plutella xylostella L.)

j nviui 10900

5795230 W8 571

16-47 VuasfniJJihjmj'miis' 22-96 %) VIUQI

4 3.21±0.30, 5.57±0.60, 3.16±1.07, 3.43±0.97, 3.88±1.59, 17.72±2.74 ttftZ 16.16±3.93 lli W1JJ 13-31 QU ^tSoifun-jliJmQsiyifi' l iwims

17-248 vlo-jmao 109±77.60 vlo-a 4iimqvvvf)Af)$u (TC)

< = 23.45 5t4 0Pi5imi uoit)'wi4^tjvi5 (Ro) = 25 unsoRSimimu^iiinDi^ (k)= 1.15

mat) 3.33 fif-a

55.89 % 0wnm?9nog-3tjPi'wiiluis:t)SHU0i4Tioiuns;2 (64.37%) im (49.64 ims 46.38 %) Ill llll llIM II™ U™ " TH9900009 65 TH9900009

Studies on Biology and Ecology of the Diamondback Moth

(Plutella xylostella L.)

Wanitch Limohpasmanee, Pravait Kaewchoung, and Ajaya Malakrong

Biological Science Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

Tel 5795230 Ext. 571

ABSTRACT

The diamondback moths, Plutella xylostella L. were reared with cabbage leaves under field condition at Khao Khor Highland Agricultural Research Station (16-47 °C, 22-96 % R.H.). st nd re! th The average duration of the egg, larval (1 and 2 instar, 3 instarand4 instar), pupal and male and female adult stages were 3.21±0.30, 5.57±O.60,3.16±1.07, 3.43+0.97, 3.88±1.59, 17.72±2.74 and 16.16±3.93 days respectively. Female laid eggs at 1 day old and the highest number of eggs nd were counted in the 2 day of the oviposition period. The number of eggs laid per female averaged 109+77.60 eggs, ranging from 17 to 248 eggs. The life cycle from egg to adult stage was 13-31 days. The population parameters were the cohort generation time (Tc)= 23.45 days, the net reproductive rate (Ro)= 25 and the finite rate of increase (A)=1.15 time per day respectively. Studies on reproductive system of this insect showed that the developed testes were th found in the 4 instar larva while developed ovaries were found after emergence. Male mated many times (average 3.33 times) while almost female mated only once (92 %). The ecological life table of this insect was studied in the cabbage field at the Khao Khor Highland Agricultural Research Station . The eggs hatch was 55.89 % and the highest mortality st nd occurred in the 1 and 2 instar larval period (64.37%). The disease and parasites caused the high mortality in the 4 larval and pupal period (49.64 and 46.38 %) 66

unui

(The diamondback moth, Plutella xylostella L.)

(cosmopolitan species)

(F-i sterili

l.

2.

3.

4. 5. y 6. ^ilnifuKiau^nurn wiu vjnu ijinnu ma fniasamfniluiaifliw 5 % 7.

l.i. il 5 % nas

1.2. 67

1.3. 20x15x10 °»u.

1.4.

1.5. 10 °»u. ^ 15

30 na'o-a

2.

2.1.

2.2. 1-2 TIVI

2.3. 10

2 ^T m 3 10 ndo-j

corpus bursae lias spermathecal

gland Yjfnu 2.4. •un(nii^3j'3fj^m-399njJimti-3iwna10-3vimtTiniDvnf)i^'uwiffuyntn-3 loifij.m

10 10 «i ^'0030-3

spermatophore 3,6,9,12 imsi5 io V wi vh 3 ^i

3.

3.2. vn

3.3.

ismmfl'uo-jfmmBuo^flnu^

3.4. 68

l.

l) v

n-amvmi (Oval) fieuu"Nuuu o.29±o.O2 JJU. tJT3 o.5O±o.O2 uu. 3- 4 TU maw 3.2i±o.3O IU snQmfj\)

id 1 JJ1ll^^-3^lJlJM^40^JNmevn m (Eruciform) 3 fj v\muu 5 n 3,4, 5, 6 uasiJ^e-Jtjwinio vmmjfi 4iu

5fji-2 Knm 5-7 5.57±o.60 3uns; 4 qs 2 vi 10

2- 3.16+1.07 iiuuas; 2-5 iv) mat) 3.43±o.97 IU

1 1-2 Q^ mat) i.ll±0.33 iw Obtect

in

jfl UinfU?il1UflViin0'39i;Svi9'H1t)1fl (spiracle) 5\4O0f11J1lllui]u 6 fj ISItJS

AflUfi 1-9 QVI mat) 3.88±1.59 TU nU1StJS;nai^ll9!i1lU9'UO9nil!vi^l'3l^JJT't) 13-31 QV1 V V .V mj'Haa

3 9U f (diamond mark) mo 69

100

80

60

40

20-I

40 30 4 20 3 10 «J* 0 J\ 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 I 2540

r ( vun u wv ymfi-mv

v d v v *S I 4-21 114 mat) 17.72±2.74 TU uas 2-19 in iflfiu 16.16±3.93 iii QniiffnjmffwflemmiJtj mini) 0.85/1 isusriovn-nlii o-i

109.27+77.60 TVI 70

m^li)iajWljI?mas;fnia{ii9flD0-31HU91jlfJWfl, Plutella xylostella L.

«TOW(ffj) fiiTEl (fa) riiM>8a(fa) wmime.

% 1-2 449 5-7 5.57±0.60 35.63

IV 3 187 2-6 3.16+1.07 94.41

10 4 114 2-5 3.43+0.97 50.88

Will* 201 1-9 3.88±1.59 54.69

«/ d a<

WIN 54 4-21 17.72±2.74

tfimti 47 2-19 16.16±3.93 0.85/1

flTUlVliii/PhuJEJ 1 f\l 30 17-248 109±77.60

V

(innate capacity of increase) : rc= 0.14 ^QinipioT'u un (finite rate of increase) : X = 1.15 ehpisTV! WllStiliUli^liimaoi^i^i 1 2 M^flineeniiluwiilljJTioimsiliJjioiiiiflsa^ii-Jif00^ (iiJ'M 2)

140 ^ 120 -| 100 -^ 80 1 *5 60 3 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(Plutella xylostella L.) 71

«n?ninfl (Piutella xylostella L.)

(Ro) l

OiqenmEJ (114) oVrcifmutnoww^ X K 19 0.0523 - -

20 0.0523 68.1891 3.5663

21 0.0491 72.5187 3.5607

22 0.0476 133.6725 6.3628

23 0.0439 55.7420 2.4471

24 0.0423 70.8951 3.1123

25 0.0423 44.3771 1.8772

26 0.0423 19.4826 0.8241

27 0.0415 9.7413 0.4043

28 0.0407 4.8707 0.1982

29 0.0362 12.4472 0.4506

30 0.0346 13.5296 0.4681

31 0.0306 8.1178 0.2484

32 0.0306 13.5296 0.4140

33 0.0301 11.3649 0.3421

34 0.0214 16.2355 0.3474

35 0.0214 9.2001 0.1969

36 0.0170 10.2825 0.1748

(Ro) = X LXMX = 25 mi

(Tc) = Z (LxMxx)/X LxMx = 23.45 TU

(rc) = ioge (R0/Tt) = 0.14 nmimiu

fTYl f (k) = e*= 1.15 W-JWSTU

2.

10 72

flino (iiJvi 3A) ifmsnQun'Uiilumjifitnfhj iilinmw mwmwao-a j gyluti'affai'vis (scrotum)

i 2 mifl rm eupyrene ibifiatmvmwmjniil'l

VUeupyrene ims apyrene fl^nd'ltj'UJinij'lun^niJtTllJoiiJ (spermatheca) iSfJ ffiaJlJFnt)

seminal vesicle ductus ejaculatorius duplex lllvivio^|lli"l'3lllli^'Q U fb'U'lJ'UflSJJ accessory gland lfj

seminal fluid (fnii^'*iTH141^^tj1\4m?ditJV10PlttnJoilJ) weflifi ductus ejaculatorius duplex viodntlPfllloiU'OSJnjjn'Ulll'Uviot^fJT liofTJI ductus ejaculatorius simplex

accessory gland ITllloiUimstTI'l-a spermatophore) llounu aedeagus

aedeagus flsSWlVJ^^SUtJntJmilJwQniJ ductus bursae U0-3SnilStJ lit)fill vesica

(endophallus) (¥-3^1T'314lJintlflsSanWfUS;ililjqumnffll4nufniWflW«n'lJ ductus bursae lioflli cornili

l\4«ii?iJJTit)mff^ 0Qtns;^i)>N\j^

vesica

^i valvulae

^sojiluiJ^iQ^'no^iJ^iQ^^ 9 ims 10 ^uuoonui (11J

^ 4) S)j;S'K0-3^nTi!'lJ'n^li\Jims;W?t3J'W'U^U(jnnU (ditrysian) ipltlVQ^lllfl^i'HIU'il^iiilitinii ostium oviducts life ovipore cB-3SuU00'Ullnf13JJ lope Yulufm papillae anales UtiS papillae

anales S)i:SnPin3Jm0Uf)^?inilUW'UU^^DtJltJU1iOintT'3t!'M0^llpi0-3^ 8 (apophyses anteriores)

litJfm apodemes muluS 2 lM (ovaries)

(ovarioles) V1U oviductus laterallis njJfl'Ulll'U oviductus communis (common oviduct) 91

vagina (fhuviinJWmj'WU^mJfmJailJ) ims ovipore ^O^WftW'W'U^litJnii ostium bursae 9s

vi9ihspermatophore (liuflli ductus bursae ) 1ll?i9fTLI corpus bursae (vilflll spermatophore) im

ductus bursae 10S;SttQu5u99nllJ?i9nU oviduct (111V1^1Yiditl1YllJ011J) liOflli ductus seminalis 73

VN oviduct 2 spermatheca (vhvi'U'lYUflimilloilJ) fl?)0$j sS accessory gland vesticulum vagina

1- 2 tnvi 45-60

0-8 mt mmm 3.33 fif-3 (92%)

A.

•cccmn' itind - VMWICTCDCC -

ductw ^Kulaloriui duplex prin»r> rimpk, '•, duplitipna

#e of frenum formarion ortkulv dmplcx ~

v«dca(enduphallui} Hdragui melluiordi

xylostella L.)

spermatheca

accessory gland apophyses posteriorcs mathecal gland anus

vulva

ostulm bursae ductu!' duc.us bursac scmlnatls bulla stminalis

(Plutella xylostella L.) 74

xylosteila L.)

y t tfiYl 1 •rm2 «WTM 3

l 4 l 3

2 3 4 1

3 4 3 1

4 7 2 2

5 1 0 6

6 5 2 5

7 2 1 0

8 3 8 4

9 4 4 3

10 7 0 4

4.6 2.5 2.9

1-7 0-8 0-6

chmWDB^ spermatophore

1 > 1

3 30 28 2

6 30 27 3

9 30 27 3

12 30 28 2

15 30 28 2

150 138 12

27.6 2.4

3.

64.37% iriinu 44.09, 5.64,49.64 uas 46.38 % wiuaiwu 4.ims;«niifl 75

fia

Trichogrammotoidea bactrae Nagaraga UV\Z Cotesia plutellae Kurdjamove J^ 5

16-47 22-96 %)

{fooufmniei % fmniEJ

X Lx DxF Dx lOOqx

lii 728 r 321 44.09

1H\40t4T't) 1-2 407 fniumt

f" 262 64.37 ati ^

?sf)SD0-3ima^ ilfl^tifniwiE) •OTUTUYWIEJ % rmwiu

X Lx DxF Dx 100 qx

vfueino 3 145 fmww 1 0.69

4 2.76

3 2.19

5.64

MU0Vl5tJ4 137 51 37.23

17 12.41

49.64

69 14 20.29

uwumuu 18 26.09

46.38

37

(0^11fflV!(niW/(?llSf)) = 17:20 76

800 700 • I 600 • -£» 500 • IS r» 400 300 • 200 • 100 0

MWOWTU3

, vm0\4iiti 1-2, vmouiu 3, mitmiviv 44,

sniiflinmvmw minii 3.21+0.30, 5.57+0.60, 3.16+1.07, 3.43+0.97, 3.88+1.59,

17.72+2.74, 16.16+3.93 TuenucnaiJ nuisusnai

13-31 IIJ (nnScjiijjQi-ainii^on^j 1 2 TU ^iSwi^liiifli n-248

may 109+77.60 rlo-a w (2520) fim;jjiwfi(2526)

Ooi and Relderman(1977) ims Hill(1975)

tvu iilu fi •w'weivni Hill (1975)

3-8 lU 1s;fJS;M'U0'ul6t(nan 14-28 IV, I 5-10 TIIJ Ooi and Relderman

1 Ulio/ a/a* (1977) viimistjs; ID 3 QTJ istisnviovi 4 IU 6 TU fi 3.7 QIJ enm ID I^IO-J 248

l lltnj(2520) imSQi7?3V

3-4 iu i^ossniiluio 5-7 37-407

sfjsviWQ'u 6.2 QTJ flmiHQfifinu 3 fif-a flnupi 3.3 iu

1 1?mn(2528) vniiiMuowlownSisoslii 1-2 TU ISEJ^VIUQU 6-

17 114 IZUzmm 2-4 5l4 liasiSJOSin'JlWUlfJ ll-20 l\l 'iZUIi'nmif)VlUT)M 1 lU Singh and V Singh (1982) :iej-3TU'ii9ivni3wfi^0is;fJs;nfn^m^s)?aji^ii]piD9-3'H'U0'u1tJwn iiu onafj-3

l^i 16.9 iu onmo-j^QwiTiwnmpi Knm 18.1

18.9-19.5 lu

23.45 1M cB^fJm\4Hl4n'il1im>N (2528)

l 25 ivii im 77

inn

winvnaunfnvitn wimwu8u1uwnijoemm?fln

T'fJ 4 ufo«Ul«WinuluMU0'UHK?0rn'u'lMt|j (Holt and North, 1970) (Lai-Fook, 1982) i: (scrotum) luisuswQiwj

spermtogonia lias spermatocyte tf chromosome

3.33 (92 %) I'tfUl^tJ'JnU'Ue-J Cercyonis pegala Fabr. (Burns,1968) ^'llSfJlOS;1fll1'lJ'M-3 seminal fluid, eupyrene UflSapyrene sperm O' spermatheca

200 l mimj

lio 64.37 %

iv 3 Smo-jmnuotj noili^uiai 5.64 % ehvm'uo'untj 4 uas^nuw 78

ffeitasintu 37.23 ims 20.29 % imsSmiflimijawnmiyhmEjnjfHiifluiiJtJvi ivhnu 12.41 nas; 26.09 % Trichogrammotoidea bactrae Nagaraga, Cotesia plutellae Kurdjamove UASenHIPnenHIPn ^ ITfU H9\

U A

. 2526.205 u.

. 6. 2516. 523-542.

). w.ifi««im?T?)i, n^mni. 2528.85 u.

imu v). u.inuflifntrwf, n^mni. 2520.90 u. Bums, J.M. Mating frequency in natural populations of skippers and butterflies determined by spermatophore counts. Proc. Nat. Acad. Sci. 61. 1968. 852-859. Coss, H.M. and D.G. Harcourt. Photoperiodism and fecundity in Plutella maculipennis. Nature. 210. 1966.217-218. Harcourt, D.G. The development and use of life table in the study of natural insect population. Ann. Rev. Enmol. 14. 1968. 175-196. Hill, D.S. Agricultural insect pest of the tropics and their control. Cambridge Univ. Press, London. 1975. 500 p. 'olt, G.G. and D.T. North. Effects of gamma radiation on the mechanisms of sperm transfer in Trichoplusia ni. J. Insect Physiol. 16. 1970. 2211-2222. i-Fook, J. Testicular development and spermatogenesis in Calpodes ethlius Stoll (Hesperiidae, Lepidoptera). Can. J. Zool. 60.1982.1161-1171. , P.A.C. and W. Relderman. A parasite of the diamondback moth in Cameral Highlands, Malaysia. Malaysian Agr. J. 52. 1977. 77-84. S hoy O. , P. Keinmeesuke, N. Sinchaisri and F. Nakasuji. Development and reproductive rate 79

of diamondback moth, Plutella xylostella from Thailand. Appl. Ent. Zool. 24(2). 1988. 202-208. Singh, S.P. and D. Singh. Influence of cruciferous host plants on the survival and development of Plutella xylostella L. Rev. Appl. Entomol. Ser. A. 71. 1982. 154. Sivapragasam A., Y. Ito and T. Saito. Distribution patterns of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) and its larval parasitiod on cabbage. Appl. Ent. Zool. 21. 1986.546-552. Stepanova, L. A. An experiment in the ecological analysis of the conditions for the development of pests of cruciferous vegetable crop in nature. Rev. Appl. Entomol. Ser. A. 53. 1962. 172. 80

mfi

4 0* fl V 3

nviui 10900 Ivti. 5795230 WB 551 ln??n? 5613013 nsuiyitnfnttwffnsimvio t\\i\im~\\i\i'n 11000 Ini. 5899850-8 fitussint/w? u'HiQYioiamnwMifnnni nnui 10900 .5791026

57 lei^mvi nun 3 imd-a 58

15 if v Erwinia carotovora subsp. atroceptica

18 f l tu 17 JJU. uividflfl^iimntlllitfo Bacillus spp

Pseudomonas vesicularis TH9900010 TH9900010 81

The Cultivation of Antagonistic Bacteria in Irradiated Sludge for

Biological Control of Soft Rot Erwinias : Screening of Antagonistic

Bacteria for Biological Control of Soft Rot Erwinias

Ngamnit Sermkiattipong , Leelaowadee Sangsuk , Penkhare Rattanapiriyakul , 2 3 Surang Dejsirilert and Niphone Thaveechai 1/ Biological Science Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900.

Tel. 5795230 Ext. 551 Fax. 5613013

2/Division of Clinical Pathology, Department of Medical Sciences, Nonthaburi. Tel. 5899850-8

3/Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Phaholyotin Rd.,

Chatuchak, Bangkok 10900. Tel. 5791026

Abstract

Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Envinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis. 82

1. 1111141

mi 3

2.

3.

(2)

50%

(trace elements) IU41

mfaw vuitJ ifan

snrru

( Bacterial soft rots) inflflinn?0UUflYu1tJ

f finu-j munufntn ims;

uennn USL?0 <6> wow Hfinifl yifn mm nw^lu iai 1I0 Erwinia carotovora 83

wuo

<7)

9f MM trvwiuufivuioviffHifon i

(carrier)

non

(sludge) «1tJ5-3milutn?vnMS; (carrier)

2.

2.1

S«€QV1ti1fntTnni Erwinia carotovora subsp. atroceptica (Eca) «tf-3

2.2 mtneifraufni»4fn}4i^ci1\4fni'»iiliHin«iTifiii94i«a soft rot erwinias <7) uas; Schaad (8) latimo-Jlfe Eca HmtyUUOTHI? nutrient agar (NA) 24 Vliu-J fliniTliUIWeililwioJJllIu bacterial suspension liTSfil optical density (O.D.) ibsUiflJ 0.2 YlfnilJOnflflUUfr-J 590 V

bacterial suspension f«iJintj^ wililijjj^^fUMfjS'HB-jiilunfli 3-4 in 84

2.3 fminuniotru fo s; 3 imftaffe ftflw st.

(iovl-60)

2.4 mimi£JJJ seed layer agar

i « Eca llJ0Tmim?n nutrient broth (NB) fiSlJf 1J1PI5 30 Ufi. IJlJ^^tUMfjfl 30°"B 18-24 UJJ. pmm) Eca fliw-jw i ua.wjnjlTimnijflnijeirni NA hum 9 ua. vortex mixer (o,m'HnS

2.5

W0 25 nfjjltYil4V4inril414^(Wni^OlJ?Un9T5 225 US.

1:10 2, 1:10 3, 1:10 \ 1:10 5 \.\f\Z 1:10 * fliuaimj I'WllllJflWgpl 0.1 Ufl. if V I I l:102 ltT{1-3Ul4SnumiJ;mtJ-3l*9^S seed layer agar ^^nfimiTly^© 2.4 tin 2 «ih (duplicate) 30°«« iilunai 3 iu fls (clear zone)

lii

(Eca)

(Eca) Ul4O~m"ma{nm)'ltmi5 Disc diffusion method (9) luoivn^intn NB ^^fliMnw 30°^ iilunm 18-24 Spectrophotometer ^fniUUT3flflliim-5 590 UnluiU^I llflJfniU<\i'U

2.7

18 fifxmtnin'nmfimjn niuinaifnfffllfniimviij'

Bergey ' s Manual of Systematic Bacteriology Manual of Clinical Microbiology

3. RntJii€!

3.1 Soft rot erwinias

Soft rot erwinias (Eca) •yin 6 rnevi iJnngii nas;nsvi^iiJmnfioifnimims;0m-3mu1?i'^ ini^e Eca

3.2

v0iJgi 57

115 y y (Eca)

(Eca)

57 5mm 2

(Clear zone) 4.9-5.4 JJ3J.

58 16 l.o-n.o uu. 86

115 "elinan wini 18 s (Eca) g Table 1 3.4 ii

nms (Eca)< ut-3vi^Nn^'iJnng1i4 Table 2

Bacillus sphaericus llfit Pseudomonas vesicularis

H3Jni5'fl'0nkmn

B. polymyxa, B. sphaericus Has B. circulans

4.

115 lul^mvi gqis; (Eca)

i y y 18 lT 3^^il^?]^

Eca flnnmiRUftruonflniSj'itnuni iJijflviiia^iiani^flinfJaMjjn 204

Fusarium oxysporum f.sp.cucumerinum, Pythium ultimum, Verticillium dahliae \>\,V\ZRhizoctonia

, . (12) solani Table i qsnfoi&fam wfoomi 98 mflfPYnnu n.o JJU. ebun?01110? 43 lias 58

1.0 JJJJ. ihfnpifismyi 1^011101 98 U'ISIIIOII^L^O Eca l^«^q« ^

V V f Eca

ta Eca •0114114 18 ^ Bacillus spp. uasSmmlolifmVllWtJl^llluif 0 Pseudomonas vesicularis a03fTlintJ^1V!n)03 Ferreira ef a/. ^fiaiTJI Bacillus spp. "K^nuo^ 5. subtilis S ?9 AUflioYtafnM^Iifim'y' 'M^Um0^U1 87

5.

1. Wiley, B.B., and S. C. Westerberg. Appl. Microbiol., 18(6), 1969 : 994-1001. 2. Sermkiattipong, Ng., H. Ito, and S. Hashimoto. JAERI-M 90-145, 1990. 3. Krishnamurthy, K. Sewage sludge treatment with radiation. National Seminar on Radiation Disinfection of Sewage Sludge for Safe Disposal. Office of Atomic Energy for Peace, Bangkok, Thailand. November 13, 1990.

4. Swinwood, J. F. The Canadian Commercial Demonstration Sludge Irradiator Project. The Joint IAEA CRP-ASCE TCRETWW Meeting. Washington, D.C., July 10, 1990.

m. 21-23 m)ff?fntm 2537. 6. Ivilifly fowmif. waVninlifi'vn. wuwfn-jvi 2, fnimaw «nn«, n^iirwi. 2525.

1 y 1 7. ilinjiyi flumffi. m?iiJaw

f 2532. 8. Schaad, N.W. Laboratory guide for identification of plant pathogenic bacteria. Bacteriology committee of American Phytopathological Society, St. Paul. Minnesota. 1980. 9. of^nvn nrnmuiwyftj fnifnol

(Pseudomonas solanacearum E.F. Smith). n^tYTWI : QV101W

Table 1 Suppressive test to soft rot erwinias (Eca) in vitro of antagonistic bacteria from natural soil and seed composts

Isolate No. Diameter of colony (mm) Diameter of clear zone (mm) Clear zone (mm)

10 9.8 15.2 5.4 43 9.7 10.7 1.0 51 10.1 11.7 1.6 58 7.6 8.6 1.0 64 7.1 10.3 3.2 67 7.0 11.9 4.9 70 8.3 13.0 4.7 77 9.6 25.7 16.1 88 10.4 25.1 14.7 89 10.5 14.4 3.9 90 17.7 26.9 9.2 91 9.9 23.2 13.3 92 10.3 12.9 2.6 94 11.1 13.4 2.3 95 17.7 27.5 9.8 96 10.1 21.7 11.6 98 10.6 27.6 17.0 V-l 11.9 16.8 4.9 89

Table 2 Identification of antagonistic bacteria against Erwinia carotovora subsp. atroceptica

Isolate No. Antagonistic bacteria Source of isolation

10 Bacillus sphaericus soil

43 Bacillus subtilis seed compost (1)

51 Bacillus brevis seed compost (1)

58 Bacillus subtilis seed compost (1)

64 Bacillus subtilis seed compost (1)

67 Bacillus subtilis seed compost (1)

70 Bacillus subtilis seed compost (1)

77 Bacillus polymyxa seed compost (2)

88 Bacillus polymyxa seed compost (2)

89 Bacillus sphaericus seed compost (2)

90 Bacillus circulans seed compost (2)

91 Bacillus polymyxa seed compost (2)

92 Bacillus sphaericus seed compost (2)

94 Bacillus sphaericus seed compost (2)

95 Bacillus polymyxa seed compost (2)

96 Bacillus polymyxa seed compost (2)

98 Bacillus polymyxa seed compost (2)

V-1 Pseudomonas vesicularis soil (1): Produced by Division of Soil and Water Conservation, Department of Land Development (2): Commercial seed compost 90 TH9900011 TH9900011

Bactrocera dorsalis (Hendel)YlfnEmfhfi'mmi

??-mfU'mvia-j>niiibxnajmetfufl WWJ nnui 10900 1Y)5 5795230 fit! 571

Bactrocera dorsalis (Hendel) W{1fn7'MPia0-4y

Studies on mating competitiveness of sterile oriental fruit fly, Bactrocera dorsalis (Hendel)

Wanit Limohpasmanee and Suchada Segsarnviriya Biological Science Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900 Tel. 579-5230 Ext. 571 Fax. 561-3013

ABSTRACT

An essential prerequisite for insect control by the sterile insect technique releasing method is mass rearing and sterilizing that do not have adverse effects on longevity and mating behavior of the released males. But many laboratory studies have shown that males irradiated at the completely sterility dose often could not compete with untreated males in mating. This paper studies the effects of gamma radiation at the sterile dose on mating, sexual and sperm competitiveness of the oriental fruit fly, Bactrocera dorsalis (Hendel) under the laboratory condition. It is found that irradiation at the completely sterility dose (90 Gy) had reduced the mating and sperm competition ability of the males. Though the sexual competition was not 91

INTRODUCTION

An essential prerequisite for successful application of the sterile insect technique release method

to eradicate or control the insect pests is mass rearing and sterilization that do not have

adverse effects on longevity and mating behavior of the released males. Many laboratory

studies have shown that males irradiated with gamma radiation at the completely sterile dose

often could not compete with untreated males in mating although irradiation did not significantly

reduce longevity of the males (Economopoulos, 1972). In addition, mass rearing of insects at

the constant temperature and using artificial diet for many generation effect on physiological

and behavioral characteristics . Kakinohana (1980) reported that mass rearing with artificial diet

in laboratory caused the qualitative changes of the melon fly, such as oviposition, sexual

maturation, diurnal rhythm of mating, mating competitiveness and dispersal ability in the field.

The experiment of Hibino and Iwahashi (1989) showed the difference of mating behavior between

mass reared melon fly and wild fly. Iwahashi (1992) showed the results of SIT at Doi Ang Khang,

a part of Integrated Control of Fruit Flies which supported by IAEA. Though the number of

released flies per month reached 30 millions and the M/U ratio reached 10 or more, the number of wild flies caught from traps did not decreased, so ratio of M/U did not increase. The fault of the control may be occurred because of the low quality of the raleased flies or the immigation of wild flies. Iwahashi (1993) showed the non-synconized daily activity pattern with wild flies of the released flies. Mating and sexual competitiveness are the method that can be used as a quality control of the flies to check results from mass rearing, irradiation and transportation. However, the mating and sexual competitiveness data in laboratory is not realized under the field conditions.

This paper studies the effects of gamma radiation at the completely sterile dose on mating, sperm and sexual competitiveness of the oriental fruit fly, Bactrocera dorsalis (Hendel) under the laboratory condition.

MATERIAL AND METHODS

Insects: The oriental fruit fly, Bactrocera dorsalis (Hendel) used in this experiment were taken from the mass rearing facility of OAEP (Office of Atomic Energy for Peace).The 2 days before emergence pupae were marked and irradiated with gamma radiation at the dose of 90 Gy at TIC

(Thai Irradiation Center ). After emergence 2 days, both normal and irradiated flies were sexed 92

and reared separately in laboratory at temperature 27 ± 2 °c with water and the mixture of sugar

and protein yeast hydrolysate. The 4-day-old flies were treated with cool and marked

individually with enamel paint pens.

Cages: The 25x25x25 cm. screen cages were used to study the mating and sexual

competition of the flies. The plastic containers, with 6 cm. diameter and 10 cm. height , were

used to study sperm competition of the flies. Water and the mixture of sugar and protein yeast

hydrolysate were provided.

Experiments

To study the mating and sexual competitiveness tests, the marked flies were put in the

cages as shown in Table 1.

Table 1 The combination of normal and irradiated males and females in each treatments

Treatment Combination

Normal male Irradiated male Normal female

1 30 0 15 2 20 10 15 3 15 15 15 4 10 20 15 5 0 15 30

After fly releasing, the cages were kept in laboratory at temperature 27+2 °c, under the

natural light condition. The number of mating flies were checked and identified every day until

none mating. The egg collection by using guava juice stimulation were done twice a week.

To study the sperm competition, the virgin females were mated separately to normal

males and to irradiated males after eclosion 10 days. After the successful copulation had

occurred, all males were removed the morning after. On the third day after the first copulation,

the virgin normal and irradiated males were put into the cages, for the remating of the females

with opposite type males from the first mating. The eggs collected from successful remating

females were checked hatchability every two days. 93

RESULTS AND DISCUSSION

Table 2 shows the number of mating of normal and irradiated males in each treatments and competitiveness values, estimated directly from the number of mating flies ( Teruya and Sukeyama, 1979). C= (i/u)/(I/U) C = competitiveness value i = number of mated irradiated males u = number of mated normal males I = number of irradiated males U = number of normal males

Table 2 The number of mating of normal and irradiated males and competitiveness values in different ratio of normal and irradiated males

Female Ratio of No. of No. of mated No. of mated C

I/U copulation normal male irradiated male

N 0:30 9 9 0

N 10:20 15 12 3 0.50

N 15:15 13 10 3 0.30

N 20:10 16 4 12 1.50

N 30:0 14 0 14

The result shows that the number of mating normal males was slightly higher than irradiated males (C = 0.77+0.64). The number of mating normal male per irradiated male and competitiveness values at the ratio of irradiated per normal male 10/20, 15/15 and 20/10 when mated with normal females were 12:3, 10:3, 4:12 and 0.5, 0.3, 1.5 respectively. At the higher ratio of irradiated per normal males, competitiveness value was higher. 94

Mating (time)

Fig. 1 Mating frequency of normal and irradiated oriental fruit flies

The mating frequency of normal and irradiated males are shown in Fig.l , that irradiated

males could mate more frequency than normal males (xn = 1.44, xir = 1.57) but non significance at level p = 0.05 (t = 0.478). The percentage of non- mating of normal and irradiated males were 69.33 and 69.33 % and percentage of normal and irradiated males mated more than 1 time were 9.33 and 10.67 %, while the percentage of mating of normal females more than 1 time was 24 %.

Table 3 The estimation of the sexual competitiveness of sterile Bactrocera dorsalis

(Hendel) under laboratory condition

Combination Total no. of No. of egg % Egg hatch C

SM NM[ NF flies examined

0 30 15 45 1017 80.02 10 20 15 45 2206 32.49 2.93 15 15 15 45 1691 11.74 5.82 20 10 15 45 1673 54.16 0.24 30 0 15 45 1977 0.00

Note : SM = Sterile males NM:= Normal males NF =: Normal females 95

The result shows that irradiated males were stronger than normal males (C = 3.00 ± 2.79). At the ratio of normal per irradiated males 20/10, 15/15 and 10/20, the sexual competitiveness values were 2.93, 5.82 and 0.24 respectively. At the ratio of normal per irradiated males 20/10 and 15/15, the sexual competitiveness were higher than the mating competition due to prior mating of irradiated males and the most of females mated only one time. But at the ratio of normal per irradiated male 10/20, the sexual competitiveness was low although the mating competition was not low. It is because the most of females remated with normal flies and the sperms from irradiated males were weaker than those from the normal males (Table 4).

Table 4. Mean hatchability and P2 values of eggs laid by the female oriental fruit

flies during 30 days after the second mating in double-mating schedules.

Treatment No. of females % hatchabihry P2 Mean

N 50 80.02

S 50 0.00

NS 15 41.06 0.6570 0.5656

SN 22 52.57 0.4869

Note : N = Females mated with normal males S = Females mated with sterile males NS = Females mated with normal and sterile males SN = Females mated with sterile and normal males

P2 value was calculated by transforming formula of Boorman and Parker (1976) as follow:

P = (x-b)/(a-b) where a, b, and x are the hatchability of eggs from mating with a normal male, that from mating with a irradiated male, and that from mating with both normal and irradiated males, respectively. When the second male is normal, P2= P, and when the second male is irradiated, P2 = 1-P. Hatchability and P2 values were transformed to arcsin-square roots to normalize them and unweighted means. 96

The result shows that sperms of the irradiated males were weaker than those of normal males (P2 = 0.5656). However, the result is not different from the melon fly, Bactrocera cucurbitae which P2 is nearly 0.5 (Tsubaki and Sokei, 1988).

These results also indicate that irradiation with the completely sterility dose (90 Gy) had reduced mating and sperm competition ability of the flies. Though the sexual competition was not reduced, due to the earlier mating of the irradiated flies and almost females mate only one time.

REFERENCES

1. Boorman, E. and G.A. Parker (1976) Sperm (ejaculate) competition in Drosophila

elanogaster, and the reproductive value of females to males in relation to female age and mating status. Ecol. Ent. 1: 145-155.

2. Economopoulos, A.P. (1972) Sexual competitiveness of y-ray sterilized males of Dacus oleae. Mating frequency of artificially reared and wild females. Env. Ent., 1: 490-497.

3. Hibino, Y. and O. Iwahashi (1989) Mating receptivity of wild type females for wild type males

and mass-reared males in the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl. Ent. Zool., 24: 152-154.

4. Iwahashi, O. (1992) THE END-OF-MISSION REPORT FOR THA/5/038/02. IAEA. 43P.

5. Iwahashi, O. (1993) FOLLOW-UP-MISSION REPORT FOR THA/5/038/02. IAEA. 33p.

6. Kakinohana, H. (1980) Qualitative change in the mass reared melon fly, Dacus cucurbitae

Coq. Proceedings of a Symposium on Fruit Fly Problems. Kyoto and Naha. Japan. : 27-36.

7. Teruya, T. and H. Sukeyama (1979) Sterilization of the melon fly, Dacus cwcurMaeCoquillett, with gamma radiation : Effect of dose on competitiveness of irradiated males. Appl. Ent. Zool., 14:241-244.

8. Tsubaki, Y. and Y. Sokei (1988) Prolonged mating in the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae): Competition for fertilization by sperm-loading. Res. Popul. Ecol. 30:343-352. TH9900012 TH9900012

nrn

ne^yitnfrW

6 ii ^0 Seber's, Jolly-Seber's, Jackson's, Ito's, Hamada's ims Yamamura's method h

mnr

Population Estimation with Mark and Recapture Method Program

Wanitch Limohpasmanee and Pravait Kaewchoung Biological Science Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

Tel. 5795230 Ext. 571

ABSTRACT

Population estimation is the important information which required for the insect control planning especially the controlling with SIT. Moreover, It can be used to evaluate the efficiency of controlling method. Due to the complexity of calculation, the population estimation with mark and recapture methods were not used widely. So that, this program is developed with Qbasic on the purpose to make it accuracy and easier. The program evaluation consists with 6 methods; follow Seber's , Jolly-seber's, Jackson's, Ito's, Hamada's and yamamura's methods. The results are compared with the original methods, found that they are accuracy and more easier to applied. 98

INTRODUCTION

The basic information such as life cycle, behavior, dispersal, population density,

damaging of insect pest are prerequired for planning insect control. Especially, the insect

controlling with sterile insect technique, number of released flies bases on the number of flies in

the nature. By the general, number of released flies must be more than 10 time number of

natural flies. Moreover, the population density can be used to evaluate directly the efficacy

of controlling method by comparison between before and after control application. It is better

than the indirect evaluation which evaluate from damage or ratio of marked flies per unmarked

flies.

To know the insect population density, can count directly in the case of insect which

have not high dispersal. But in the case of insect which have high dispersal, the population

density can be estimated indirectly from their damage , faeces or trapping data. However, the

relationship between the number of insects and number of damage or faeces or trapped insect

must be known before. Moreover, the efficacy of trapping varied with many factors such as

host plant, temperature, humidity and location of traps. So that, the population estimation with

mark and recapture methods were developed.

Due to complexity of estimation with mark and recapture methods, they were not used

widely. Thought, it's accuracy is higher than another methods in the case of highly distributed

insect. The population estimation with mark and recapture method program is developed with

Qbasic on the purpose to make it accuracy and easier.

The development of population estimation with mark and recapture methods

In 1930, Lincoln presented lincoln index, based on assumption that ratio of cathed marks

equal ratio of catched nature flies

m / Mo = u / NL(0)

N no) =Mou/m

In 1939, Jackson presented "positive method" based on assumption that 100 marked

individuals are released on the initial day and 100 random samples are caught on the i day.

y; = 10 nr /Monj

4 No= 10 /y0 99

In 1959 Darroch presented " capture-recapture analysis" , shows that in a fully stochastic model with either immigration (often called dilution) or death (or emigration), the population parameters can be easily estimated by maximum likelihood. For the more general case when death and immigration are operating simultaneously he derives estimation equations by equating certain observations to their expectations, but does not give variances or covariances for the estimates. In a leter paper, (Darroch, 1961), he considers estimation for a closed population consisting of different strata.

In 1962 Seber presented "multi-sample single recapture method" ,which an individual cannot be recaptured more than once. This situation arises, for example, when the recaptures are made in the course of hunting or fishing. He allows for both death and immigration in the population, provides explicit maximum-likelihood estimates of the parameters with variances, and suggests tests for certain of the assumptions.

In 1965 Jolly presented "Explicit estimates from capture-recapture data with both death and immigration-stochastic model" for a population in which there is both immigration and death, provides explicit maximum-likelihood estimates of the parameters with variances and means. In 1965 Seber presented "A note on the multiple-recapture census" , the method of solution is similar to that given in Jolly (1965) In 1973 Ito presented "A method to estimate a minimum population density with a single recapture census" based on Jackson's positive method using data from a single release and repeated recapture samplings. He stated that there was negative bias inherent in his system influenced by rates of survival and capture.

M^ = Mo- Zj^m,

4 /M n yj+1 = 10 mi+, o

4 No = 10 /y0 In 1976 Hamada presented "Density estimation by the modified Jackson's method" based on Jackson's and Ito's methods z, = K/nr/M,,^

4 No = 10 /z'0 ioo

In 1992 Yamamura presented " A method for population estimation from a single release experiment " based on Seber's method (1962), but sampling censuses are conducted only twice.

A (|) = (u.iV u2m,)+ m,/ Mo

A A U = (|> Mo u, / m,

METHOD

The operation of population estimation with mark and recapture method program The operation of this program is devided into 3 sections as follows: l.Data Base on releasing and recapture census, data are classified to 3 groups : 1.1 Multiple release census This data are suitable to calculated insect population in the opened area which there are both immigration and emigration with Seber's or Jolly-Seber's method. The captured individuals are removed or killed in Seber's method but the captured individuals are released without hazard in Jolly-Seber's method. The data must be inputed step by step as follows: - Inkey " How many time individuals are released" - Inkey " Number of released individuals in each time" - Inkey " Number of unmarked in each samples" - Inkey "Number of the first released individuals in each samples" - Inkey " Number of the individuals which released at time i in each samples" - Inkey " Total number of catched individuals in each sample" only Jolly-Seber 's method 1.2 Single release and multiple recapture census This data are suitable to calculate the insect population in the closed area which there are not immigration and emigration, number of insect is constant which data are collected, with Jackson's or Ito's or Hamada's method. The catched individuals are removed or killed. The data must be inputed step by step as follows - Inkey " Only 1 time, individuals are released " 101

- Inkey " How many times, samples are taken"

- Inkey " Number of released Individuals"

- Inkey " Number of catched individuals in each samples"

- Inkey " Number of catched unmarked individuals in each samples"

- Inkey " Number of catched marked individuals in each samples"

1.3 Single release and twice recapture census

This data are suitable to calculated insect population in the opened area which there are both immigration and emigration with Yamamura's method .

This method is similar Seber's method, but the samples of insects are taken only twice.

The data must be inputed step by step as follows

- Inkey " Only 1 time, individuals are released "

- Inkey " Only twice, individuals are recapture"

- Inkey " How many replication are done"

- Inkey " Number of released individuals in each replication"

- Inkey " Number of unmarked individuals in the first sample of each replication"

- Inkey " Number of marked individuals in the first sample of each replication"

- Inkey " Number of unmarked individuals in the second sample of each replication"

- Inkey " Number of marked individuals in the sercond sample of each replication"

2. Evaluation

There are 6 calcualtion methods, so that user must choose the calculation method which match with the data group.

2.1 Seber's method

The program will calculate data step by step as follows:

2.1.1 Recapture Rate (Q*{)

A 2.1.2 Probability of survival ((f)^), probability of being caught ( p: )

A and total number of population ( nf )

Xh %4i / X51 ai (V =<|>,Aq,A 102 &,©

si X2.

n,A = u, /p A

While ^ = Total number of marked individuals belonging to a,, a^ ....a,

which are caught after the sample b; is taken

%2i = The number of marked individuals belonging to ai+1 which are

caught during the whole experiment

%3i = The number of marked individuals in b,

yAi = The number of marked individuals belonging to a, which are

caught during the whole experiment

Xli ~~ Xli A*3i

A 2.1.3 Variance of (p*, P. and n/

2 2 var(l/pi*) = q, /Pi {1/SH+ 1/c2i-

k = A,: (*. 2 ^., +l/8 -l/a ] var((|),*) = qs-,) 1 + i/ 4s s var ( n * ) = ( s A,,* While 8,j = (P, /a,) ei+1s3, a a S = ' a. { 3i £ s4l = a, 9,

e*= (Oi/ai)e3i 2.2 Jolly-Seber stochastic method

The program will calculate data step by step as follows:

A 2.2.1 Total number of marked individuals at risk in the population on the sampling day (Mj )

and The poportion of marked individuals in the population at the moment of capture on day i ( a,)

While a = Total number of released individuals on day i 103

Tj = Total number of marked individauls recapture on day i

n: = Total number captured on day i

Rj = Total number of individuals released on the i occasion,

subsequently recaptured

Z; = The number marked before time i which are not caught in the i

sample, but are caught subsequently

A 2.2.2 The estimated of population on day i (N( ), probability that an individual alive at moment of release of the i sample will survive till the time of capture of the i+1 sample (

(|)A ) and The number of new individuals joining the population in the interval between the i and i+1 samples and alive at time i+1 ( BA)

A A = M j+l/(M -r, +at )

A A A B = N +l - (j)* ( n - n, + a,)

A A A A 2.2.3 Variance of N, , Nf /N{, (|) and

var(N,A) = N^CN^-n^

A A A A var (N, /N;) = N, (Ns -n(){ [(M, -rs +a:

var r+1 +ai+

A A + (M, -r, )/(M, -r| +&i Kl/Rj -1 A 2 var ( ^ /,)= var «|> ) - [(|). ( 1 - (J),)/ M1+1]

2.3 Jackson's method

The program will calculate data step by step as follows:

2.3.1 Converted value of mi (yj) 4

y; = 10 m; /a Mo

A 2.3.2 Estimated value of y{ at time i (y0 ) and survival rate ( S) from the regression

line of i and log y:

logy, = Iogy0 + i log S 2.3.3 Total number of wild individauls (U)

A 4 A N = 10 /y0

U = N - Mn 104

2.4 Ito' s method

The program will calculate data step by step as follows:

2.4.1 Converted value of m: (y^)

NV=M0- Zj.rx

4 y,'= 10 m,/niM0(i)

A 2.4.2 Estimated value of y;' at time 0 (yo' ) and survival rate ( S) from regression

line of i and log y:'

log y^ = log y0' + i log S

2.4.3 Total number of wild individauls (U)

A 4 A N, = 10 /y0'

U = N - Mo

2.5 Hamada's method

The program will calculate data step by step as follows:

2.5.1 Converted value of m, (z^)

M = M «i)' o • Xh,' ' nij

4 Zj' = 10 m. / u, MWi)

A 2.5.2 Estimated value of z' at time 0 ( zo' ) and survival rate ( S) from regression

line of i and log z'

log Zj' = log z0' + i log S

2.5.3 Total number of wild individuals (UA)

A 4 A U = 10 /z0'

2.6 Yamamura's method

The program will calculate data step by step as follows:

2.6.1 Proportion of marked individuals which survive and stay in the population between the

successive censuses ( ^i), wild population size ( LT )

(j)( = (u, n^ / m, 112) + m, / Mo

U,=

2.6.2 Mean of (j), and Uj

1/k 105

2.6.3 Variance of (j) and U

2 var «j)) = {(1/MO) - [(m, + u,)m2 / (m, 'u2) ]} var (m, )

+ {(m2 + u2)u, / (u2 m, )} var(m2)

3 2 var (U) = {2M0 u, [(m, + u,)m2 / (m, u2) ] +1 } var (m, )

+ {Mou, (m2 + u2) / (u2 m, )} var(m2)

While varOn,) = (U - u^^m, /U^ + mJ

3. Display

The program will show the results on the monitor after the calculation and the results will be printed if print order in the menu are chosen. Moreover, all data can storaged on disc by using Qbasic menu.

Example Population estimation of the oriental fruit fly at Pakchong District,

Nakornrachasema Province, 23 January- 4 March 1997

Jackson's Positive Method (1939)

Time Mo n u m 1 3673 557 454 103

2 3570 349 244 105

3 3465 286 230 54

4 3411 171 160 11

5 3400 299 268 31

6 3369 128 123 5

Wild population = 5620.31

Recapture rate = 8.412742 >;10'2

Survival rate = 0.7086537

RESULTS

Coparison results with original methods

1. Seber's method (1962)

The population estimation of male,Spodoptera litura (Fabricius) at Kagawa

Prefecture, Northern Shikoku, Japan in May-September (Wakamura et al., 1990). 106

Results of Calculation follow Seber's method (1962)

! v : Dale M, ">, u. u- V(U")' U, "i «fc>" Jun 16 1934 383 26 181 24 93.22 0.710 30.08 0.129

17 1968 428 24 137 20 66.39 0.602 1992 0.099

IK 2259 500 211 201 17 62.73 0694 2175 0.134

19 1098 215 17 73 11 62.56 0 721 2659 0.189

avg. 7122 0680 12.45 0.069

Jul 15 764 181 BO 26 65 139.70 0.414 18.39 0.031

16 2226 466 65 121 59 153.82 0.495 26.08 0.044

17 1770 420 59 76 60 103.24 0.415 13.69 0.024

IVg. 132.25 0.440 11.57 0.019

Results of calculation with program

Dale M, m, u, m, u, U" *," V(U-)"

Jun |6 1934 383 26 181 24 93.22 0710 30.08 0.129

17 1968 428 24 137 20 66.39 0602 19.92 0.099

18 2259 500 20 201 17 6273 0.694 21.75 0 134

19 1098 215 17 73 11 62.56 0.721 26.59 0 189

avg. 71.22 0.680 12.45 0.069

Jul 15 764 181 80 26 65 139 70 0.414 18.39 0 031

16 2226 466 65 121 59 153.82 0.495 26.08 0.044

17 1770 420 59 76 60 103.24 0.4)5 13.69 0.024

avg. 132.25 0.44O 11.57 0.019

2. Jolly-Seber stochastic method (1965)

Jolly's experiment (1963), estimated population of female black-kneed capsid

{Blepharidopterus angulatus) in apple orchard, in which dilution both by fresh emergences and

by immigration was occurring.

Table 3 Result s of calculation follow Jolly-Seber stochastic method (1965)

l: n = 1 a- M," N," {V(N,")|'" (V«j),~l) (V(N,"/N,)| (Vtcf), ".' <(>. )l'

1 0 0.649 0.114 0.093

2 0.0685 35.02 5112 1.1015 151 2 0.110 150.8 0.110

3 0.2189 170.54 779 1 0.867 1293 0.107 128.9 0.105

4 0.2679 258.00 963.0 0.564 140.9 0.064 140 3 0.059

5 0.2409 227.73 945.3 0.836 125.5 0.075 124.3 0.073

6 0.3684 324.99 882.2 0.790 96.1 0.070 94.4 0.068

7 04480 359.50 802.5 0.651 74.8 0.056 72.4 0.052

8 0 4886 319.33 653.6 0.985 61.7 0093 58.9 0.093

9 0 6395 402.13 628.8 0.686 61.9 0.080 59.1 0.077

10 0.6614 316.45 478.5 0.884 51.8 0.120 48.9 0.118

11 0.6260 317.00 506.4 0.771 65.8 0.128 63.7 0.126

12 0.6000 277.71 462.8 70.2 68.4

13 06690 107

?le 4 Results of calculation with program

N l! A J a/ M," ," (V(N,")|" IV«t>,")l" {V(N,"/N,))' (V(1 "t>,>>" 1 0 0.649 0.114 0 093

2 0.0685 35.02 511.2 1.1015 151.2 0 110 150.8 0 110

3 0.2189 170.54 779.1 0.867 129.3 0.107 128.9 0 105

4 0.2679 258.00 963.0 0.564 140.9 0 064 140 3 0059

5 0.24O9 227.7] 945] 0.836 125.5 0.075 124.3

6 03684 324.99 882.2 0.790 96 1 0.070 94.4 0.068

7 0.4480 359.50 802.5 0.651 74.8 0.056 72.4 0.052

8 0.4886 319.33 653.6 0.985 61.7 0093 58.9 0.093

9 0.6395 402.13 628.8 0.686 61.9 0.080 59.1 0.077

10 0.6614 316.45 478.5 0.884 51.8 0.120 48.9 0.118

II 0.6260 317.00 506.4 0.771 65.8 0.128 63.7 0.126

12 0.6000 277.71 462.B 70.2 68.4

1} 0.6690

3. Jackson's method

Experiment of Ito et al. (1974), estimated the population of Dacus cucurbitae in Kume Island , Oct. - Nov. 1972

- Results of calculation follow Jackson's method

Total number of Dacus cucurbitae = 2416.81 PH

Survival rate = 0.65305034

Recapture rate = 0.062780269

- Results of calculation with program

Total number of Dacus cucurbitae =2416.81 fll

Survival rate = 0.65305034

Recapture rate = 0.062780269

4. Ito's method

Experiment of Ito et al. (1974) estimated population of Dacus cucurbitae in Ishigaki Island , June-July 1973 108 it©

jle 5 Results of calculation follow Ito's method

parameters Station C (4 ha) Station D (2 ha)

Red Blue White Blue

N1(0, 2092 487

623 negative N,(1, 0.408 0.436 0.443 0.396

N 983 480 J(.) 0.277 0.428

Table 6 Results of calculation with program

parameters Station C (4 ha) Station D (2 ha)

Red Blue White Blue

2092 487 N«o, He.) 623 negative * 0.408 0.436 0.443 0.396 983 480 NJ(,»

0.277 0.428

5. Hamada's method

Experiment of Ito et al. (1974) estimated population of Dacus cucurbitae in Ishigaki Island, June-July 1973 109

Table 7 Results of calculation follow Hamada's method

parameters Station C (4 ha) Station D (2 ha)

Red Blue White Blue

uA 131 127

A 1228 483 U 0 610 Uo, 1359 UA, 1091 397 u, 1222 524 R 0.0963 0.1072 0.2081 0.2423

S(l-R) 0.2040 0.3637 0.2520 0.3047

S 0.2258 0.4073 0.3182 0.4034

Results of calculation with program

parameters Station C (4 ha) Station D (2 ha)

Red Blue White Blue

uA 131 127

A 1228 483 U 0 610 Uo, 1359 UA, 1091 397 u, 1222 524 R 0.0963 0.1072 0.2081 0.2423

S(l-R) 0.2040 0.3637 0.2520 0.3047

S 0.2258 0.4073 0.3182 0.4034

6. Yamamura's method Experiment of Wakamura et al.(1990), estimated population of males, Spodoptera litura (Fabricius) at Kagawa Prefecture, Northern Shikoku, Japan in May- September. 110

jle 9 Results of calculation follow Yamamura's method

v : DIM M, m, IT V(U")'" u, u: «t>,- «t>.>' Jun 16 1934 383 26 181 24 93.22 0.710 30.08 0.129

17 1968 428 24 137 20 66.39 0.602 1992 0.099

18 2259 500 20 201 17 62.73 0694 21 75 0.134

19 1098 215 17 73 11 62.56 0721 26.59 0.189

avg. 71 22 0680 12.45 0069

Jul 15 764 181 80 26 65 139.70 0.414 18.39 0.031

16 2226 466 65 121 59 153.82 0.495 26.08 0.044

17 1770 420 59 76 60 103.24 0.415 13.69 0024

avg. 13225 0.440 11.57 0 019

Table 10 Results of calculation with program

! v Dite M, ™, u, m, u. V *," V(U")' «t\l" Jun 16 1934 383 26 181 24 93.22 0.710 30.08 0.129

17 1968 428 24 137 20 66.39 0.602 19.92 0.099

18 2259 500 20 201 17 62.73 0.694 21 75 0.134

19 1098 215 17 73 11 62.56 0.721 26.59 0.189

avg. 71.22 0680 12.45 0.069

Jul 15 764 IB! 80 26 65 139.70 0.414 18.39 0.031

16 2226 466 65 121 59 153.82 0.495 26.08 0044

17 1770 420 59 76 60 10324 0.415 13.69 0 024

ivg 132 25 0.440 11.57 [1019

SUMMARY

This program can be applied to estimate insect population in both opened area (there are

both immigration and emigration ) and closed area (population density is constant). The results

are accuracy, when compared with the original methods but it is easier and quickly to use this

program. However, the user must have the basic in the field of ecology so that he can plan

which method is suitable for his study case.

REFRENCES

'u .niii?(ju1iJianiufn%Ji Basic.

. 2533.310 M.

, f1?^m"VNc1. 2533. 136 U. 111

STlffa, fli-NYmi. 2533. 197 14.

Ageloff, R. and R. Mqjena. Applied Basic Programming. Wadsworth Pulishing Company,

Belmont, California. U.S.A. 1980. 352 pp.

Hamada, R., Density Estimation by the Modified Jackson's Method. Appl. Ent. Zool. II (3).

1976.194-201.

Ito ,Y. A method to estimate a minimum population density with a single recapture census. Res.

Popul. Ecol. 141973. 159-168.

Ito, Y. , M. Murai, T. Teruya, R. Hamada and A. Sugimoto. An estimation of population density

of Dacus cucurbitae with mark-recapture methods. Res. Popul. Ecol. 15 1974. 213-222.

Jolly, G.M. Explicit estimates from capture-recapture data with both death and immigration-

stochastic model. Biometrika 52, 1 and 2 1965. 225-247.

Kemeny, J.G. and T. E. Kurtz . Basic Programming . John Wiley & Sons, Inc., New York,

U.S.A. 1968. 122 p.

Seber, G. A. F. The multi-sample single recapture census. Biometrika 49, 3 and 4 1962. 339-

350.

Seber, G. A. F. A note on the multiple-recapture census. Biometrika 52, 1 and 2 1965.

249-259.

Seber, G. A. F. The effects of trap response on tag recapture estimates. Biometrics, March 1970.

13-22.

Yamamura, K., S. Wakamura and S. Kozai. A method for population estimation from a single

release experiment. Appl. Ent. Zool. 27 (1) 1992. 9-17. (B) TH9900013 TH9900013 115

t eiffitj? 01101 aju oVnfVm fltu:nninfnflfli fa n^mvii 10520

Beta ims ZSM-II

Polymerization of Polyacrylonitrile within Zeolite Micropores

Tawan Sooknoi, Artit Ausavasukhi, Wischalee Setasuntorn, Araya Kittivanichawat and Theerawat Mongkolaussavarat

Zeolite and Micropore Materials Research Laboratory, Department of Chemistry , Faculty of Science,

King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520

Polyacrylonitrile can be synthesized within the micropores of zeolites Beta and ZSM-11 by irradiating gamma ray to the zeolites, on which acrylonitrile monomer was already adsorbed. Alternatively, it can be carried out by heating such zeolites which have impregnated azobisisobutyronitrile as initiator. The resultant composite was analyzed using Thermo Gravimetric Analysis, Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy. It was found that framework topology, particularly the pore size limitation, strongly effects polymerization reaction and also thermal degradation behavior of the polymer formed. 116

urmi

(composite material) (matrix) lflul&m9UlJYliMlllJfT'n«'3imJ (filler)

1980s Thomas Bein Uf\t Patricia Enzel'" ift'Mlfni^lfl^iSlMViealvilin (Polypyrrole) fnu1\4§1o1n>l Y HH£ Mordenite ^S Fe3+ Vffo Cu2+ Patricia Enzel, Joshph J. Zoller UQZ Thomas Bein(2) M' Y ims Mordenite (Pyroiysis) VlQfl'OifnT'U Patricia Enzelims Thomas Bein0) NaY Na-mordenite

(Aqueous solution)

Beta ims; ZSM-II (7-8 Q^ttwiou) imsnfn-3 (5-6 Q^ff^ieu) wiuanwu

2 uuu 117

l.

Beta uas ZSM-II

Beta 30.0SiO2 : 1.0Al2O3 lO^Na/) : 6.0TEAOH : 250.0 H20 40 iiWwiiw TiwwuofjSaifl (37.57 %

59.54% Al2o3) 40 nJoiwvm (Ludox AS40) ua

160 0-3ffni«Kcii§fjff iilunm 10 TU<4) ^

ZSM-ll 149.7SiO2: 1.0Al2O3 :

16.5Na2O : 18.9TBABr : 4096.9 H2O

< < (37.57 % NajO, 59.54 % A12O3) tt1?3^in£JU UTU?1O(J«5afnt llU'll\4 40

(Ludox AS40) h 150

i iilunm 88 ihluV51 (SEM) (XRD) ims

2.

50 5fi«nfjjlfrlunao«vi9i?i9-3ploi

Manifold) 30 uivi 15 5anS?ii'U7iio1i4iiao^vififio-j(pionuyi0^Rjtyimff

(seal)

12.5 uas 20 nlnmio 118

100

70

3.

i9u,m

4.

4.1 li (Thermo Gravimetri Analysis, TGA) 20 Snanfu uii^lvj^n^wiQiln (Pt pan) 20 mmmt\)3usm?iw-\r\ imsflg^nmii'HJiiig^nTuiul^iiflV! 50 mil'Hfmul'0'u1v4

]15i (Differential Scanning Calorimetry, DSC) 5-10 £maniu ai'HrS 20 350 o^ffii'Km^tJtT imsew^ifniapifmiJiDU 20 40 50 i

4.3 nTSWIlfltrO'Uniigplfia'WUa^lEJinn'Wflm'SgfinaWTJaB'M^ni'Sei (Fourier Transform Infrared Spectrophotometry, FTIR) 2-3 waSnfjjjJiD^iQunulwunm^tijjIuiijJw (KBr) i 0.1 niu na'jifffi'jluim'wij'w tfnmifiig-a&mwfl^imi^fru 5xio3

3200-1200 cm"' 119

4.4 nnu 300 vwu

l uasi

T~T

A /

1.2 Jllfl 1.3

lw l.i) Beta 120

qamQSvHnflfmnJStiinnJjM

PAN/BETA PAN/ZSM-11 PAN

if-KYi 1 70 68 lojuJnuviuilcn

1H-3Y12 "bJiiJacniuiJm 180

68-70 owwrarotm (iiw l) V 2) ZSM-II Beta

Oflmfm 171-180 290-320

3) Beta fls;

ZSM-1

s 3

2 uas 3 Beta ZSM-11

Beta Sfhinnfni

100 X. • *r-^' i 80 i if • >. -,, , IS • I'AN/m: i A t 60 ! Ivilfisiavi PAN/ZSM-I 11 ;> 40 : I omipi 10 BEEgj it :L" if A I 1*2* * 20 • mIT* 1 1 I 0 m1 12.5 Kgys 20Kgys AIHN I'AN/BETA PAN//.SM-II

12.5 121

' 212.7

j

I /

A 171 )

215.5

-1!«74J

J<7.!27

1111

HI 1H 2-10 2«0

4.1)

BetaQdvi 4.2) ZSM-I l (JIIYI 4.3)

jilvi 4.1 vni'iiSminJ^tJ'uuiJa-jyn-jfmul'gu 2 V g (175.3 (282.7 e-jmi^ai^jJir

Beta uns ZSM-11 (fl^jiJ^ 4.2-4.3)

(DMF) (3200 cm'1) (c=c) 122

loavlu (1650 cm

(vibration energy) (C-H stretching) IJQWIQaOSflllallj'lwimmi!: (2939 cm'') Ufl T'Beta (2940 cm"') 2fhehfmlvi§If)l'lain ZSM-11 (2948 cm"')

IFS28 BRUKER AMtt fflSCHE M6SSTECMNIK GI.1BH 'I / •1 PAN/ZSM-ll

1 1 : 1- 1 1 1 • -i • •i.i ••••!:: .-•:•• i"•• -!)• ;.;:. jut :ui itx TUC .,co rtf. H ..»•.••- rj. -y

BRUKER (ALYTISCH ICCOQ '•• - "SSSrECHMIKQWBH

PAN'/SMI 1

~-^/

~\ 1 I i 1 1 1 1 1 1 1 1

ifiVbiinfllJgniinfminfnS (Cyclisation) (Ladder Polymer) lll'UWalmilii'u'Wa (mUfimJlbsUifil 2240 cm

(2900-3000 cm'') 123

snn emuvi l i^ l (ibsuifu 70 2 (itasinoi 180

\ ZSM-11 Ds;tTfnt)^m9nfifmjjm1tJPiluIymn?i (molecular constraint)

ZSM-II luiifus^'HaHgsjminiyifiiaivi^Iglfi'n Beta l lu'3migajmEJiJTHun1\4etf'3^fi imslw'Ki^qpi'nio (ibsuiaj 280-300

Beta flsiinfimiiTaifj^^awHfiC^in'iTWQagsfiilfiiuifiialu ZSM-II m

ZSM-II wtnfifnitraitJ^figw'H'unuupiil'u^-j^fU'Hfjn 171-180

Beta

3io

nas; 250 o^fmifai^tii i?

(non-crystalline polyacrylonitrile)

6) 1fifjvi9a9sfii1a1i4i^?alu5l9ia'n Beta Jfnfninmu

6 e^ffwiou^ 124

Beta mflfniSlfllaii ZSM-ll (^loitl'VI Beta

7-8 04tTfl19U7 ^Toifitf ZSM-ll Swiflvie 5.4 04IYPI?91J<8))

ZSM-11 nui'mqfljvimj 900

100 I'lJoi'i'lii^lviDQis^woaosjfiilaiijlwiaiti^IoiayT'Beta ffinowiihsinai 90.94

Beta wimpi-jlMi'HU'iiinfl'HQnmafuuu^TJ'ulfiDU (in?iioiniJgmyifnim*n-3) ua

900 o-afniifmStm iTTU^Ijjfffno^ovioamoi'uuTJiilpi^tn^uu)

J^ 4 m0iiJ1tJ

\f\X\ Beta flsSfin4O«fll1fiiW^^1T4l0UBnil\l0-Jfn?llJat)TJUlJi1-5imUfnO'H^^l\i (-285.3

vumviQti) ffQU'HQaosfiflniu'lpiialuS'IoiaTi ZSM-I l Bs

gww^^ntj (-187.2 o^frniijfii^tJtt

284.7 9-jfruimiqrtm) mdmo-3flinvioSos;fi?Iavlw'l?i5alu§i ZSM-II

i^i^ (~ 187.2

284.7 ^

ii Beta

285.3

280-300

mown1 wu) ^?iJ^ 4 ims 6

1i12Junfu ni-180

Beta

Beta

i?i4^fi0i4'i(n^1'Hd'U9-3yi0§i0iti'yT' Beta

fifla lu l^iaviuMij lu wia9^9iflinfi9iupi5nioifnwmjntjli!if (woaosfi?la lu

(helix) u«nljjl^Smifin9tT0uniJ^«3iT4«^naT3) mi

flTllwigW ZSM-I l 125

Beta

(2940 cm')

ZSM-I l flx

ZSM-I l (2948 cm1)

cm"1) (Conjugation) 7)

Beta uas ZSM-11

(Degradation) Beta mn^Tu

ZSM-I 1

T C Adsorpmn 111 C N *- C C C N N N

PolvmerKition

Pyro lysis N N N 126

^vi 1)0^9305;

(morphology)

300

lflTH14n^^TUn-31WVia-341l4lJ?lJ1Qime^\4^l99lfl9im9^ Gamma Cell

uemfl91t9UimutTO3n5nfl (Scanning Electron Microscope)

1. Bein, T. and Enzel, P., Angew. Chem. Int. Ed. Engl. 28(12), (1989) : 1692-1694. 2. Bein, T., Enzel, P. and Zoller, J. J.,7. Chem. Soc, Chem. Commun. 93, (1992): 633-635. 3. Bein, T. and Enzel, P., Chem. Mater. 4, (1992) : 819-824. 4. Smirniotis, P. G. and Ruckenstein, E., Ind. Eng. Chem. Res. 33, (1994): 800-813 5. Woodbury, N. and Chu, P., U. S. Pat 3, 709, 979, Jan. 9, 1973. 6. Brandrup, J. and Immergut, E. H., Polymer Handbook 2" ed., New York, John Willey & Son, pp. v39. 7. Treacy, M. M. J., and Newsam, J. M, Nature (London). 332, (1988) : 249

8. Fyfe, C. A., Gies, H., Kokotailo, G. T., Pasztor, C, Strobl, H. and Cox, D. E., J. Am. Chem.

Soc. Ill, (1989): 2470-2474 127

a/ <( Cll

VtllWU WUlflicy ffYiVVl frUYlitufil UflS George Bereznai

10330 In?:662-218-6781 Iviitni: 662-218-6770

900

100 Mfe moumi

v 128 TH9900014 TH9900014

Interactive Real-time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer

Chaiwat Muncharoen, Supitcha Chanyotha and George Bereznai

Nuclear Technology Department, Chulalongkorn university

Phyathai road, Bangkok 10330, Thailand

Tel:662-218-6781; Fax:662-2186770

Internet:[email protected]

ABSTRACT

The simulation of the Emergency Core Cooling System for a 900 MW nuclear power plant has been developed by using object oriented programming language. It is capable of generating code that executes in real-time on a PENTIUM 100 or equivalent personal computer. Graphical user interface ECCS screens have been developed using LabVIEW to allow interactive control of ECCS. The usual simulator functions, such as freeze, run, iterate, have been provided, and a number of malfunctions may be activated.

A large pipe break near the reactor inlet header has been simulated to verify the response of the ECCS model. LOCA detection, ECC initiation, injection and recovery phased are all modeled, and give results consistent with safety analysis data for a 100% break. With stand alone ECCS simulation, the changes of flow and pressure in ECCS can be observed. The operator can study operational procedures and get used to LOCA in case of the LOCA. Practicing with malfunction, the operator will improve problem solving skills and gain a deeper comprehension of ECCS. 129

INTRODUCTION

A large pipe break in primary heat transport system (PHT) in CANDU-9 nuclear power plant can cause a severe accident. As soon as the break occurs, the reactor power increases rapidly because of positive void reactivity. This increase during blowdown period is arrested by fast reactor trip . However, the heat buildup after reactor trip still continues. Due to loss of coolant in heat transport system, the fuel sheath temperature rises. Ultimately, it would induce core meltdown in the reactor. To refill the fuel channels and remove residual heat from the reactor fuel, Emergency Core Cooling System (ECCS), one of four safety systems in a CANDU-9 nuclear power plant, will be initiated after receiving Loss Of Coolant Accident (LOCA) signal. Mistakes made by human error or equipment failure in any stages of ECCS may trigger huge disaster in nuclear power plant. For example, if gas isolation valves cannot be open when LOCA signal is generated, the differential pressure between ECC and PHT is not adequate to burst rupture disks. Therefore, there is no flow to refill fuel channels.

To evaluate ECC operating procedure, to observe the response of the parameters, and to improve the operator skill solving the unexpected problems, the simulation of the Emergency Core Cooling System (ECCS) in CANDU-9 nuclear power plant has been developed by using a simulation development system, CASSIM. A large break pipe near Reactor Inlet Headerl (RIH1) has been simulated. The graphic user interface has been developed as well to communicate interactively with user.

SIMULATION METHOD

The simulation of the emergency core cooling system, which is shown in Figure 1, for a 900 MW CANDU-9 nuclear power plant has been developed using an object oriented programming language. First, the process equipment was modeled to represent the equipment after the scope and description for ECCS has been defined. Then the hydraulic network model was built to represent the dynamic flow and pressure in the system. Figure 2 shows one example of nodal diagrams namely NHR. These two models were merged together to form a working model. After that, the control 130

system model was added to the working model. To observe the power change during the break, neutronic model was created. Moreover, thermalhydraulic model was built to observe the fuel sheath temperature. Finally, the graphical user interface screens were built with LabVIEW to display the necessary parameters; flow rate, pressure, temperature and to control any equipment by operator. Figure 3 shows ECCS user interface.

Reactor Building

<3as Isolation VaJvea

HMt Sf fZf ExchangeraT J

Recovery Reoovery Pumps J Nation valve* Pumps ump Sump Isola

Figure 1 Emergency Core Cooling System'[21

COMPUTER CODE

The thermalhydraulic of primary and ECCS circuits are simulated by using the computer code, CASSIM. CASSIM is made up of a dynamic linked library (DLL) of generic algorithms, 131

consisting of supporting FORTRAN subroutines. Generic software algorithms are developed corresponding to physical plant components such as a process, a logical unit, or equipment ( e.g. valve) .

NHR X05

TO HEADER TO HEADER

NHR N15 NHR Nil NHR NI2

NHR N13 NHR N14

NHR N10 NHR N09

NHR X03 NHR X01

NHR X04 NHR X02

NHR N19 NHR N17

NHR N08 NHR N04 NHR N23 NHR N21 NHR N02 NHR N06

NHR N07 NHR N03 NHR NO I NHR N05

NHR N22 NHR N20

NHR N18 NHR NI6

Figure 2 Nodal diagram for NHR. 132

CASSIM is a simulation development system based on three components: -CASSBASE: the database engine which is used to manage the library of generic algorithms, and to connect the blocks in a model together. Moreover, it is also used to manage the hydraulic flow networks.

Figure 3 ECCS user interface 133

-CASSENG is the real-time simulation run-time engine. It is used to make a calculation from the model data file. The simulation can be controlled by using command such as "freeze", "iterate", "run". CASSENG supports Dynamic Data Exchange (DDE), so that Lab VIEW is used to represent the plant's simulated data via its graphical user interface.

-LabVIEW is the user interface development environment for the purpose of developing user-friendly graphical user interfaces for simulator applications. Graphical screens with buttons, icon symbols, pop-up dialog, etc. can be created using LabVIEW for Windows. Through either DDE or TCP/IP, user interface screens request data from the simulation running in CASSENG for display and monitoring. SIMULATION RESULTS

From the ECCS model, the simulation is run at 100% full power in steady state condition. Fuel sheath temperature in channel #1,2,3,4 is 310.64, 310.68, 310.74, 310.68 c , respectively. The pressure at ROH1 and ROH2 is about 10000 kPa. These fuel sheath temperature and ROH pressure are approximately the same as the values from existing CANDU-9 simulator. Then the malfunction button is push to insert 100% pipe break malfunction. The major event sequence for this break is shown in Table 1. Table 1 Event sequence for 100% break near RIH1

Event Time (second)

Break initiation 0.0

Reactor trip 1.0

LOCA signal 15.0

Open gas isolation valves and RWT valves 28.0

Rupture disc RD1 bursts 33.0

Rupture disc RD2 bursts 33.0

Rupture disc RD3 bursts 33.0

Rupture disc RD4 bursts 33.0

Rupture disc RD5 bursts 33.0

Rupture disc RD6 bursts 33.0

Start recovery pumps 48.0 134

Table 1 Event sequence for 100% break near RIH1 (continue)

Open sump isolation valves 68.0

Close all gas isolation valves 115.0

Open low pressure isolation valves 126.0

The reactor will be shut down 1.0 seconds after the break initiation. The reactivity change is

emulated , rising up from +1 mk to +4 mk in 1 second after the break, leading to reactor trip due to

high neutron log-rate. From existing CANDU-9 simulator, -84 mk reactivity is inserted to trip the

reactor in less than 2 seconds. Simultaneously after the break, fuel sheath temperature increases

significantly because of increasing reactivity which increases reactor power. In addition, loss of

coolant during the break reduces the capacity to remove heat from the reactor core. More importantly,

heat transfer coefficient decreases sharply due to the effect of the higher coolant temperature. As soon

as the break occurs, there is the reverse flow from ROH2 back to the broken fuel channel. Due to the

loss of the coolant through the break, the flowrate in the fuel channels decreases until it is less than

100 kg/sec, which takes about 14 seconds after the break, that will result in decreasing the heat

transfer coefficient from 36.362 to 0.5 kJ/sec- c in 10 seconds. The fuel sheath temperature will rise

up from approximately 310 c to 937 c in channel #1, the broken channel. Figure 4 show fuel sheath

temperature in channel #1-4. CH1 CH2 CH3 CH4

200.0- Fuel sheath temp, in channel^

Figure 4 Fuel sheath temperature in channel#l-4 135

As soon as the break occurs, the pressure at ROHl and ROH2 decreases very rapidly because of depressurization in the PHT system from 10000 kPa to atmospheric pressure in less than 10 seconds. In reality, the pressure should drop very rapidly when the break occurs to the highest local fluid saturation pressure 4. Lower than alarm set-point at 7000 kPa, this pressure will initiate alarm signal showing ROH2 LOW PRESSURE alarm following by ROHl LOW PRESSURE alarm on alarm bar in 2 and 6 seconds, respectively. Figure 5 shows pressure decreasing in ROHl and ROH2.

R0H1 Pressure 10000.0-1 R0H2 Pressure I 8000.0- 6000.0-

4000.0-

2000.0-

0.0-

Figure 5 ROHl and ROH2 pressure after 100% pipe break

Receiving two alarm signals, LOCA signal is initiated showing LOCA alarm on alarm bar in 15.0 seconds after the break which is quick enough to send the signal to open gas isolation valves and reserved water tank (RWT) valves. After the break 28.0 seconds , all RWT valves and gas isolation valves will be open. The flowrate of the water from reserved water tank to reactor building via RWT valves is about 3820 kg/sec. After gas isolation valves are open, the pressure in water tanks increases from 200 kPa to 6.7 MPa due to gas leaving from gas tanks. The pressure upstream of rupture disks reaches 2000 kPa. Rupture disk (RD) 1, 2, 3, 4, 5, 6 burst in 33.0 seconds after the different pressure between upstream and downstream is greater than 300 kPa. The water is injected into PHT system. According to the water injected to PHT system, PHT pressure increases to 6000 kPa and fuel sheath temperature will drop rapidly from 937 c to about 450 c and slowly decrease to 236 c. After the break 48.0 seconds, recovery pumps PI and P2 will be started in circulation mode waiting for the 136

signal to open sump isolation valves. The signal is generated to open sump isolation valves after the

break 68.0 seconds. The pumps will operate in that mode until the water level in one of four water

tanks reaches the level at 10.0 m in 115.0 seconds after the break and then gas isolation valves are

close. Consequently, the pressure in PHT will decrease to about 1800 kPa. The signal to open low

pressure isolation valves is generated 126 seconds after the break. Flowrate to all headers is about 150

kg/sec. In recovery phase, according to reducing in flowrate to headers, the fuel sheath temperature

will continue to go up and remain constant at 350 °c.

CONCLUSION

This ECCS simulation is a stand alone simulation which can only implement for analyzing

the large break near RIH1 according to the method used to created the network modeling. In this

model, it is found that the calculation results from network solver, such as pressure and flowrate in

ECCS are consistent with the values from design data of initial condition in normal operation and for

recirculation mode in recovery phase. The deviation of these result values is less than 10% from

design data. Moreover, for monitoring and operating the simulation, the interface of the calculation

engine and user interface screens performs very well in real time mode.

ACKNOWLEDGEMENT

The author wishes to acknowledge financial support during this project from Thai-Canadian HRD project.

REFERENCES

l.M.Y Ohn, J.H. Choi, S.H. Jung, M.R. Lin and R. Holmes. CANDU6 ECC line break analysis: The Fifth International Topical Meeting on Nuclear Thermal Hydraulics. Operations and Safety. China, 1997. 2.Atomic Energy of Canada Limited. CANDU Emergency Core Cooling System Flowsheet 69- 34320-001-01-FS-O and 69-34320-001-02-FS-O. Canada. 3.K.Y. Lam and M.J. MacBeth. Multi-purpose use of the advanced CANDU compact simulator: The Fifth International Topical Meeting on Nuclear Thermal Hydraulics. Operations and Safety. China, 1997. 4.0wen C. Jones, Jr. Nuclear reactor safety heat transfer. Hemisphere Publishing Corporation, 1981. TH9900015 TH9900015 137

PP/HDPE

vmaiu s-nuuerc uas vawu fiaisnvienfrmpn 10520 f 3269982-4 Ivntm 3269981

10, 20 uns 30 kGy

30PP:70HDPE

(Twin screw extruder) ^fnilJt11101JH0-3m?WflfJJminiJ 50

30 kGy HDPE

HDPE 30 kGy wo

HDPE

Radiation Improved Mechanical and Thermal Property of PP/HDPE

Malinee Chaisupakitsin, Chatwali Thammit and Chaivat Techakiatkul Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Lardkrabang, Tel. 3269982-4 FAX : 3269981

ABSTRACT

The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved. 138

i/yivn

iVmiJ0' (Polymer blends) cK-31S;UllV<0Sm0?NPfJJ1OS;illvifni'UTll0^

(2 3) os iation) ' EJ

<4) sTi'ii^ PP:HDPE iilu 30:70

l.

1. 2. voB'mo'Ma'u (PP)

3. Iflf 9-wmj'Ha0Ul'Hai1SUUllmiUUinaa'}M'U0Ufi (Twin screw extruder)

4.

5.

6.

7. lfl1O^0P110'UimSilflf 0-a0?imiJ?'3U'n4llJJimiJ (Compression Molding) 139

8. A IR, DSC, TGA

9. ififg-jvifipf Xim-mBUm (Deflection Temperature Under Load, DTUL)

2. HDPE

160, no ims 180 ^ 10 kGy, 20 kGy ims 30 kGy

3.

HDPE fTu PP Twin screw extruder 160, no, 180 tms 180

PP30 ffTU

HDPE 7Ofni4 HDPE 70VI1M HDPE 70ttlU HDPE 70ttTU

(OkGy) (10 kGy) (20 kGy) (30 kGy) 140

Infrared Spectroscopy (IR)

IR HDPE 10 kGy, 20 kGy ims "* (5) 30 kGy BS; I 30PP:70HDPE

IR Vt* HDPE

(% Gel)

¥ HDPE HDPE PP Jf 141

PP, HDPE ims PP:HDPE

%Gel ttfmwnilJ'UeNijff (kGy)

0 10 20 30

PP - - - -

HDPE - 16 16 24

30PP:70HDPE - 5 14 14

1 3.1fman%n$OJ'HfJJJm? Ha9iJmai (TJ (Tc) fllEltiifrijfl Differential Scanning

Calorimetry (DSC)

DSC nun HDPE Tm mnnHDPE YI

T IJO-J HDPE

• «/

IIQ^HDPE vnm TC "ue-3 HDPE

30PP:70HDPE m Tm "UQ^J PP

c liliSu 169 HDPE

HDPE PP

HDPE HDPE lu PP ueatu

PP HDPE

HDPE

Tc iluviuin HDPE PP (Co-crystallisation) (ilJ 2a) ef^^4V^OalU0?W?TJJ^S HDPE

PP

PP QiJ 2b, 2c ims 2d) HDPE iyiilM ppiiitninioinpiHannunu HDPE 142

(Tj iias (Tc)

Tm(°C ) vifnuJimj?-^ (kGy) TC(°C) vifnui (kGy)

0 10 20 30 0 10 20 30

pp 175 - - - 122 - - -

HDPE 142 152 153 148 120 119 118 118

30PP* 169 169 169 170 121 126 125 126

70HDPE* 141 147 144 142 121 119 120 120

r HDPE*lunofuuoiwtTJJ 3OPP:7OHDPE

121.0

PPIHDPE 0 kGy 119.4

126.1 120.1 PPIHDPE 10 kGy o 125.0 PPIHDPE 20 kGy 119.9

126.2 PPIHDPE 80 kGy

Temperature (°C)

DSC B 30PP:70HDPE

8.2 miflntnf1T5nwinv»P10fniW10W(?lil!Ji11flSn Thermogravimetric Analysis (TGA)

i TGA nini HDPE os;vivifmu!'oi4l^-3nin PP uas^infu HDPE vmio

10 nas 20 kGy tisviufmul'a'uipi'^^uwijjaifi'iiiwamtiijn'ii HDPE \,vm\ 30 kGy viijfmjjl'aui^iwia^ eiwmwnninpi Chain scission C

l HDPE viufmjjfoui^Qoa^ nwedi^linwujfi'-jff^n'ii HDPE 143

120| Pure PP (289*C) Pure HDPE 0 kGy (436*C) Pure HDPE 10 kGy (461*C) Pure HDPE 20 kGy (466*C) Pure HDPE 30 kGy (4S8*C)

Temperature

100 200 300 400 500 600 700 ("O TGA 1)0-) PP lias HDPE

30PP:70HDPE tnnws'UQ'j TGA YHJII mawmj PP a-alu HDPE

HDPE ha-3 OHfl 436 °C llJllIu 357 °C) lUQ^'Oin PP^Se^iilJ

HDPE ff-JNaliiiliJjifufjnjjiilwwanlij HDPE

HDPE

HDPE

HDPE

PKHDPE 0 kGy (367*C) PKHDPE 10 kGy (394*C) PPIHDPE 20 kGy (440*C) PPJBDPE 30 kGy (446*C)

Temperature 100 200 300 400 500 600 700 (*C)

TGA 30PP:70HDPE 144

3.3 Deflection Temperature Under Load(DTUL)

DTUL wim PP yivifl99,tuwn{mVhl>iu9Ufli1&T-an'i'iHDPE PP 3

ni (Tg) fj-anri tfimuwBiujjeiVmu 30PP:70HDPE

DTUL nun HDPE munii«ien^nfnm^9wafls:THVh DTUL ?Nfm HDPE HDPE vimums'vnen^'vi'ilMfh DTUL

3 uawwafmflntnena DTUL

DTUL (°C) ^fniJJl'UJJl-3^ (kGy)

0 10 20 30

pp 88 - - -

HDPE 59 - - -

3OPP:7OHDPE 64 70 65 67

4. 4.1 (Impact strength)

HDPE PP HDPE

HDPE U9-3 HDPE 1w PP

fllWYVUmilPimiiWiZUWf) (kJ/m ) ^fniUlW^^ (kGy)

0 10 20 30

pp 1.7 - - -

HDPE 17 - - -

30PP:70HDPE 4 4 3 3 145

4.2 mi11flfr01JflllJJ11l4Ti™fl0H1^Al£Hfni9^ Tensile Testing Machine

PP flSJJfn Tensile strength at yield, Stress at break UHS

Modulus aufni HDPE fhufmooasmittaijo-a PP ssphrm HDPE thmuwomuoiwmj

3OPP:7OHDPE snflWflfmYlflflfBlJyiimfh Tensile strength at yield lias Stress at break 1)0-3 • i if phgdi-avifj HDPE Hnufnifliejf^^flsmu^uwiJjfmjJi'uiJ'ue-if^

Il4 HDPE 8WH00 Tensile strength at yield lias Stress at break cispia-3iw0fnniJi'uiJsuo-3f^m'W}j^'u tTivifii Modulus Stress U?ifiil'8£ias;fni«Pl^ll?ias;fmJJl

30PP:70HDPE

Tensile Stress at Break Elongation Modulus

(kGy) Strength at (N/mm2 ) at Break(%) (N/mm2)

Yield( N/mm2) pp 32 30 14 687

HDPE 22 3 64 110

30PP.70HDPE 20 5 9 509

10 16 10 5 415

20 17 17 4 474

30 20 20 5 543

v HDPE nu HDPE IR fls

a/ V

V (Tj j PT^ 146

thmiJfllJijiinhrmmithmiJfllJijiinhrmmiffh Tensile strength at yield, Stress at break

VIHDPE Iiii&hijmittiul^tm^n'heheu'uvi HDPE wiufmtiiofm 10 kGy ue-ai^ffmij'uuiilu 20 ut\z 30 kGy HTu HDPE

HDPE Hm8iwituis;'H'3i-33OPP:7OHDPE

fjtumf?it4

ai

lenan-5

1. Chanda, M. and Roy, S.K., Plastic Technology Handbook, Second edition, New York, Mancel Dekker, Inc. 1993, 561-564, 823. 2. Richardson, T.L., Industrial Plastics : Theory and Application, Second edition. New York, Delmar Publishers, Inc. 1989, 407-415, 521. 3. Reichmanis, E., Frank, C.W. and O'Donnell, J.H., Irradiation of Polymeric Materials, Second edition, Washington, American Chemical Society, 1993, 1-8.

4. nqyftn fltnmi. 2541. sYiSnn'uo-JiniijmwftJJim^SS

5. niiM au?^vi5 ims QJJI

2535 ViWI 108-192. TH9900016 TH9900016 147

150 nTaTififl ihmiJifrH

Kiltyijqa* uasftaii»uaftaii»m lo fltuciimrn Idyll tTfinjumfiTviTaoiiifjj^na intnniflfnflyntm q.iSculwiJ 50300 # rnntfui«MiasYTwuiiYiinfntr«rcuasiyif)Iulao uTnintnatiiStMiMU 50200 nifnvirlnW musiTitnffiflw? UTniKitnflMWjlid 50200

150 nlaliaw

350 8

1^niwufifjQi'Hfj2mjJD0-au«in«lfl3Jin'U 65

A 150 kV Isolation Transformer for a Neutron Generator

Chanchai Dechthummarong Pijit Pr a turn tip Chome Thongleurm

Pathom Vichaimongkol* Rachain Charoennugul* and Thiraphat Vilaithong*

+ Department of Electrical Power, Rajamangala Institute of Technology, Chiang Mai 50300

# Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai

* Fast Neutron Research Facility Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai

ABSTRACT

The work aims at the design and construction of a 150 kV isolation transformer for a neutron generator. The transformer windings are designed to use cylindrical layers with circular enamel copper wires. The insulation of the dry type transformer uses the epoxy resin for encapsulated winding. This insulation is non-flammable under temperature 350°C and the breakdown voltage is 10-18 kV/mm. This insulation is suitable for insulating high voltage. The design of provides the temperature rise of winding not exceeding 65°C for protection of the cracking of epoxy resin due to the expansion of winding. 148

UT1W1

tninioms

3 MeV

2 2 3 ,H+ ,H 2 He + n

14 MeV

2 it 100-150 kv ii-aTmforn0i0'u( 1H -ins)

0141VI -W/7//////7/////777777,

220V 50 Hz

150 kev 149

mmonisnuniiiiJi qsri

uw fjvtsntmifmfoflnu iw trssin

220Vac 1M as fliUfJJJ

^

150

Araldite F lias; Hardener HY905 U04 Ciba Speciality

Chemicals (Thailand) Ltd. 150-200 8^ff1le)fai5t)i1

20 SWG, 18 SWG uas; 16 SWG 150 l m\.

l JJJJ. jms; 1.5 uu.

10 150

(0 20 mbar Araldite F lias Hardener IKIS mowu i50°c soTm

(U)

flw 150 nla ii5-i«ijn«fr0ij 5-10

no

(i)

^

nomi Hftfl

1 110/130/240 V

2 uf^«wrj«8fj2 130 V

3 R-31UQ 50 Hz

4 1 -

5 fnsumJjjjfiS 2.73/2.30/1.36 A

6 2.30 A

7 ma-ai'Htli 300 VA

8 fmugsymon)fus1iJ2iMa« 6 W

9 fmjjgqjmouQisSI'Hafl 15 W

10 ui-3«

00

45 JJJJ.

- ^=63.6 UN. T 45 111J.

fi 3

B-H Curve (Lamination Factor) f115

(Bmax) 0^ 1.1 wb/m2

(iii)

FxlO8 N=-

novo , Npl = 220 58U .) # 20 SWG < IV Nsec = 0 V C 1 !130V # 26 SWG p2 = 260?Ou)")||| g #18 SWG 130VO 152

(iv)

mmi\f)nfmumniiuuvmf)i3ZiimzQ$\\i'sii 1-3 A/mm2 [6]

2.07 uas 1.971 A/mm2 20-25 mm luufiasaiu mifho 1.109 v y 1 A/mm2 ^1414 aQ«H j;S'WW^'Hyi«fll11inil 0.656 mm2 was 1.167 mm2 2.674 mm2

(v)

(i)

(ii) v)

(vi

no

150

10

kv/mm [7] 153

aoamstisw

0.8-0.9 W/m-°K [7] ma 65

iv) vii)

11TUO (i) H^IQ ni1

90.00

187.00

24.00

452.66 17.00 10.00 44.50

100.00

44.50

100.00 190.00 jiJfl 5 nTM««D0^iHy0uiJa-iimi;is;tispii-3ir| 154

(i 6 (n) 6 (u) om

44.50 o c

/I ! i ! I

100.00 190.00 ! j

44.50 O i O

100.00 190.00

65 uu.

10 JJU. HM mow

(in)

15 ?0JiiT

(iv) 155

(v Aradife F ilt\t Hardener HY 905 Iu0fl51?bu 1:1 80°c

©on 90°c 5-20 mbar [7] 90°c

0-3 15O°C 5-10

m 156

(0

mi

(ii)

8 uns; 9 siiKi 8 im«^o-3fniug«ymoino1wMW0iiiJn4 8 n)

240 « Sfhmi nu 2.12 w ^ 8 v) iilufm¥ifl?r9iiDQis21wafl m

1.25 A i 2.44 w ebu|iJti 9

u^ai'Hfj5i'HU

9 (n) ims(

•Hffamffa 300 VA irlfY 1 50 Hz

imm40

nissiifrSwjjw 1.25 A 2.31 A

LV-E(MD) HV-E(MD) LV-HV(MQ) fmuflfmYiiuno-a'BUQUvtiJOUiJfu 10000 100000 100000 liMiin4Q4n»ufmi4 (kv)

150 60 fmrfiwtu

©PintY'J XI HI 14 Q147011 LV HV LV HV LV HV

220V 118.5V 220V 120 V - 1.25% fmumuYiTmjowflaQfmo.aiwfjS 75 °c 3.36 1.56 3.65 1.44 8.63% -8.33%

U7-aflU01i'WU«lll4cB^0-lMW0lllJa-3 5.41% 9.75% 44.51%

10 157

2.5 3 n 2 1.5 t 0.5

0 o o o o o o to o in o m o T- •>- CVi CM CO Voltages(V) o Current(A)

n) v)

12 T

10 ^-..

8

6

4

2

0

2 3 4 5 6 Times(Hinutes)

n)

jiifi 9

10 158

euMUjniu

wii iim 90 °c sizm*\$nt\w\i\n\iinf\ ihsintu l imn

• v « fl8 8{j^ 50-60 nlaiQawmiiT'U lJ5S;ni1^tT8^fie m^HtfU Araldite F niJ Hardener HY9O5 \\i m^mu i:i mew erii^ifltno^ljJiie fmSfmim

'*iv

a

tilunni 14 vilu^ m8Mif!iifniu«iWYnwt)8^fla'3«^naii5u«'uSfiiminij 1.422 47.i9°c

150 S 300 lie 159

nntmrnhsnift

fjautrifl ewn^Sf

uwun

UQDOUfJIM qQltjU-3fll1 U?yYl Ciba Specialty Chemical (Thailand)

[l] oswwu Qaovi9«j, l, , 2540.

[2]

1,2535.

[3] , mfnvnfnfmu'WIh

, 2528. [4] ^ rlSn« fifusinoiffifTwf, utnintnaoivo^lMii, wui 1-2. [5] A. Stigant, J & P Transformer, 10* Edition, Buttor worth & Co. Pubbishing, 1973. [6] H. Banspash, Transformer Design, Lecture Notes, Thai German Technical Teacher College, Bangkok, I9, ed., 1975. [7] .Instruction Manual, Araldite Casting and Impregnating Resin System, Ciba Specialty Chemical (Thailand) Ltd, June 1980. [8] Catalogue No. exe 320, Nippon Steel Corporation, Tokyo, 1988. 160 3°§

Burnt Qi^fli qpna ljaiQiffiiHs uas erstm? jim^m nifiTin'CbifiatmYifiIuTcie) fiaisnfnn^ufnfrm 2186782 Ivi5?n5 218-6770

V V

NT.2612 2 friiiMan eniiuin JU RS-232, IEEE-488, BCD myanaiainaon > 150-9600 Ci

10

1200

1 y 1 Hasfn3iT^

An Interfacing System for Radiation Surveillance

Using a Radio Communication Network

Thanakorn Arunsiri Suvit Punnachaiya and Attaporn Pattarasumun

Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University

Tel. 218-6782. Fax 218-6770

ABSTRACT

The development of an interfacing system for environmental radiation surveillance using radio communication network is aimed to improve a way by which environmental radiation measurement is transmitted and reported from the regional area monitoring station network. This also includes an automatic warning of beacon status via the radio link network to the center of environmental radiation control when an abnormal radiation level is detected. The interfacing system was developed by simulating the EGAT radio link network, the NT 2612, and can be separated into two parts. The first part was for a mobile station which can manage the output data from the radiation measurement system in the standard form of RS- 232, IEEE-488, BCD and analog signal. This was accomplished by modulating the signal in selected baud rates ranging from 150 to 9600 bps using an economical radio packet capable of identifying and recalling the station code number. The other part is the linking system between the output data and the microcomputer equipped with a software to manage and evaluate the data from 10 surveillance stations for convenient handing of data output, statistical analysis and transmitting warning signal. Data transmission was tested using a baud rate of 1200 bps and was found to contain no detectable error when digital signal was transmitted while analog signal transmission resulted in deviations of less than i 0.003%

The development of this radio link system provides a future trend for the environmental radiation monitoring network for countries with nuclear power plants or neighboring countries needed to continuously monitor for any abnormal radiation level in the environment. In case that the radiation surveillance system detects a high level of radiation, a warning signal will be transmitted and appropriate actions may be immediately exercised to control impacts of radiation on environment and living things according to international guidelines. 162

l. imih

ivu y y mitta (incidence)

v y

y y y ui •wi9iJin-3'3i-3HH

y y

on ©ag 163

y v

2.1

2.1.1

y v

(pager) 164

0 165

2.1.2

*'ci*'

ivu

HPGe 2 nmj

fi. Nuclide Specific Monitor HI911

y y

2.n. y numi'm

1J. Doserate Monitor

2.u.

(indoor) 2.f). irn

aim" BCD, , RS-232

UIJU radio modem 166

I

fl. Nuclide specific monitor II. Outdoor doserate monitor

fl. Indoor Doserate Monitor

(3) 167

2.2

A « a/ a/ a/ ,=* z1—N lfl5Q^JJO DATA MICROCOMPUTER

niJ (packet) ?Qunin'mY

RTS "polling" 168

TO RADIO MODtM

NT.2612 169

(Mcs-5i)

2. 5i;iJllflJD9Jjafl1f1lfif9>J09W5-3fl'!'fllJ?U1Qi5^^9n^ q Win fm51JU9JJ£MlJlJ RS- y • v i y y y 232 to ic iu9i MAX232 ymtu'miij'ugija fmrumgiJEHiiJiJ BCD y * IEEE-488 Iv IC iUOf 74245 2 Iffi liTHUmfl'UljVlirlg? (Buffer) & y

CPU MCS-51 m-Jij'n'ugjyfi (Data Bus) ic iijg? ADC0809 iiTHa4i^tiiJa^

3. f115if)?)951J-Pf-3

MAX232 Wf)?19H1\4yn-3'H91«1 3 U93 CPU fnf)9?l51D9Jja 1200 bps

4.

8155

5. m5rn5i0m9?3fn?tT^altyajiQiui«i5siT4 RS-232 n

LCD

3.

MCSSI

MAX232 fofmentnsiJijfiJimgijmnflss™ RS-232 i5

(radio modem) *ntJ9Vmfm?Y-mfl]GnfU 1200 bps 1jJ

ADC j^ * lJ^ 5 uas 6 170

nlvi 5

|lJfl 6

n. miiit)nnn\j?tfmj A4 A5 171

fl. -a.

4.

4.1 v

12(K) bps

2. DOS V V io tttnw

4.

cross talk 172

4.2 l.

l

2. Jafi 1200 bps ^OlflSlliljlTtinfniWflSWQ^Iv radio modem

5.

Y\ y

*H

6.

1. IEEE Transactions on nuclear science, Vol. Ns-35, No.l, february, 1987. 2. Environmental radiation monitering around tokai reprocessing plant. environmental protection section, health and safety division, tokai work, power reactor and nuclear fuel development corporation. 3. Nuclear and radiation protection system, berthold, EG&G. nuclear instruments division. 4. Winch, Robert G. lekcornmunkation transmissiQa.systems. New York: McGraw-Hill, Inc, 1993. EW5 173

wrHtfahipi tpm i\v*v*istiuz nas IAIV newsiu

218-6782 Ivnmi 218-6770

o ^ 20 nTaomnfiioulQa^ nisiitriui^^ii 10 UIT'UHOJJUIJ?

9.71 nlaeiantnieulinw (La x-ray) 2 0-3 50 mi ^

80

JEOL \U JSM-T220 imsSSlUjnil'UPI^^lOn'K^flWll'lJi'UU ifltlKflfflPnivlvlil^ 20 S'piisjosTii^fnm^lio-aSuwiotJUiifissnfiiiln^vlaiJmoiilaownin^'utnw^ 2 nas; 5 mi 9iijjai^u Wnaitiiamw 60 uivi ffiovlaw Agfa STRUCTURIX D7 rih 2 ivii l^fniunuvpnipimtjunu uois;^fnvi£ii«nia^<«tno 5 V nii 174 TH9900018 TH9900018

Modification of a Cathode Ray Tube for X-ray Microscopy

Vimol Supsongsuk. Suvit Punnachaiya and Decho Tong-Aram

Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University

Tel. 218-6782 Fax 218-6770

ABSTRACT

One of the disadvantages of conventional X-ray radiography is its inability to magnify

image; and thus, fine details of millimeter-size specimens may not be resolved. To overcome this

disadvantage, a microfocus X-ray source is needed; and at present, it can only be generated by

activating atoms of a metal target using electron microbeam from an expensive electron

microscope (EM). The technique is known as X-ray microscopy. This research work is aimed to

modify the electron gun section of a cathode ray tube as an economical microfocus soft X-ray

source in a vacuum chamber. When the electron beam has an energy in a range of 0-20 keV and a

current in order of 10 nA. The beam is focused on to a thin film gold target, a La characteristic X-

ray with an energy of 9.71 keV is generated. The X-ray projection mechanism can be adjusted to

magnify an image by 2-50 times.

To benchmark the modified X-ray microscopy system for its spatial resolution and image

quality, X-ray micrographs were taken on the 80 \xm of copper wire and small fish (GUPPY-

Poecillia reticulata) using the modified electron gun and compared with those taken using an

electron source from a conventional EM, JEOL-JSM-T220. Testing conditions of both systems

were configured to operate at a 20 kV accelerating voltage and a setting of target to specimen

distance and a target to film distance for x2 and x5 of magnification, respectively. The exposure

time was set to be 60 min using an X-ray film type Agfa STRUCTURIX D7. The image quality

obtained from both systems was found to have comparable degree of sharpness at x2

magnification. While, at x5 magnification shown the unsharpness of X-ray image from the

modified system, due to a limitation of spot size of electron beam which is controlled by

electrostatic focusing lens. 175

l.umn

on'Bviu^ mnmanijin (microfocus x-ray source) ^^ (x-ray microscope)"

(cathode ray tube) (soft x-ray

uuagB

2.1 ^ 176

(penumbra, [l]

x-ray source

specimen

film- t P

nJvn

p = w (d,/d.) .(l)

p flB

w

d2

i

^ (scanning electron microscope , SEM)

cHfaflfl9-3^fiyi11ft'UQmn?11Q'UHllllY11TUITSclf';2f'U (transmission electron miscroscope , TEM)

(M) iiuetjmj [2] 177

M = b/a (2)

b =

a =

[vj. filament

electron beam

r\\r\ 2

electron microscope )

ma

5-io

soft x-ray) 178

i

HT. CRT cooling

power supply (electron gun) system

x-ray vacuum » projector system

vacuum chamber -f

x-ray image

recorder

3 ?TTU m n. I?l5in ( Toshiba ) 114 5UP1(F)

6.3 nisiim 0.6 1.050 lim ti 25 nla 100 lulfiiiiauiiiJi

•u.

(vacuum chamber)

evaporator) UO^UI'yvi Edwards 114 306

30 icBi4WHj(ni tit 36.5 i io"5 viai

90 14TTT

diffusion pump ) ^^0^t^^0^tni^l14113JniJ1s;iJlJ'Hfi0mn lU( cooling system )

18 30 179

fi.

^ "A Simple X-Ray

Microscope for SEM" [1] •n-3^m9lll1t(lJm!JlJWf11J0-3ri1idifJniVI^1^lfl1fl1s;i)lJ^!)S;'W9JJUTUU 5

L-x-ray( 9.71 keV [3]

-3.

ui^vi Fuji in FG

Orthochromatic llJ1tJUmtnjniJrlaijdit)fn'W5^m9n(!Kn)a^ Agfa STRUCTURIX D7 "Uliifl 5.9 x

8.2 9nmicB'uwiJjfi? in^piim-3iilv!iivnpi 2.5 x 2.5

-HT 220 filament power supply V cathode grid switching high voltage focus power supply power supply astigmator

x-ray projector

2.3

2.3.1

l. 7)

2. JEOL iu JSM-T220

3. 5)

4.

ion sputtering nWlATUTU 15 180

5. uwuvl a uri 9 ia Fuji in FG orthochromatic Agfa \U STRUCTURJX D7 V 6. fh 0.08, 0.12, 0.15

2.3.2

2.

3.

io 5 YID? 6)

4.

n "mafias: fif 3

5. 60-90

6.

7.

target lock

spring target holder

x-ray chamber 181

Jl

3.

ion sputtering 15 IIIYl 350

5 ivh 10 n. ,11. ims;|il^ 11 n., m.

5 mi 12 n. tins; u. 182

350 nm

Milli Kill

15

I mm

n. x 2 , rhfaaViiitntJ x 3 x 5 , rhtUBWutntj x 3 x 6 , ncnditjfnn 60 ^ x 15 , naidifj/nn 60 mvi z\

am 09 wiumumu' si x y Win SV MLURLpLUti 'SIX e X (11IJIIWQN3LU ' g X r)llJM.Lt/nilJlUmU ft, e x fjindwec-uLu' s x u

\A\ll

\xin 09 'six win 09 kALURiaiuti' 9 x

£ X ' S X QLUM,LU(3L(3(ttaLU 'Hi £ X (JLQIVW8MiLU ' Z X RlimitfGlfmC-UlU U

C8I 184

4.

4.1

4.1.1

25 niaiifisn lii

< 25 niA9mn$ni9'u bfi?)' 20 nA

4.1.2 nT3l?l1tJJJUW'Ull]nrlaUin^Ua-aV19-3^1 (Au) ftlUlt ion sputtering ^Ui^fl'vi 350 V

im 15 mA U^illH•U3^^4 3 ink ^9 vJafwiii (formvar) tjJfn (mylar) lt?is;1um (mica)

sputtering

4.1.3 350

15 keV Ma x-ray line 1J9-3

20 keV

9.71 keV Bremsstrahlung

Bremsstrahlung

4.1.4 Fuji in FG orthochromatic

Agfa STRUCTURIX D7

4.1.5

2 mi

4.1.6 v spot a-3 tu 185

%f 4.1.7

4.2 •uoifT'ueim 4.2.1 (electromagnetic

5.

ims

6.

1. 15WH C-jfiasif^ ims m niflnifCUmfifo^yOQflWQYIEJIfn^flltlfi^mfl^lfiy tl^ 2Q1JII^ 2(2535):107-137. 2. Emmett F. Kaelble. Hand Book of X-rays. New York: McGraw-Hill Book Company, Inc., 1967. 3. Yada, Keiji, Takahashi, Shoichi. Target Material for Projection X-ray Microscope Obervation of Biological Samples . J.Electron Microscope. 38 (1989). 186

CM mnicu

2/

en in? ISO 11137 IB^ l imufnsi'HiJiinfuf'JiT 25

25 uns; 50

20 - 25 n

Modified Lowry 10 - 50 nininiovniii

In ifi TH9900019 TH9900019 187

Radiation Sterilization of Natural Rubber Examination Gloves

Suwimol Jetawattana , Nuchanat Na-Ranong , Varaporn Kajornchaiyakul I/Biological Science Division, Office of Atomic Energy for Peace Tel. 5795230 ext 581 2./Rubber Research Institute, Department of Agriculture Tel. 5798556,9405712

ABSTRACT

The sterilization dose setting by ISO 11137 method 1 was conducted for natural rubber examination gloves provided by a local factory. The suitable sterilization dose for an average product bioburden falls between 20 - 25 kilogray. Maximum dose of 25 or 50 kilogray results in no changes of tensiles and elongation at break.

Samples of examination glove were irradiated using various doses between 10-50 kilogray. Analysis of soluble protein content using modified Lowry method was carried out and the results revealed that irradiation did not affect the decrement of soluble protein content in this case. However, thin film samples were prepared in laboratory and treated in the same procedure.The results were also the same.

The results did not show any correlation. Two factors are possibly presumed : unconsistency of samples and the irradiation of finished products could not affect those soluble proteins in rubber gloves. 188

13 n.ft. 2537

30

V 1 25 ninmia (kiloGrey, kGy) vtfa

(D|o) Hiamii'BK^ef^niT 25 nlfimiU lUJnuSmiH biological indicator (Davis

imsflfUS, 1984, Doolan Ucl^FlfUS;, 1985, Darbord Uc\Z Laiziers, 1987, Gazso WflSflfUS:, 1990,

Chengyum UtiSfifliS;, 1993) llUlimiHi-J^lJiinfU 25 kGy ^Su

0?1EJ1^a (ISO 11137,1995)

AAMI (AAMI,1991) uiK ^S'ua^a'viiili-iiej v v , uifui^oiJusiloiJiijjfiu imsmi'ni sterility test (Sterility Assurance Level, SAL) Y\ 10"21

10" lifU 106 'H3JlfJ^l9fllcT^i)5;^lJNS^JT'flJcVl^i3JlJcia^d0iji'WEJ^ 1 Iviai^?^ VtiflS

i

(Turjanmaa lia^fltus;, 1988, Czuppon,1993) imslumilJiSW International Latex Conference:

Sensitivity to latex in medical devices lull 1992

iiu imwifn vlunnwa pJi-smir ttni^oimm \nfifmflnm

Kume UHS Matsuda (1995)

t^ antigenicity 189

*iwa^fifucvi

1. pmrniCflfaminUin Cobalt-60 (Gammacell 220) BfinmillHi^n (dose rate) 14.22

lHuifln^fhej Radiochromic film FWT-60-00 91l4f)1flllJJ

SHIMADZU uv-3ioip fWi^ay 605 nm.

2. f!-jfiafJ1-3ffTHfllfni?in\)'iifl (rubber examination gloves)

J inimi9fhwmi4 4 fi?-j fiT^as 3 line Iflfjimieias; line line a^ 5 na'0^ q

100 5u

3. 0TH11iat)^lf9?S'U'ni£J (0.1 % peptone water, plate count agar, tryptic soy broth)

4. in?flS;aifJ^14fllifniYlPl?T91jllJiWV4 (0.15 % w/v Sodium deoxycholate, 35 % w/v Trichloroacetic acid, 1.6 %w/v Phosphotungstic acid, reagent A:Alkaline copper citrate solution, reagent B: Folin-Ciocalteau reagent)

5. mfawflflaufn'iJjfhimi'WweM'u (LLOYD LRSK)

1.1 YlfltT91Jfni3JPl'TUtl1-3^ (tensile) (elongation at break)

line as; 18 5i4 • 25 uas 50 dose

control 6 190 [ .'i '-77

(1) dumpbell '0114114 3

20 +/- o.i UJJ.

24

(2)

500

(3)

1.1.2 (l) (2) 70+/- 2 °c nin 166 /- 2

fnujtlfiifiaui?) (fsoat) riBvimiiJui^ Iduatinii 21 liJuaEJflTI 700 liruatifni 16 Ijiijaonii 500

, FOI)

pair-t test

1.2

line c\t 60 514 i 25 lias; 50 1fl£Jll?ins; dose V 20 U control 20 ?

(l)

IOOO (2) 2 U-\Y\ 191

2. iso 11137 imi4fmKiH3Jiaji^ 25 nimnstrvhlil (iso,i995) Dose setting method 1 : stage l menis^ufni •uiui^inBtilu l ) stage 2 fl11\)'H1lliinflU'traiJ

hi pi4YiiaYHWifl?n standard plate count) stage 3 'U1fl'liaao

stage 4 KfhOEtHQfl 100 SuDifi line polyethylene ^lla0flll0Ui1llfJ1£)74^«nJJ verification dose ^fiTHVI*! UPIT111 sterility test fhfJ soybean casein digest broth iJlJ^ 30 °C l9\4nm 14 1114 lJ?JJ1fU f^S'Mifli'lJi)?^i)S;Pia-3afi1l4(K1-3 verification dose +/- 10 % ims&nSphodniM H?i positive Imnii 2 tw%tifim\M?\f\T)\h sterility test Ifl

stage 5 m0f1lJ7U1fl47-3^^mjJlStYJJffTH1Um7lJ?i0fllV0pniJNam7Ylfl?f0lJ sterility test

•H1f1fniVlfltt01lfnjJ method 1 1m2l4iiJ(?n3J£lianTHV4fl

method 2 (ISO11137,1995)

3. ^fiyiiJiU1fwllll^1l4

PISf1Q42;, 2540)

3.1 vJIEJI^^^iefJi^ti^^QfJI^^ 10, 15, 20, 25 , 30, 35, 40, 45 H(\Z 50

3.2 flnfuiliflutniJYifisfnfJinlflf'ntiinna'u limum 20 ml.

7x7 iwameii MiTnilisinflj 1.5 -1.8 niw iilunm 3

37 +/- 2 °C l^JEJIPlitJWaVlfin 30 VITVl

3.3 ili^a^mcn^i^iiiJiiw^fmiJi^ 3000 g, 15 i4ifi mai 1 V 3.4 141 solution itTJJll^UfiifimaPlfl^^fia'uilJl^'U^'U

0.4 ml. nJB^ 0.15 % w/v Sodium deoxycholate (DOC) 0.4 ml. nja^ 35 % w/v Trichloroacetic acid (TCA) 0.6 ml. IJa^ 1.6 %w/v Phosphotungstic acic (PTA) 3.4 14i1llill4^fniJJlK 6000 g , 30 192

3.5 c\ZQ\~\V?\Zf)miYl\f\f\''W0.2M'NaOH lml

3.6 lflimi5fJ93Jfl

reagent A 0.3 ml. b Alkaline copper citrate solution

reagent B 0.1 ml. Folin-Ciocalteau reagent 15 "unfi

3.7 r\ 750 nm

3.'8

, Fm)

3.9 mm\l standard curve

1fi,Fluka) 1 mg/ml llPl 5, 10, 20, 40, 80, 120, 160

line

l-i, 1-2) aei n^

1-3)

line wini

ISO 11137 iffi 1

sterilization dose ^lWJJlS;?r SJJini 22-25 193

3. Modified Lowry V

line 128.27 - 1294.32 ^ig/g of glove

50 nlninio 25 50

mimon

25 ims 50

2 3 io M?0 io iso 11137 ilvi 1 fls

(D10)

iso 11137

line l*UJ Vff 0 processing v v i3!/u4f0W 194

Gammaceil-220

2537 . 'ih^niffnis'nii^tmntufT'ufliJij'vi 13 (y\.fi. 2537) 1

mw ill aauwiffy 58 -3

Y\ 9 SUTlfUJ 2537. 2. uinng fu 121104, navm leiunfminij uasnnfiifu •u'Dii^onn. 2540.

2540.

. mivwuiwmvri 3817500013

3. Anon. 1991. Process Control Guideline for Gamma Radiation Sterilization of Medical

Devices. Associatetion for the Advancement of Medical Instrumentation. (ANSI/AAMI

ST32-1991) Arlington, VA.

4. Chengyum, Q., Qijian, W., Guangcun, M., Binsong, C. and Yunsheng, Z. 1993. Study on

commercial radiation sterilization of PVC infusion sets. Radiat. Phy. Chem 42(4-6):591-593.

5. Czuppon, A. B., Chen, Z., Rennert, S.,Engelke, T., Meyer, H. E., Heber, M. and Baur, X.

1993. The rubber elongation factor of ruber trees (Hevea brasiliensis) is the major allergen in

latex. J. Allergy Clin. Immunol._92:690.

6. Darbord, J. D. and Laizier, J. 1987. A theoretical basis for choosing the dose in radiation

sterilization of medical suppliers. Int. J. Pharmaceutics. 37:1-10

7. Davis, K. W., Strawderman, W. E. and Whitby, J. L. 1984. The rationale and a computer

evaluation of a gamma sterilization dose determination method for medical devices using

substerilization incremental dose sterility test protocol. J. Appl. Bacteriology. 57:31-50

8. Doolan, P. T., Dwyer, J, Dwyer, D. M., Fitch, F. R. ,Halls, N. A. and Tallentire, A. 1985.

Towards microbiological quality asurance in radiation sterilization processing: the limiting

case model applied to a microbial population having a distribution of radiation response. J.

Appl. Bacteriology. 59:189-194. 195

9. Gazso, L. G., Dam, A., Molnar, A and Daroczy, E. 1990. Determination of radiation

sterilization dose of disposable needles based on D10 values and AAMI recommendation.

Radiat. Phy. Chem. 35(l-3):404-407.

10. ISO (International Standard Organization) 1995. Sterilization of health care products-

Requirements for validation and routine control-radiation sterilization. ISO international

standard number 11137.

11. Kume, T. and Matsuda, T. 1995. Changes in structural and antigenic properties of protein by

radiation. Radiat. Phy. Chem. 46(2):225-231.

12. Program and Proceedings International latex conference: sensitivity to latex in medical

devices. November 5-7,1992 Baltimore, Maryland.

13. Turjanmaa, K., Laurila, K., Makinen-Kiljunen, S. and Reunala, T. 1988. Rubber contact

urticaria: Allergenic properties of 19 brands of latex gloves. Contact Dermatitis. 19:362-367. 196

Table 1 Mean values of maximum stress and elongation at break in each line

before and after irradiation at various doses*

1-1 : Maximun stress(Megapascal)

sampling before aging after aging

Control 25 kGy 50 kGy Control 25 kGy 50 kGy

22.98 22,65 23.60 23.38 21.46 20.32

1 28.41 27,10 26.95 23.77 26.53 25.21

25.88 25.83 25.71 23.75 23.09 25.46

26,76 25.38 25.42 28.04 28.23 27.07

7 24.99 24.84 24.27 23.11 22.40 24.48

25.13 27.41 27.92 26.38 27.56 25.58

24.80 25.57 23.90 23.62 22.93 24.40

3 26.81 25.58 26.66 24.46 22.38 19.73

23.82 24.77 21.85 23.39 20.98 23.43

21.99 20.33 20.92 22.81 24.93 23.83

4 22.10 21.13 21.68 23.56 23.33 22.93

22.10 25.29 24.21 24.75 24.00 25.84

average 24.64 24.66 24.42 24.25 23.98 24.02

1-2 : Strain at maximum load (%)

sampling before aging after aging

Control 25 kGy 50 kGy Control 25 kGy 50 kGy

1450 1484 1508 1420 1421 1342

1 1531 1483 1480 1378 1364 1425

1429 1420 1498 1439 1381 1424

1533 1422 1467 1348 1435 1409

7 1499 1451 1446 1378 1319 1361

1486 1466 1505 1434 1440 1385

1584 1592 1609 1532 1600 1604

3 1646 1650 1672 1581 1578 1528

1540 1571 1583 1516 1516 1545

1562 1481 1514 1499 1491 1474

4 1589 1451 1537 1561 1492 1464

1643 1580 1528 1563 1564 1508

average 1541 1504 1528 1470 1466 1455

*Each values averages from 20 test pieces 197

Table 1 (Continued)

1-3 :Effect of aging condition on test parameters;

Test parameters Dose condition of aging' Test values"

(kGy) before after

Tensile 0 24.64 24.25 0.640

25 24.66 23.98 0.880

50 24.42 24.02 0.505

Elongation at break 0 1541 1470 4.289

25 1504 1466 2.433

50 1528 1455 5.180

Means from 12 lines replicated.

2 paired -t test; df = 11 , Critical value (FOOI) = 2.718

Table 2 Determination of sterilization dose (ISO 11137 method 1)

Sample set Average number of microorganisms/item Sterilization dose (kGy)

I 952.73 24.9

II 1232.59 25.3

II 5213.16 22.9*

IV 860.00 24.7

*The actual dose was not within the specific dose range and the sterility test were not

acceptable; therefore an alternative method (method 2) was used. 198

Table 3 Means of water soluble proteins in irradiated samples at various doses

Dose (kGy) Means (ng/g of glove)*

0 (control) 726.19

10 813.07

15 774.73

20 767.90

25 858.07

30 762.16

35 792.82

40 852.70

45 781.97

50 751.17

"Values are average from 12 lines (C) 201

10900 Tni. 579-5230 WO 511 TmtTn 561-3013

(T.F.) 137 ims:a'm9ui'&mj-8i'& 5

rias acrocephalus) llf1s;ilai^fimflf(Clarias garispinus african sharptooth)

f 1000 H«? ^S§i§ou-137 ut\z ?im®ummi

42 TU ^1%4QfUf)1 T.F. 1?lt)Hl!lJllfl1f10-3 single compartment exponential uptake model 1&h T.F. "UO^WOU-n? i!J1s;£TY150'UI§t)3J-85 limTUrdta mz%n if S 3.2, 2.6, 1.6 lias 1.5 n«si7.nn.: uns o.n, 4 , 2 ims 17 41 (ins 4

uv\ 202 TH9900020 TH9900020

137 85 Transfer Factors of Cs and Sr by Freshwater Fish in Tropical Environment

Fookiat Sinakhom, Pattra Supaokit, Suntaree Kaewpaluek,

Nanthavan Chantaraprachoom, Monta Punnachaiya and Nikom Prasertchiewchan Waste Management Division, Office of Atomic Energy for Peace. Chatuchak. Bangkok 10900 Tel. 579-5230 ext. 511 Fax. 561-5013

ABSTRACT

The experiment was set up to determine the radionuclide transfer factors (T.F.) of Cs and Sr by tropical freshwater fish. Mixed breeding catfish between Thai catfish (Clarias acrocephalus) and African catfish (Clarias garispinus African sharptooth) were 137 85 exposed to Cs and Sr in two 1000-L tanks for 42 days during uptake phase. The

calculated T.F. at equilibrium, in flesh, bone, skin plus fin and head were 3.2,2.6, 1.6 -1 137 -1 90 and 1.5 L.kg for Cs and 0.1 , 4 , 1 and 17 L.kg for Sr , respectively. These results revealed a much lower values than reported elsewhere for temperate environment, however were in accordance with the tropical values as observed by others. The biological half-lives of Cs and Sr in flesh part were 41 and 4 days respectively. It is then imperative that suitable T.F. values are employed in the models to predict the transport of radionuclides within the particular ecosystem and the potential dose to man. Thus the relationship between routine release of radionuclides and resulting dose to man can be established and corresponding release limits stipulated for that particular nuclear site. 203

Mf ennui

M?9

(IAEA) uasfifusnnmSnisilB^nu^fmtJtnnftfbsTn^ita^'Mfr (ICRP)

(pathway)

fqj m f~fi\mt\f\~fi\mt\X\~\'HmSiwhtffl'\%?i$fl nig radionuclide transfer factor (T.F.) R9 ff

T.F. M14111414 tT13J1It1^lflS;m0n1l'imi4ni1imi1S;T1lfl'H1s;'M14tM (site specific analysis)1m'U0-at)in5

[l] umfivnufh T.F. 1i4!n)«ienmfr'f©i4S'-3S95iTi4iJ?jjntu'n€ifT«

3^nini'W9lMi^i'vi5iu imj;m1flo-j'wqfln?5uniiifia9i4^ (kinetic behavior) U93fmf3iT na1nn)9-3ni5JTS;?n! Iins;ni5fl-39{j (mechanism of uptake and retention)

T.F. v t ijm0

itical pathway)

J50-3 " Transfer of radionuclide from air , soil and fresh water to the food chain of man in tropical and sub-tropical environment"

IAEA 204

(Clarias macrocephalus) clf-3l^lJin

African sharptooth)

25-30 tu. unsiiiTnTn 160-270 niu 1000 Hwi ^SiSniJ^siliuii^©^ 500 m? i^inntn 30

0.3 30 iti •wuQi0«7im??0«

2 vita n© SiStijj-137 ims

Amersham

^0

2 MwSfil neutron flux minu3X10 cm .sec

85

-85 205

1000 s 500 30 in

200 ioo nfu

(steady state)

uptake phase Knill 42 114 fm3JTf

V V • •u IK 14 n il a lei9 \1 TH M -3 H« 5

42 QIJ 100 au.im. 0.45 loo au.ifij. it tfiume

450 °c l nfu

8092

0.662 kev lYhfUJ 0.0007 I

0.514 kev m'nnii o.ooio

0.45 1ufll9^ U^TVIiIfltlll Direct Calibration H Calcium electrode rnedel 93-20 imt potassium electrode model 93-19 1193 Orion lhs? 206 ©-0

dissolved oxygen (D.O.)I^tlH portable Aquamerk kid

fmiflfhpH im^pH electrode U0-3 Orion ibi Ion-Selective Electrode #ltllflf9-3 pH /ISE Orion model 720 A ibsmmttnpiufm fmiSfm^K Total hardness \

is; (specific

activity) 1J93 WHCJJJ-137 ims ftvi?9ui5ti}j-85 luiJainunai tiil^injjiinfnflfism

iJfwitUi^ft fll nfliWl \$\

single compartment first-order kinetic process

At equibrium, q( t) = (q)e<,(l~e ) f q(t) = ab(l-e"ab(l-eXX'') (1)

t = ntn (ivi)

q(t) = vife

q(eq) =

•w PI a 9-3 a = b = (steady state)

a/ "I A. = rate coeffcient (114 )

Computerized curve- fitting U0-3 The stastistical Package Sigmastat ( Jandel Scientific, 1994) qf-Jlflnilm? non- linear regression iterative, least square method iPltl The Marquardt-levenberg algorithm.[2]

curve- fitting 2 compartment model using transformed data f\l\i

q(t) = cd-e^") +d(l-e"l2t) ma c + d = (qwimfn transfrom vati m log) 207

(1) 1#TfltrYh back-transform fil c + d (c+d) .". a = (10 -l)/b = radionuclide transfer factor

T.F. lutrumi (i) mefliuiniinfiTHinijiwe? X

T1/2 1/2

In 2 1/2

uptake phase Table 3.1 V V

S it n»3'M^iY0-3l1«n'31Jlll4 nutrient analog

1^ [4]

(Table3.2)

(14O5±378)

(in±33) > ffium© (25+13) im

IT40 (166±27) > iTQ\4n?S;gn (144±83) > PTTUMQ (108±54) (85±34)

uptake phase luwiha

in«3Ufifii$t)3Jjjn(oi;ffsiY Yiu^ liu H

5,6,7] 208

residue Wiu'Mma9nitJMmm?imiJmfWM9fuvi(]jj 450 ° C (Table 3.3)

(2.2+0.23%) > flfaumg (i.2±o.i%) f

(steady state) m'nnu 63ims; 3.1 nlnmnifignaw'gawi «nunimnim j

uasarm9mmj-85 i^iYi'U'ug^iJm (Fig.l)

(25±6%) fnilfnsgn(13±3%) > rfTU'H'U-JSQIJflill (7+1%) (79±4%) > (hufl^fl (13±1%) > fflUHlT^JlJJfif II (5±1%) > ffTUrUB (4+3%) fn?n5Sfliau8-jSiSajj-i37

ffi (A,)

fin T.F. , Tl/2una; X, (Fig.l) iftaivii^nfini'fl'UTTi^BmiimjisM^Qyti wnrni (Table 3.4) im«-3fii T.F. §5 ^S (3.2) > rfiyni^gn (2.6) > aiuMiT^^iufiiu (1.6) ~ ttTUKi (1.5) uQ^iJai^nanSfiiminij 41, 40, 42 ims 33

it 6 I^0\J M0fiilsmfuw$EJii-

5 m'iD9-3fii T1/2 [4] jfitfiufh T.F. •nnn^itu^nuo^ pfMigiiiSou-ss Sfh

y nj0-3{fV159U!5fJJJ-85 1\4fTTUsU0^lJai^nfiilSfin 31,12, 4 UflS 4 -314 WiJjai^ilJ ^iT l me 209

T.F. im1/2 iii9fii'u«0imflfl'9'u[9,io] flsfif^ggiuammnfiWnu (Table 3.5)

Cs Sr References

T.F. K T.F. Ca

12.6±5.1 2.01 0.77 20 [9] 6.1±0.3 6.9 11.9±1.2 3.7 [10] 3.2 19 0.11 49 [this result]

T.F. 11,12,13]

jfivifij T.F. 30-3400 uns;u0-3fr'n50yilt)jj-8l855 SSfii l-iooo (Table 3.5) ^lTum^menKfii T.F.

^ mv\ iJfuitu < species 193n3fl§l«1 1lJuilllTn3fnEJniV1'H

!j (site specific) 1i4fiTtu^wtif)inni5fin«fismHfifiS1^J

l? Sl' l mSv (ICRP 60,1991)

(critical group)

0 v hun49 210

ivu inaM'u^

Table 3.1 Results of physicochemcal parameters in the water during uptake period

+ pH Temp DO Total Total Ca K NO, Cl °C hardness solid ppm ppm ppm PPm

range 5.0-8.2 25-29 5.8-20.2 100-235 734- 31-71 2.6-39 12-271 12-44

7310

mean 6.5 26.7 11.4 131 2018 49 18.8 175 24

median 5.4 26 7.8 150 1316 67 29.3 191 21.2

Table 3.2 Results of calcium and potassium in fish parts ( mg/100 g. fresh.wt.)

Element skin plus fin Flesh Bone Head

Ca 111+33 25±13 629±174 14O5±378

K 85±34 166±27 744±83 108±54

Table 3.3 Mean percent ash of fish parts

Fish Part Ash (% of fresh wt)

skin plus fin 2.15±0.22 flesh 1.24±0.10

bone 6.34+0.31

head 14.20±0.47 211

Table 3.4 Values of parameters in the mathematical model to represent

radionuclide transport process at equilibrium condition,

Xl Q(t) = Q( ) (1- e ) and resolved by computerized

non-linear regression curve fitting procedure

Radionuclide Parameter Fish Part

Skin plus Fin Flesh Bone Head 137 Cs T.F., L.Kg' 1.6 3.2 2.6 1.5

T1/2 ,d 0.02 0.02 0.02 0.02 X.d1 42 41 40 33 90 Sr T.F., L.Kg' 1.0 0.1 4 17 0.17 0.18 0.06 0.02 X.d' 4 4 12 37

Table 3.5 Reported T.F. (at equilibrium) and T1/2 in the flesh offish from

tropical and temperate fresh water

Cs Sr References

T.F. T T.F. T,fl Tropical

12.6±5.1 19+2 0.7+0.2 5±1 [9]

6.1±0.3 89+4 11.9±0.2 65±8 [10]

7.9±1.0 104±4 - 72±4 [10]

15.7+3.5 57±12 - - [11,12]

Temperate

30-3400 - 1-1000 - [1] 2000 - 30 - [3] 212

100 -I 100 - (lb)Sr-85 • SKIN (l») Cs-137 iMKAl 80- 80- • • • • 78.6 + 3.9 x UONK • HEAD „ X X i M;; 60- 60- i a % X • SKIN X • MEAT 40- • 40 - xBONE 1 " R R • • HEAD 20 - " • R X 25Z6 20- X 12.5+1.0 0 - 1 1 \~—•-—H 1 1 1 1 7i' 0 - T T T T f f f

days days

Figure 1. Percentage distribution of Cs-137 (la) and Sr-8S(lb) in the tissues offish. The mean and Standard deviation for each tissue are also shown, average across time.

250000 -| » skin avuuu ' (2a)C»-U7 • flesh I (2b) Sr-«5 j •

200000 A bonr 40000- • * skin • head B flesh o 150000 • water • CO 30000- A bone o A • en • head • s 100000 • 20000- • water A • • • * CO • • A

50000 10000- • • A A

A A • « . t ' 1 1 ; 1 » If * * t X X -9- n n 10 14 21 27 32 37 42 days days

Figure 2. Concentration of Cs-137 (2a) and Sr-85 (2b) (Bq per kg.wet wt.) plotted against time of exposure in day. 213

nnnfminhsnifi

nW%\i UOHOU^fU fl5. John Twinning ANSTO itasmflBQfWmfio tf1tffhlJfniJ1#1inibun?lJfn0IjiiQifl05Vn-3fTfifl f)1. Steve Sheppard fliniJ'Ul'OO A.E.C.L. ihsmffllfmuifn ta jnomjTU

[1] INTERNATIONAL ATOMIC ENERGY AGENCY, Handbook of Parameter Values For The Prediction of Radionuclide Transfer in Temperate Environments 10 Draft, IAEA , Vienna, AUSTRIA (1992) [2] JANDEL SCIENTIFIC, Sigmastat for windows, Use Manual Revision SSW 1.0, San Rafael, CA , USA. (March 1994) [3] S.E. THOMSON, et al., " Concentration Factors of Chemical Elements in Edible Aquatic

Organism " UCRL-50564 Rev.l Lawrence Livermore Laboratory [4] WHIGKER, F. WARD, et al., " Radioecology : Nuclear Energy and the Environment"

Vol.2, CRC Press, Inc. Boca Raton, Florida [5] GUSTAFSON P.F., et al., " Cesium-137 in Edible Fish " Nature 211 (1966) [6] W.L. TEMPERATE, et al., " Accumulation of Calcium and Strontium by Brown Trout from Waters in the United Kingdom " Nature 198 (1963) [7] J.J. DAVIS, " Cesium and Its Relationship to Potasium in Ecology " in Radioecology, Sdultz, V. et al., 539 (1963) [8] S.K. ROPE, et al.," A Field Study of Ra Accumulation in Trout with Access of Radiation Dose to Man " Health Physics Vol.49, No 2 (August) pp. 247-257, 1985 137 85 [9] J.R. TWINNING and et al.," Bioaccumulation of Cs and Sr by an Australian subtropical freshwater teleost (Bidyanus bidyanus) " [10] A.S. MOLLAH et al.," Studies on Radionuclide Transfer from soil and Fresh water to the nd Foodchain of Man in the Tropical Environment of Bangladesh, Report to the 2 RCM of the IAEA CRP on Radionuclide Transfer from Air, Soil and Freshwater to the chain of Man in the Tropical and Subtropical Environment" Damascus, syria, 12-16 December 1994 214

[11] A. SRIVASTARA, et al.," Accumulation and discharge behavior of Cs-137 by Zebra fish (Brachydanio rerio) in different aquatic environments " J. Radioanal. Nucl. Chem., 138, 165-170(1990) [12] A. SRIVASTAVA, et al.," Uptake and release kinetics of Cs by Zebra fish (Brajchydanio rerio) in controlled aquatic environment" J. Radioanal. Nucl. Chem., 63-69 (1994) [13] W.A. BRUNGS," Experimental uptake of Strontium-85 by Fresh Water Organisms " Health Physics, 11, 41-46 (1965) TH9900021 TH9900021 215

i? vnalrrd mum 90112

CR-39

> 271 moiiifniwnsiTiPi viuii 1,995 + 24,483(Bq/m3) iwuSfiiWitJPl 756 ±25(Bq/m3)

244,552 ± 464(Bq/m3) ^

Radioactive Radon Gas in Ground Water in Songkhla Lake Basin

Suksawat Sirijarukul Thawat Chirtrakarn and Tripob Bhongsuwan

Department of Physics, Faculty of Science, Prince of Songkhla University, Songkhla 90112

ABSTRACT

The technique to investigate radon concentration in water, using film CR-39 to detect alpha particle that emitted from radon gas and diffused through the water in close system, has been established. After etching process, alpha tracks were counted under optical microscope. The track density of the film gives the radon concentration level in water. From the calibration curve, the radon concentration is given by the formula.

Radon concentration (Bq/m ) = Track density / 0.088137

Testing 271 samples of ground water around Songkhla Lake Basin by this method show that the average of radon concentration is 11,955 ± 24,483(Bq/m ) . The minimum radon concentration is

756 ± 25 (Bq/m ) found at Amphoe Bangkaeo Changwat Phattalung , and the maximum concentration is 244,552 ± 464(Bq/m ) found at Amphoe Namom Changwat Songkhla. 216

1 limn

3.82 iw fi^t)ii(Ra-226)

1l4ll!)91J\4l5l4^yi1TU11 ( human carcinogen )

uas

2.1

110 Trimble Navigator IM Basic Plus i\i Mettler AE200 Ra-226 21.5277 Bq/g fU.TUm 1 fluifiJJ 2540

- tnilflSNaOH - water bath iv, Grant W14

CR-39

2.2

Ra-226 500 ml 217

CR-39 nmmfw

VI 1

Equation / * 00861374 ' X

1OOO i

1ODOO 20000 30000 40O0O soooc soooo Activity Rn (Bq / mA3>

CR-39 inside o«"i of pot) Coffee tin IU Elastic band Clingfilm over yoghurt pot

SOOgcoffte tin lined with clingfilm

Tap water to be tested 218

CR-39

«/ I O n 5

2;nou9ilnifu 6 in wum CR-39 iiJnfiumoiet)

*4 *=\

eime CTI^fl (Bq/m3) a;3a;fi (Bq/m1) Iflail (Bq/m3)

6,462 ± 75 65,962 ±241 20,646 ± 20,333

2,930 ±50 8,545 ± 86 5,154 ± 1,821 fll 041^14 2,930 ±50 44,770 ± 198 13,163 ± 15,793

2,567 ±47 13,254 ± 108 7,331 ± 4,667

756 ± 25 58,354 ± 226 12,439 + 17,135

1,162 ± 32 9,269 ±90 5,148 ±2,830 ihuaii 1,118 ± 31 4,832 ±65 3,383 ±1,518

2,567 ± 47 26,838 ±153 9,942 ±8,243 me-3 4,198 ± 60 21,042 ±136 9,220 ±4,681 fT?'Ufl?\4n/ 7,096 ± 79 8,545 ±86 7,820 ±1,025

3,745 ± 57 60,994 ±231 6,220 ±3,315

5,465 ± 69 19,774 ± 132 9,948 ±4,799

2,386 ± 45 19,956 ±132 6,089 ±5,560 fnuiuosi 3,835 ± 58 32,272 ±168 11,119 ±10,802

1,118 ± 31 13,525 ± 109 4,162 ±3,143 mm 2,386 ± 45 8,725 ±87 5,737 ±1,980 uini 2,205 ±44 7,729 ± 82 4,469 ± 1,678

UTHJJOIJ 2,386 ±45 244,552 +464 66,945 ±76,343 unnan 2,205 ±44 4,016 ±59 2,960 ±739

8,726 ± 87 15,609 ± 117 11,044 ±2,925

8,454 ±86 20,227 ± 133 13,123 ±4,139 fwqS 4,288 ±61 24,484 ± 146 11,443 ±7,791

1,842 ±40 13,616 ± 109 7,675 ±4,276

3,654 ± 56 39,336 ± 186 9,698 ±8,915

2,567 ±47 36,438 ± 179 8,433 ±8,758 ffsiMVIfli 1,843 ±40 16,333 ± 119 6,806 ±5,601

1,299 ±33 86,247 ± 275 12,339 ±21,214 220

1,118 ± 31 29,917 ± 162 6,969 ±7,363

3,654 + 56 6,371 ±74 5,012 ±1,921

V 756 ± 25 244,552 ± 464 11995 ±24,483

Frequency Songkhla , Patthalung .Nakorn 40

30

20

10

•~TT T nTTi ITTI •[ I'frqTrnTrTTTTrTTTTTnTn T I~T~|~T~ 0 20 60 80 100 120 140 160 180 200 220 240

Radon concentration (Bq/m) 5lJfl4 (Bq/m3) 221

5680BB 618088 888888 718888

918886 918899

B6S0SS _ 868888

810090 — S1BB8B

768098

718888 588000 G1888B 718880 Figure 5. Showing a contour map of radon concentration in ground water in Songkhla Lake Basin 222 ©=2

568888 618888 868686 718886

918688 916668

NAKllON SI KIAMM,

(60888 GULF OF THAU AND — 866688

I RANI

811868 _ — 8)1166

788888 — _ 788868

718868 718806 I S88B86 618888 686666 718866

Figure 6. Songkhla Lake Basin 223

4.

CR-39 YYim llfiJifUfniUl^lU'UUliPlBU^I^ 756 ± 25 Bq/mA3 , fUfl 244,552 ± 464(Bq/m3) imsSfhlttafl 11,995 ± 24,483(Bq/m3) fnfl|lJ^ 5 QimetJTHiJeiJ ,

6,6945 ±76,343(Bq/m3)

2540-2541 V

6 1. C.Richard Cothern and Paul A.Rebers(1991) . Radon,Radium and Uranium in Drinking water .2nd Edition. Lewis Publishers, Inc., 1991 2. Duval, J.S., 1988. Indoor radon prediction using gamma-ray spectrometric data. EOS, Transection American Geophysical Union, V.70, p.496

l ,11-18 224 TH9900022 TH9900022

134 Cs 60 Co

HTSIO uas tiviuik rmui 10140

14 ft U4Cs lias 6°Co ifltmfllTUU (Purpurascens spj

'H pH 4 5 nas 6 •qniu inuiniemwfyTmiaswuluiuYi 15 30 uas 45 srnu

MOVUfil Soil-to-Plant Transfer Factor (TF) TufhuflU (TFsp) IVN1 (TFSRh) lias 11 fl 114 (TFSR) TFSP uas TFSRh 1)0-3 Cs V

1490 TFSP 1)0-3 Cs ivnuu lemm? mjuvn mfii TF uaswa« SP SP TF D0-3 '34Cs lias 6°Co

: TFSR > TFSRh > TFSP TF

<& ' 1 ^4 fid TF : Cs > Co SP Vl fli TFSRh lias TFSR : Cs < Co

Effects of Acid Rain and Fertiliser on Root Uptake Cs and Co by Paragrass

P. Chairattanamanokorn, N. W. Harvey, and O. Kerdchoechuen King Mongkut's University of Technology Thonburi, Pracha Utid Road, Tongkru, Bangkok 10140

ABSTRACT

Effects of acid rain and potassium fertiliser on root uptake of Cs and Co are presented in this paper. Paragrass (Purpurascens sp.) was grown in clay soil homogeneously contaminated with the radionuclides, and kept in a greenhouse for 45 days. Plants in both fertilised and non-fertilised treatments were irrigated daily with a fixed pH solutions of 4, 5 or 6. Every 15 days plant and soil samples were harvested, and analysed to determine the Soil-to-Plant

Transfer Factors (TF) of the shoots (TFSP), rhyzomes (TFSRh), and roots (TFSR). The results show

that acid rain had an influence on the TFSP and TFSRh values of young plants. Application of K- 134 134

fertiliser decreased the TFsp of Cs. The effect increased with ontogeny. TF values of Cs and

Co were in the order of: TFSR > TFSRh > TFSR. When compared the two radionuclides in each

part, it was found that, for TFSR and TFSRh: Co > Cs, for TFsp: Cs > Co. 225

eJ 1miliJ9-3flumjih4(?lftfl(fallout) juwn (dry deposition)

i V deposition) h ft It 50 % UTOinm? wimsuunn [l]

Q1«liismu1?f1!nnfii Soil-to-Plant Transfer Factor (TF)

TF = (Bq g"') (Bq g"')

1pifiJfm}Jit

-3 mWTwa^^TuiJiinfyvii'KQi Iwiin [6,7]

j Imtri diincuni9-3 clay minerals il?unfuiJi5;iDinn [8,9]

nas ms:ij9

fission products ua w n\u active products 226

0-20

1 YUJTI ibsintu 2 %

.7 30 gem Cs lias Co mflVJ m homogeneous 20 Bqg"' ims 18 Bqg"1 fliuaiwu

Randomized Completely Block Design (3x2

factorial) 2 2 llflflU (factor) iftUfl fJuf1Ifia!'-3tft51s;vfi:»4i?l1oiJ9inni-?ll!Kfl^?n 3 ISfhj flO pH 4 5

uas 6 nasmil^tj l««l\jnpliisTs;niJ

(19 gem"2) nasiiifniviwno^^iinw 2 <%-\

30 ^^ 15 "tsu. (~o.oi m3) 36 nis pH

500 ml/TlU 15 30 ims 45 QIJ

wu mlh Lias nn) yi?riumu0Hi«vj 2

85 ± 2 °c Y\ iJ?s;unfu 48

105 ± 2 °C illunai 24 SeUHTUflSUni-WUIPl 2 UamUflS 1A total activity

Gamma spectrometer Ifitmilfl Ge(Tl) ^ISflil

Iliinw 10 % lias; \4 Least Significant difference (LSD)

95%

l34Cs ims;

Co il Soil-To-Plant Transfer Factor (TF) 1v!ffQ\4PIU(TFSP)

(TFSRh) 227

norm mean+SD 1. Moisture content (%) 29.09±4.19 2. Bulk density (g cm ) 1.64±0.27 3.Soil pH

3.1byH2O 5.13±O.O3 3.2 by KC1 4.18±0.03 4. Soil texture (%) 4.1 sand 5 4.2 silt 32 4.3 clay 63 5. Organic matter (%) 2.08±0.04 6. Cation exchange capacity 29.67±0.60 (meq/lOOgofsoil) 7. Total exchangeable base (meq/lOOgofsoil) 7.1 Na+ 0.90±0.06 7.2 K+ 0.57±0.01 7.3Ca2+ 14.60±0.75 7.4 Mg2+ 7.99±0.19

60 3.1 i^^ 134 Cs Co

a) Cs

TFSR

TFSP ims TFSRh 30

(p < 0.05) \

pH 6 ri fii TF TFSRh uas; TFSP Suvnlmjimiim mo FSR 134 Tuu Cs (s?n

1HY12) 228

b) Co

TF°

3.2 wfm^niiKfl&iduflm^uiJViSflQmiflA'tfiJfl'n^fl 134Cs uas

a) Cs

TFSP Y\ 4) lurum 30 uas 45 TU iflomoH^jtj fin TF Shhfio'liJHJ Ms DuiJBiunanmiJgninu

b)60Co

TF

3.3 HauQ^^lunifiimsmiHiJtji'iJiifiaiwjj^SfiQmigfi^iJffiii^^ 134Cs ims 60Co

ue 3.1 uas 3.2 ifl^mi'win^QinmvnsiIsiflUDQ^pJuniPi lias

(interaction) a) Cs

i t 6 viuin itJivi'M 15 nas 30 fJi4nifiims;il ofltjm^l tfi3fjSHflfiefin TFSP

m r\ pH 4 uas 5 iWtimiKijtjiijit-wnsnofh TFSP mv\ pH 6

SP u SP S SP

SIHYI pH 6 iQunumiiiiH^JE) Iwfh TFSP fii^tjfino 0.042 uas 0.146 IUTUYI 15 uas 30

i " ^45 in Yivii fJunifiiiaj;il9«ofn5l w^w ljJff-3wa«9fii TFSRh me

TFSP isM'in'aMfyiD^^'l^miasjiiji^tJ wim Sfmuu^nfii-3^ pH 5 nas; 6 ^

pH 6 iiasiiu'SfniHiJo TilITIfin TFSP fifii^tjw (o.n) tivum TFSR fmuuinnin'i^'ue^

jKi|o ilnng^ pH 4 IAUYI pH 4 nasiiiSfniH^tj Sfh TFSR g-atjpi (0.285) ^

1IV1 1-3

b)6°Co 15 iv, •wu'ii^fiiPiimsifnii'tf^tjljjfr^HawQfin TF

30 ims; 45 iiu i^J'umfiUfCLJtJiJHmft'vnsYinn (TFSR) ^uttPi-jlu^n^i-a^ 7 229

ri pH 4 flflfltjmil^u vhlmh TFS

30 iu ^unifm-atfinsmi pH 4 imsljjlmjti qsiiifh TFSR tntjei fio 0.889 jhuYioiq 45 TU t\u

^iYi pH 5 uasiiiSmilviJo flslmh TFSR fio 0.586 ffaiilvi 3

a/ m d 114 60 3.4 minissntjemQ-aflninfl Csims Co

60 2-7 luffimsmiilgniatnnu monJitiumuufin TF UQ^ I34CS nas Co

yTU'u viun mlu fin TFSP 1)8^ Cs ufnummifn TFSP UQ-3 CO ITTHIU

134 TFSRh ims TFSR "ue-a Cs Sfhuoonrifh TFSRh 11ns; TFSR 110-3 ^Co mo

fin TFSR > fin TFSRh > fin TFSP

l34 TFSP ims TFSRh uo-3 Cs iwow^Qi^'uo !34Cs iilu analog DO-3 fiieiiilueimwjy (K) pH 5-6 iSvi'WQ-a^mfnijniciPjfi^jj K "ointninsjfnua'ul^jjin [12] Cs flintniasaiupiu l^i^ivrwa-a pH Pi-antrnmjfTu nasiiua-ssnn Cs

[13] ^YinlTiiu^oou^i^iufJunifi^ pH a^ndn Sfh TFSP ims TFSRh 60Co vnjQifmuiilvjnifiDo^fJvjijjflHfifii TF uo-a ^Co 60Co ^fl '"Co lutriifisfntjauSmo-jvHOpiofnifja^jj'UQ^ M^nutj ouijci H+ sun

60 Co Tufmasfntjfhi ^liiinni'Hm TF UO-3 60CO

v 4 TFsp 1)0-3 " Cs IVITUV! ifltJ'fltl'nil'Hfli TFsp

[10] o^imin l34Cs ILIUBICJ analog 110-3 K •wuiimoS K 'uw "wvmongw^jj K unnnQi l34Cs mo-jsnn K

K+

1 134 fin Cs l 230

134Cs ims ^Co luflbunu «i iie-avto •asmidi

j/ ' 134 *s 1 if 60 4

eiu fin TFSP ue^ Cs ufnuinmifn TFSP IJS>3 CO TUVOIS

l34 TFSR1I uas TFSR ue$ Cs Sfhueufmni TFSRh ims TFSR

TF > fin TF > fin TF i l34 SR SRh SP innfm Cs mQ^ialuDinum? N2 fixation lunmie-avta 2 [11] lunjois^ 134Cs ifiaowmuiiltifff^uiiji^ [9]

i^^ uas; i^iMcUTMne-3'u^fnfifT3JiJvi?i!'-3^

ai

l.Schuttelkopf, H., 1998, "Determination of radionuclides in environmental samples: Behaviour of radioiodine, radiocesium and plutonium", IAEA Interregional Training Course, pp. 12-21. 2.Harvey, N.W., Shaw, G., Bell, N.J.B., 1997, "Influence of plant roots upon the mobility of radionuclides in soil, with respect to location of contaminatation below the surface", Journal of Radioanalytical and Nuclear Chemistry, Vol.226 (1-2), pp.159-173. 3.Bai-nai, T., Muramatsu, Y., Yoshida, S., Yanagisawa, Y., 1996, "Studies on the transfer of Cs, Sr, Co, Mn and Zn from soil to plants and from medium to mushrooms by using radiotracer, " NUCLEAR CROSS-OVER RESERACH International WorkshopProceedings, Improvement of Environmental Transfer Models and Parameters, Japan, pp. 181-190. 4.Rudge, S.AJohnson, M.S.,Leah, R.T.,Jones. S.R., 1993, "Biological transport of radiocaesium in a semi-natural grassland ecoststem. 1. Soils, Vegetation and Invertebrates", Journal of Environmental Radioactivity, Vol. 19, pp 173-198. 5.Malm, J., Rantavaara, A., Uusi-Rauva, A. and Paakkola, O., 1991, "Uptake of caesium-137 from peat and compost mould by vegetable in a greenhouse experiment", Journal of Environmental Radioactivity, Vol. 14, pp. 123-133. 231

6.Fesenko, S.V., Colgan, P.A., Sanzharova, N.I., Lissianski, K.B., Vazquez, C, Guardans, R., 1997, "The dynamics of the transfer of caecium-137 to animal fodder in areas of Russia affected by the Chernobyl accident and doses resulting from the consumption of milk and milk products", Radiation Protection Dosimetry, Vol 69, NO.4, Nuclear Technology Publishing, pp.289-298.

7.Salbu, B., Oughton, D.H., Ratnikov, A.V.,Zhigareva, T.L., Kruglov, S.V., Petrov, K.V.,Grebenshakikova, N.V., Firsakova, S.K., Aztasheva, N.P., Loshchilov, N.V.,,Hovel, K.., and Strand P., 1994, "The mobility of Cs and Sr in agricultural soils in the Ukrane.Belarus and Russia 1991", Journal of Health Physics Society, Vol. 67 (5), pp. 518-528. 8.Roca, M.C., and Vallejo, V.R., 1995, "Effect of soil potassium and calcium on caesium and strontium uptake by plant roots", Journal of Environmental Radioactivity, Vol.28, pp. 141-159.

9.Nisbet, A.F., Shaw, G., 1994, "Summary of a 5-year lysimeter study on the time dependent

. _ 137_ 90_ 239,240_ , 241 . - , ... , transfer oi Cs, Sr, Pu and Am to crops from three contrasting sou types: 1.transfer to the edible portion", Journal of Environmental Radioactivity, Vol.23, pp.1-17. lO.Nishita, H., Wallace, A., and Romney, E.M., 1978, "Radionuclide uptake by plants", University of California, US. 11 .Marschner, H., 1995, "Mineral nutrition of higher plants", 2° ed., Academic Press Inc., UK. , 2531, \\$m\l®w\i,

13.Suvornmongkhol, N., 1996, "Uptake of radionuclides by wheat roots with respect to location below the surface", PhD.thesis, Imperial College, University of London, UK. 232

15 TU

r~

fH pH

30 TU 0.18 1 0.16 -T 0.14 • 0.12 - I - - £ 0.1 X j- 1 £ 0.08 1 • • 0.06 J J.H dH- 0.04 0.02 HIi ^Hpi] ^Ts 0 _l^—L-^-^^B—[|M__MBIII—hm

fin pH

0.14 0.12 0.1

H 0.08 ts—: 0.06 0.04 0.02 0 fli pH 4 5 6 >< • Cs-134 ,1 r • Cs-134 ,1lJl

• Co-60 M\ mCo-60 ,1lJiiIf

134 60 TlrFs p ' Co \\iYI&~ 3*1 (mean ± SD) 233

15 1M

fli pH

30 TU

u.

fli pH

45 VU 0.3

0.2

0.1

4 6 fli pH • Cs-134 ,1 Cs-134 ,

• Co-60 ,1' Co-60 .

34 6 2 llffP^fli TFSRh DB-3 ' Cs lias °Co (mean ± SD) 234

15 TU 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

pH

30 TU

u.

pH

45 114

5 6 fiT pH

Cs-134 ,1 • Cs-134 ,

Co-60 , H Co-60 ,

TF 'MCs UfiS ^ (mean ± SD) SR 2 fli Soil-to-Plant Transfer Factor (TF) U0-J "4 Cs

pH 15 114 30 TU 45 1M.

ft 14 mh nn mh nn mil nn

4 0.031 ±0.00 f 0.058+0.014' 0.283+0.0753 0.075±0.034ab 0.069±0.004a 0.177±0.058a 0.093±0.016a 0.098±0.025a 0.235±0.068a

5 0.034±0.006a 0.056±0.008a 0.290±0.115a 0.070±0.025b 0.051 ±0.010b 0.185±0.024a 0.083±0.028a 0.099±0.037a 0.176±0.026a

6 0.029±0.016a 0.060±0.000a 0.286+0.0713 0.105±0.052a 0.072±0.026a 0.194±0.025a 0.086±0.029a 0.112±0.061a 0.173±0.012a

3 fil Soil-to-Plant Transfer Factor (TF) 1J0-J '"Co 1l4VitllTU\4 ^

[i as PH 15 114 301V! 45 TU

V 3/ 31 mh 51fl em nn win nn

4 0.013±0.007a 0.108±0.039a 0.660±0.077a 0.026±0.018a 0.142±0.070a 0.608±0.393a 0.018±0.007a 0. 133±0.029a 0.393±0.173a

5 0.012±0.004a 0.084±0.050a 0.611±0.254a 0.027±0.017a 0.128±0.059a 0.554±0. 127a 0.019±0.003a 0. 193±0.092a 0.502±0.099a

6 0.010±0.004a 0.117±0.060a 0.547±0.197a 0.024±0.004a 0.122±0.049a 0.496±0.089a 0.012±0.005a 0. 132±0.044a 0.398±0.131a

(n= o.os) DMRT w

4 fli Soil-to-Plant Transfer Factor (TF) 1)0-3 Cs

15 ft 7>Q1M 45-114

V ?I14 Ilfl mil nn em nn 1* 0.027±0.008' 0.067±0.016a 0.311±0.104a 0.054±0.013b 0.062±0.020a 0.178±0.041a 0.068±0.012b 0.087±0.031a 0.178±0.025a

0.036±0.008' 0.049±0.008a 0.261±0.044a 0.112+0.033" 0.066±0.017a 0.193±0.031a 0.107±0.011a 0.120±0.043a 0.211±0.063a

5 fil Soil-to-Plant Transfer Factor (TF) Co D

15 11] 301114 45 114 nn em mil nn mil nn

\4 0.012±0.004a 0.133±0.049a 0.713a±0.163 0.024±0.015a 0.116±0.054a 0.492±0.168a 0.016±0.005a 0.132±0.064a 0.391±0. 128a

0.011±0.006a 0.073±0.022a 0.500a+0. 130 0.028±0.012a 0.144+0.0573 0.612+0.2752 0.017±0.006a 0. 174+0.059a 0.472±0. 141a

(n=6) utntiflfy (p< 0.05) Ifio DMRT 6 fil Soil-to-Plant Transfer Factor (TF) 1)0-3 WCs limahim Yl1#11J0YlSn?nj0^Umfl Uf\Z

pH 15 TU 30 IV! 45 1M >< V nn mil nn

4 i* 0.030±0.002 * 0.060±0.023 * 0.264±0.115a 0.050±0.019b 0.068±0.000a 0.150±0.058a o.osilo.ooo''0 0.096±0.010a 0.184±0.052b

0.032±0.001 •" 0.056±0.002i 0.302±0.044 * 0.10010.024* 0.070±0.008 a 0.204+0.062 a 0.10610.012* 0.100±0.042a 0.285±0.034'

5 0.034±0.001 * 0.069±0.017' 0.326±0.184a 0.050±0.011b 0.049±0.014 a 0.170±0.028a 0.060±0.010c 0.087±0.047" 0.173±0.003b

ml* 0.034±0.011 *" 0.042±0.001 " 0.253±0.017a 0.090±0.012 * 0.053±0.010a 0.200±0.001 ' 0.10510.017* 0.110±0.037a 0.179±0.044b

6 1* 0.017±0.003b 0.072±0.018a 0.344±0.015a 0.064±0.012b 0.069±0.037' 0.212±0.016* 0.062+0.009c 0.076±0.049' 0.176±0.015b

liiW 0.042±0.011 ' 0.047±0.010' 0.228±0.037 a 0.146±0.034a 0.074±0.028 a 0.175+0.014 a o.iio±o.on" 0.149±0.058' 0.170±0.014b

rtmtimw (n=2) 0.05) \?\U DMRT

CO to CO 00

7 fh Soil-to-Plant Transfer Factor (TF) UfH MCo Ufl

pH 15 114 30114 45 1M

mil nn mil nn em mh Ilfl

a j/ a a a a b a 4 I'M 0.012±0.006 0.120±0.063 0.693±0.018 0.013±0.003 ' 0.095±0.051 0.328±0.145 0.013±0.001 ' 0.128±0.004 0.261+0.093' 0.014±0.010a 0.096±0.003 " 0.627±0.114a 0.040±0.016a 0.188±0.057a 0.889±0.357a 0.022±0.007 a 0.138±0.049a 0.525+0.105 ab

a »l a 5 I'M 0.014±0.006a 0.116±0.053 0.727±0.363 ' 0.035±0.025 a 0.144±0.096a 0.633±0.113ab 0.020+0.004a 0.150±0.120a 0.418±0.040abt

in la 3> a a a a a IU1

a 3/ a a a a a a a ab 6 lu 0.010±0.003 0.161±0.052 0 717±0.020 0.025+0.004 0.110+0.023 0.517+0.107 " 0.014±0.008' 0.116±0.070 0.493±0.126

W la 3/ a a a a a a a bc lulu 0.010±0.006 0.073±0.013 0.378±0.025 0.024+0.006' 0.133±0.079 0.475±0.102 " 0.010±0.001 0.148±0.006 0.304±0.018

(n=2) (p< 0.05) IAO DMRT TH9900023 TH9900023 239

Cs-134

«a *j 4

iuflwj«fn n^-awm 10900

(Cs-134 Co-60) Homogeneous column experiment V 12.5 . X 50

3 °KJJ. iPi^iw^nifi pH3 4.5 ims 6 iilunan 120

Co-60 Cs-134

Effect of Rain Acidity Upon Mobility of Cs-134 andCo-60 in Soil

S. Ruangchuay" N.W.Harvey0) and P.Sriyotha2)

King Mongkut's University of technology Thonburi, Prachautit Road, Toongklu, Bangkok 10140 (2> Office of Atomic Energy for Peace (OAEP), Vipawadee Road, Bangkok 10140

ABSTRACT

This research was aimed to study the effects of groundwater and acid rain upon the mobility of radionuclides (Cs-134 andCo-60) in contaminated top soil. Clay soil was homogeneously packed in columns with dimension <|>.12.5 cm. x 50 cm.. At the top 5 cm. of the columns, soil contaminated with radionuclides was added with the same consistency. Column were kept standing for 4 months in an artificial water table kept at 3 cm. from the bottom. During this period artificial acid rain with pH3, 4.5 and 6 was applied weekly at the top. Soil samples were taken every 30 days for examination of total and extracable radioactivity. It was shown that with the aide of the rain radionuclide movement down the profile was greater, with Co-60 > Cs- 134. However acidity of the rain shown no effect on their movement. 240

1. UY1141

i V V ims;imfi^lMd^i0^fiitn?^m'HPi'Tuu fie aw 'Ha-mniJ'uiileu

[l], [2] iiu miastno miiJSPii-j mi

[3], [4], [5], [6], [7], [8] ^fll'lJ f^ mitrsfru im^tmi^ft

\\,t\ZVilMY\^T\'f\\9\ (Total and Extracable radioactivity) fmnfia

^0 l.Free ions llflS Colloids 2.Exchange surface (Readily exchangeable ions

UclS Clay-humus micells) U?l£ 3.Insoluble chimical sinks (Fixed forms Insolubke organic

Hydrous oxides ims Clay minerals) °ISAY\A 3 ^0 rfTu^ l uas 2 ^^^tnjjnitiuiiilKlpiod^iiJEnn'Ufi [9]

V

uas

mmiftninmi 241

2.1 oimee^fifny TuiPfSltasmfU 1 fllJ. Composite sample

Q «" 2.2

enn-avi l

YtlllV ilfmiifmswDO]

Bulk density 1.178 g/cm

Soil texture Clay Soil Hydrometer method

Sand 5 % DW Soil

Silt 32

Clay 63

Soil pH 5.13 pH meter 1:1 (Soil:Water)

Organic matter 2.13 % DW Soil Walkley and Black method

CEC 29.67 meq/lOOg. soil NH4OAc method

Total Exchange Base 24.05

Na+ 0.89 (3.70 %) Flame photometer

K+ 0.57 (2.37 %) meq/lOOg. soil Flame photometer

Mg2+ 7.99 (33.22%) AAS

Ca2+ 14.60(60.71%) AAS

AEC 0.05 meq/lOOg. soil NH4C1 method

Total Iron 2.05 mg/100 g. soil Phenanthroline method

2.3 pvc 12.5 50

2.4 Tfimh CsCi nas CoCl2 "DTUTU 0.0065 ims; 0.018 niu pnuniwu Itl

30 242

2.5 tr-a 40

PU 5 ^JJ.

5 cm.

50 cm.

\/ 1 llfT1

2.6 uikfiemjuemitl'u 4 2 3 pH 3 4.5 uas 6 snuaisu 80 ua./ 3 °nj.

<•• •••> O 50 cm.

Ij cm .

2.7 vipme-3'Hi Extractant i

Extracable radioactivity NH4C1 Y\U l M uasKnani'Ufnii'utii 30 243

2.9 inumjfl ifieauijvm 30 QU mvt 3J« 4 flf^ 11finsM Total nas; Extracable

Radioactivity DO-Sfl'U 14 6 TH-3 WIIJ'pmuan m 0-5 iru . 5-10 "KU.

10-15 "WU. 15-25 "WJJ. 25-35

3.

3.1 Total radioactivity ffa

2 UftfUWUfn'nifmswVh Total radioactivity 1)0-3 Cs-134 fh Total radioactivity 119-3 Co-60 Uflffl-jVusmn-JYi 3 fl'i Total radioactivity

U9-3^14 ^0 % 1)0^ Total radioactivity ^9ti1l4tKl-3fniUan

V r 1 hhd^i 2 (QU^ 60 ) i

^ 3 (iu^ 90 3 Total Cs-134 UHS Total Co-60 inPlfnilfiaQliprTflin^W 0-5 "BJJ. fl9 10-15

t ti-3fi-39tj^fmuan K'u 10-15 ««JJ. fbumjYtlAiiiihpJij'vinfh pH Total Cs-134 USSTotal Co-60 fnflflUinJ 0-5 etfJJ.1lJ^^^'U 25-35

V M nuii fiifmuiil'uniPinjg-a'U'id'u ?f^wcinis;vii)9m^8'uo^nfinj

95 %) p|0ll?3J1fU Total radioactivity ffiJJIIdtYill 1^11 m9fniUtlluni^'iU9-3'U1^V!munJl4 flSPf-JWal'Hfni^S Total radioactivity

Total radioactivity 1)0-3 Cs-134 ims; Co-60 INUQI 114flfms:VIA14 Total Cs-134 tms Total Co-60 (vifhfmiJilremj 95 %) nrftrfmsj^fluifiiijui^wvinfii pH BS;^U Total Co-60 TJ 244

Total Cs-134 VhmiiifmsM ^ 3 4 5

nas 6 "iraii?r?mJ?inai Total radioactivity o-5 "KU. • if i V m l}J0fmiJllll4n?A1i03'U"l^l4mU

134

3.2 Extracable

fil Extracable radioactivity fl0 Extracable

radioactivity ?19 Total radioactivity Extracable radioactivity wuiuflu 2 ili^fniunnmiiTu fie <%\i 0-5 •vu. ims 5-10 mi.

fil Extracable Cs-134 ims Extracable Co-60 l\4finvl?lJ^ 7 llflS 8 ^nua

Extracable radioactivity ue-aflnif^YUflO-aYimJ'irU 0-5 'KW. IV1TU14

V i < # fT/ms^Ruifiil'lilJifJ'lJ'Wll Extracable radioactivity U0-3a 155^ffma'8-J 2 VU \

Extracable radioactivity 110^14#14 0-5 "tilt. munilW 5-10 °KJJ. IJOfll pH

f^J^ 2 (QU^ 60

as %f as d 3 OVJVI 90 ii0-3fnivi?ia0^)uasfii^a;fivnti (IUYI 120

WlJ Extracable Cs-134 114314^ 2 V i Extracable Cs-134 0-5 1JU. WnnnQ1#V! 5-10 lS^' ^ 3JU 95 %) i 3 IJJWU Extracable Co-60 1l4^l4#l4 5-10 ifW. tin

^ 4 VIUQI Extracable Co-60 nJ0^^l4#t4 0-5 TJJJ. 5-10 ^u. om-aCiItmimy (^fiifmui^aiTu 95 %) V pH WU1T Extracable radioactivity UO>aa"lif^

pH Extracable radioactivity

Extracable radioactivity ^T

Extracable radioactivity 1JD3 Cs-134 lias Co-60 < U'l^'U iJiUitU Extracable Cs-134 lias Extracable Co-60 ^Qlfin 95 %) u^ttnns^^viipifu'ui^vi'vinfin pH ^ 245

Extracable Co-60 Extracable Cs-134 Extracable C6-60 lifts Extracable

Cs-134

2 im«-3 %fa?fVH'MJJfl(Total radioactivity)!^ Cs-134 (Mean ± SE)

Time (days)

Condition Depth(cm.) 30 60 90 120

No rain 0-5 97.94±o.oo722 93.15±ooo62i 96.86±o.oo353 98.43±o.oo4O8

5-10 2.04±0.00032 6.58±o.ooo98 3.01 ±0.00042 1 .49+0.00042

10-15 0.02±o.ooooo 0.27±o.oooo6 0.13±0.0O012 0.09±o.oooo8 15-25 25-35 35-45

Rain pH 3 0-5 95.24±o.oo494 96.67±o.oo35o 97.48±o.oo646 92.29±o.oo45i

5-10 4.52+0.00029 3.2O±O.OOO28 1.96±0.OO027 6.71+0.0004]

10-15 O.24±o.oooo3 0.13±0.O0OO8 0.34±0.0O015 0.62±o.oooio

15-25 0.21 ±0.00008 O.33+ooooo6

25-35 O.050±o.oooo3 35-45

Rain pH4.5 0-5 94.73±o.ooii5 9O.56±ooo624 92.16+0.01266 93.96±o.oo946

5-10 3.65±o.oooio 8.88±o.ooo92 7.61 ±0.00304 5.43±o.ooo46

10-15 1.62±0 00023 O.56±o.oooi3 O.17±O.OOO13 O.45±o.oooi3

15-25 0.06+0.00002 0.1 2±0.OOOO5

25-35 0.04±o.oooo2 35-45

Rain pH 6 0-5 94.54±o.oo326 98.51±o.oi6i5 95.98±o 00764 91.34±O.0O255

5-10 5.09±o.ooo8i 1.47±0.00062 2.95±o.ooio4 7.94±o.ooin

10-15 0.37±o.ooo2i 0.01 ±0.00001 0.93±o.ooo2o O.64±o.00005

15-25 0.15±0.0O0O3 O.O7±o.ooooi

25-35 O.O2±o.00002 35-45 246

3 UftfU %H*?tY\*m}f\ (Total radioactivity) U03 Co-60 (Mean±sE)

Time (days)

Condition Depth(cm.) 30 60 90 120

No rain 0-5 97.56±o.oo466 92.62+0.00100 96.66±o.ooii4 98.59±o.oo408

5-10 2.34±ooooo6 6.90±o.oooio 3.28±o.oooo7 1.24±o.oooio

10-15 0.1 O±o ooooi 0.47±o.oooo2 0.07±o.ooooi 0.17±o. ooooi

15-25

25-35

35-45

Rain pH 3 0-5 87.96±o.oo368 95.14±o.ooo87 91.80±0O0I99 87.1 l±0 00148

5-10 8.30±o.ooo3i 4.41 ±0.00022 4.80±0.00024 10.47±o.oooio

10-15 3.74±o.ooi87 0.45±o.oooo2 1.75+o.ooon 1.1 8 ±0.00002

15-25 1.65±o.ooooi 0.52±o.oooo4

25-35 0.71±0.00003

35-45

Rain pH4.5 0-5 90.09±o.ooo34 89.82+0.00051 84.97+0MI56 90.37±o.ooioo

5-10 7.21 ±0.00021 9.44+0.00033 13.31 ±0.00024 7.81 ±0.00024

10-15 2.70±o.oooi6 0.74±o.oooo7 1.21 ±0 00003 1.04±0 00008

15-25 0.50±o.00002 O.45±o 00008

25-35 0.33±o.oooo2

35-45

Rain pH 6 0-5 88.59±o.ooo24 93.96±o.ooi2o 85.26±o.ooo4o 85.O8±o.ooii7

5-10 10.17±0.0O039 5.60±0.00097 10.53±o.oooo8 12.60±0.00066

10-15 1.24±o.ooooi O.44±o.oooo5 2.78±O.OOOII 1.71 ±0.00007

15-25 1.43±o.oooo4 0.24±o.oooo2

25-35 O.37±ooooo3

35-45 247

I Cs-134 Co-60

pH3 pH4.5

3 utTfl-3 % Total radioactivity Cs-134 ims Co-60 Ylfmtmn 0-5 °W3J. Y\nm 30

80 pH3 pH4.5 pH6

T\\Y[ 4 UttfU % Total radioactivity Cs-134 ims Co-60 Ylfmuafl 0-5 °BU. Vinai 60

100 97.48 95.98 :|95 91.8 92.16 CD • CO 84.97 85.26 £85 -I 80 1 1 pH3 pH4.5 JpH6 1"\\Y\ 5 Hfffl-3 % Total radioactivity Cs-134 UfiS Co-60 0-5 ^JJ. Ytilf\-\ 90 111

Cs-134 Co-60

80 pH3 pH4.5

6 UflffU % Total radioactivity Cs-134 lias Co-60 VlfniJJfin 0-5 «K3J. 120TU 248

I No (0-5) HNo(5-10) BpH3(O-5) HpH3(5-10) • pH4.5(O-5) B pH4.5(5-10) • pH6(0-5) BpH6(5-10)

30days 60days 90days I20days

%Extraction of Cs-134

lNo(0-5) UNO(5-10) pH3(5-10) • pH4.5(0-5) H pH4.5(5-10) • pH6(O-5) IJ pH#5-10)

30days 6Odays 90days 120days

8 UPffi-3 %Extraction of Co-60

«

n?^ini4fnivian1'unT3tfi3ai4^'U0^?fi?i-3ffliJtTfms;w

i i 2.

^0 l. (Mass flow) 2.mitm5 (Diffusion) 3. 249

(Mechanical mixing) 4.milfl^9W^lflt)^-3SSl« (Biological transfer) 2mtn 2 rnsiiTumiYimAiJulfli fi9 m? imsrmum

t y nnmj'uu

3. V (Total radioactivity liflSJ Extractable radioactivity) imSYHiWtflJA (Cs-134 ims Co-60) » y v 1 ^-nimi^ntJifli-JW Sfil CEC ^^ ^ff^HfilM Buffer capacity y pH De^Ui^

4. Co-60 ifiPiaufi'QiiJWfluwiuani^nii Cs-134 ma-amn Cs-134 fjn^f^iQny u clay 1 1 y y mineral °K-3^U^1llv!fn?^nyifl1-3'S 8 % clay ?NUin (63 %) fl-atiilM Cs-134 Co-60

5.

na^D9fifnnfTjjjjw?if>33

uamf

6.

1. Alloway, B. J., 1990, Heavy Metals in Soils, New York, Halsted Press John Wiley & Sons, Inc., pp. 7-27. 2. Bunzl, K., 1990, "The Migration of Radionuclides in Soil," Proceeding of the Second International Summer School : Low-level measurements of man-made radionuclides in the environment, 25 June - 6 July 1990, Spain, pp. 329-353. 250

3. Howills, G., 1995, Acid Rain and Acid Waters, 2nd edition, New York, Marcel Dekker, Inc.,

pp. 1-237.

4. Kennedy, I.R., 1992, Acid Soil and Acid Rain, UK., Galliard Printers Ltd., pp. 1-159.

5. fiim ijjusmni, 2538,

, iviuniJwiiinJi?yEynivimfntTfliiivniJcywi

j, 127 wui

6. Gary, M. P., Sims, J. T. and Vance, G. F., 1994, Soils and Environmental Quality, London,

Lewis Publishers, pp. 249-257

7. Greg, O. H., 1989, Soil, Vegetation, Ecosystems, Hong Kong, Oliver & Boyd. Pp. 157-162.

, 2535, i^TKimiiiow'u, mmfif-avi 7 , li^'mrmnumm, 730

•H141.

9. ffnuin vm^flffiAwajin, 2539,

1, 327 V(U1

'H fin riis tin UAS ijomS, 2536,

2, mimifmifryeii, viww 1-32 TH9900024 TH9900024 251

14c-Endosuifan \mw

viwm aipniWNfifii1 ymal "Hfifu2 was iH

14c-Endosulfan I4c-Endosuifan

MC-Endosulfan flfnimjfafffl 0K-3f11^1fiitt9flfia8-3n'Ufl'ifmJJ«BUcK11l

14 Mobility and Distribution of C-Endosulfan in Soils

Patana Anurakpongsatorn , Pannee Pakkong and Preeda Parkpian Dept. of Environmental Science, Faculty of Science, Kasetsart University Dept. of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University Environmental Engineering Division, The Asian Institute of Technology

ABSTRACT

Chromatographic packed-soil Column was used to study the relative mobility and distribution of endosulfan in soil. With water saturated flow and gravity, Phrabat soil (PakChong Series) showed much more relative mobility and distribution than Rangsit soil (Rangsit Series). This was agreed with soil permeability of the two soils with were 0.34 and 9.16 mm/hr for Rangsit soil and Phrabat soil, respectively. This result was in agreeable with the adsorption coefficient (kj of the two soils which was higher in Rangsit soil compared to Phrabat soil. The distribution of endosulfan was found mostly in the top 10 cm of soil. As expected distribution to deeper extend was observed in Phrabat soil. 252 gag

1. INTRODUCTION

Soil, as a major sink for chemicals treated directly to soil or entering indirectly to- soil in some other different ways such as dipping to soil during crop spraying program or through crop residue of treated plant falling to the soil or even by accidentally spilled. Soil types and soil environments play an important role in mobility and distribution of chemicals reach to soil. Laboratory study of mobility and distribution of chemicals serves for the prediction of behavior of chemicals in the field conditions.

2. METHODS

2.1 Chromatographic Packed-Soil Column Glass columns, 2.5 cm in diameter and 24 cm in length, were uniformly packed with homogeneous plow layer soil which had been air dried and sieved through 200 JJ,m. A 100 g of Rangsit soil was needed to attain the soil length of 20 cm, while Phrabat soil was only 150 g to attain the same level. The density of these two samples was found to be 1.02 and 1.53 g/cm for Rangsit soil and Phrabat soil, respectively. Duplication were conducted for each type of soil. Soil column was saturated with water and

14 stabilized overnight. C OC-Endosulfan was applied at 0.575 JJ,Ci on the top surface soil in each columns and was left overnight. Then each soil column was eluted with water by gravity.drain. The amount applied were equal to 1.63 Llg/g soil and 1.09 JUg/g soil for Rangsit and Phrabat soil, respectively. The soil columns were allowed to drain for 24 hr. Leachate was collected in fraction at the volume of 100 to 200 mL. One milliliter of leachate fraction was counted for C by adding 10 mL scintillation cocktail (Highsafe 3, Wallac Company, UK), shaking vigorously, leaving in the dark overnight and counted for C activities using Liquid Scintillation Counter (LSC, Wallac 1220 Quantilus, Ultra Low Level Scintillation Spectrometer). After stopping leachate collection, soil column was then sectioned into 4 sections, 5 cm 14 each in length. Soil sample was air dried in the fume hood and determined the amount of C-Endosulfan in each sections. 2.2 Extractable Portion A 2 g of air-dried soil was extracted with 10 mL methanol by shaking at 350 rpm for 2 hr and was left to settle overnight. The methanol solution was, then, collected. Extraction was repeated 3 times, all 253

methanol solution was combined. Three milliliters of methanol solution was taken to count for C activity using LSC.

2.3 Unextractable Portion Soil residue after removed of all methanol solution was left to dry in the fume hood. A 0.5 g of soil residue was taken into ceramic oxidizer boat, the equal amount of cellulose powder was added and mixed well. The soil was combusted in biological oxidizer (OX-500 Biological Material Oxidizer, R. J. Harvey

Instrument Corporation) for 4 min. CO2 was trapped in biological oxidizer scintillation cocktail and counted for C activity using LSC.

3. RESULTS

The results of 70-day experiment showing endosulfan mobility in chromatographoic packed-soil column were presented in Table 1.

Table 1 Cumulative Concentration of Endosulfan in Leachate and Distribution of Endosulfan in Two Different Types of Soils

Leachate (% of Applied) Soil Distribution (% of Applied)

Cum Cum Cum% Mean Weight (g) Extrac Unext Total %

Sample Leachate(mL) dpm Depth (cm)

Rangsit Soil 100 nd nd 0-5 34.40 68.09 22.08

Column 1 200 68 0.005 5-10 25.93 6.39 3.12

300 352 0.030 10-15 17.50 * * 400 746 0.060 15-20 18.37 *

500 1407 0.110 99.79

Rangsit Soil 100 nd nd 0-5 24.75 60.94 21.54 Column 2 200 76 0.006 5-10 17.44 3.80 1.82

300 380 0.030 10-15 27.91 0.83 0.29

420 1880 0.150 15-20 29.57 0.43 0.08

89.73 note recovery of unextracable portion exceeded 100 % 254 (Cog)

Table 1 Cumulative Concentration of Endosulfan in Leachate and Distribution of Endosulfan in Two Different Types of Soils (Continued).

Leachate (% of Applied) Soil Distribution (% of Applied)

Cum Cum Cum% Mean Weight (g) Extrac Unext Total %

Sample Leachate(mL) dpm Depth (cm)

Phrabat Soil 100 nd nd 0-5 45.36 52.00 20.00

Column 1 200 176 0.014 5-10 36.43 13.00 5.13

300 1184 0.090 10-15 22.11 4.42 1.63

400 2464 0.190 15-20 25.19 2.59 1.18

500 5584 0.440 116.18*

700 10459 0.830 900 15949 1.260

1100 20259 1.600

1300 31239 2.470

1500 48414 3.830

1700 69795 5.510

Phrabat Soil 100 nd nd 0-5 35.08 52.55 14.81 Column 2 200 248 0.020 5-10 29.75 8.16 2.79 300 1305 0.103 10-15 29.77 4.86 1.87 400 2985 0.240 15-20 35.78 3.27 1.35

500 5985 0.470 97.73

700 10235 0.810 900 14985 1.180

1100 20145 1.590 1300 245825 1.940

1500 35583 2.810

1700 47703 3.770

1900 59132 4.670

2100 70032 5.530 2300 82332 6.500 2500 97037 7.670

2650 102112 8.070

Note: nd=non detectable, "=less than 0.001, Cumu=Cumulative, Extrac=Extractable portion, Unext=Unextractable portion, amount applied=0.575 (iCi per column, 1 p.Ci=2.2X lo'dpm @°g 255

4. DISCUSSION AND CONCLUSION

Table 1 showed the cumulative concentration of endosulfan in leachate and the distribution of endosulfan in two different types of soil. From the first 200 mL of cumulative leachate, the one from

Phrabat soil column showed the higher concentration of endosulfan than that of Rangsit soil column.

Leachate flow was reduced with time. Phrabat soil had much better continuous flow. The total cumulative leachate from Rangsit soil column 1, column 2, Phrabat soil column 1, and column 2 were 500, 420, 1700, and 2650 mL, respectively.

Using the modified techniques of Weber and Keller (1994) with an assumption that the moving distance of endosulfan in leachate was 25 cm, comparison in terms of relative mobility (Rj) between the two soils were shown in Table 2.

Two main factors influencing the mobility of pesticide in soil are adsorption and mass flux

(Scheunert, 1993). These two factors were used for further discussion.

1. Adsorption: The affinity as adsorption of chemical to soil reduced the possibility of them to move away from the original site. Adsorption coefficient Kiuji of endosulfan to Rangsit soil and Phrabat soil were 0.14 and 0.12, respectively. However, when normalized KiKls to Kx, Km of Phrabat soil (7.44) was higher than that of Rangsit soil (6.73) (Parkpian et al., 1998). According to the results, adsorption process in this case may not be a main factor directly involved in the difference of mobility in the soil samples.

2. Mass flux: Mass flux of dissolved fraction in solution consisted of diffusion, convection, dispersion, and removal processes.

2.1 Diffusion, which was a factor independent on water flow, can be described by Fick's law of diffusion as follows:

J= -D5C aT Where J = quantity of transport per unit across sectional area per unit time

D = diffusion coefficient

c = concentration

x = the space coordinate measured normal to the section 256

The main parameters that influence the diffusion of pesticide are adsorption, soil water content, temperature, and bulk density. Adsorption has already mentioned above, while temperature is at the same condition as well as soil water content in this condition which was water saturated. Difference in bulk density between two types of soil can be considered for influencing the mobility of endosulfan in soil column. Soil with more pore space to soil particle, classified to be low bulk density has a high leaching potential.' Phrabat soil has a high value of bulk density than Rangsit soil. That should make endosulfan more leachable in Rangsit soil column than in Phrabat soil column, but the result was reversed. That can be explained by using multiple parameters such as soil texture, and distribution of three phases of solid, water, and air. However, Phrabat soil has higher in permeability than Rangsit soil.

Phrabat soil is classified as clay-loam whereas Rangsit soil is clay. Since clay content of Rangsit soil was about two times higher than Phrabat soil. Further the nature of clay, fine soil particle, has a good character in swelling when wet, and this expanding phenomenon reduced amount of soil porous. In addition sand content in Phrabat soil, can contribute to more pores between soil particles in Phrabat soil when compared to Rangsit soil. The greater number of soil porosity, the higher possibility of mobility of endosulfan was in soil. Moreover, the ratio between solid phase to air phase of Phrabat soil was greater than Rangsit soil, this was enhancing the mobility.

2.2 Convection was dependent on water flow. Darcy's law was used to estimate the amount of water that can be transported away from the original point.

v= -ks

where v = velocity of flow

k = coefficient of permeability, hydraulic conductivity, effective permeability, seepage

coefficient

s = hydraulic gradient

when concerning on flow rate, Q = Av = -Aks

where Q = flow rate

A = cross section area

The factors influencing k were size characteristic of porous medium and properties of fluid (water) 257

Table 2 Relative Mobility of Endosulfan in Chromatographic Packed-Soil Column

Sample D(cm) F MI (DXF) Rf (SMI/Max D)

Rangsit Soil Column 1 2.5 0.9 2.25

7.5 0.10 0.75 12.5 <0.001 0.13 17.5 O.001 0.018 22.5 0.001 0.023 0.14 SMI 3.054

Rangsit Soil Column 2 2.5 0.92 2.3

7.5 0.06 0.450 12.5 0.01 0.125 17.5 0.01 0.175 22.5 0.002 0.045 SMI 3.095 0.14

Phrabat Soil Column 1 2.5 0.68 1.7

7.5 0.17 1.275 12.5 0.06 0.75 17.5 0.04 0.700 22.5 0.05 1.125 EMI 5.55 0.25

Phrabat Soil Column 2 2.5 0.69 1.725

7.5 0.11 0.825 12.5 0.07 0.875 17.5 0.05 0.875

22.5 0.08 1.8 EMI 6.1 0.27

Note: D =mean mobility distance, F=fraction of endosulfan in soil, MI=mobility Index, Rf=relative mobility of endosulfan 258

The relative mobility (Rf) values in Table 2 showed that Phrabat soil had higher permeability than Rangsit soil. This agreed with permeability data of the two types of soil were 0.34 mm/h in Rangsit soil when compared with 9.16 mm/h in Phrabat soil (Parkpian et al., 1998).

2.3 Dispersion can be expressed in the same manner as diffusion but in the non-uniformity of velocity distribution that results from the characteristics of flow through narrow pores and from the complex geometry of the pore system. In dispersion, tortuousity coefficient as well as flow velocity is involved. Dispersion Equation described for dispersion are shown as follows

dc = dt dx2

where Da . Otv +X,D Ot = dispersivity v = flow velocity A = tortuasity coefficient

Da = the coefficient of molecular diffusion

Based upon Phrabat soil properties, diffusion of endosulfan both in lateral and downward movement (mobility) was much higher than in Rangsit soil.

2.4 Function of removal of pesticide by biological and/or chemical reactions can be defined as degradation. In this experiment, radiolabelled compound was used as a tracer to study the mobility. However, only total activities were quantified did not distinguish between parent compound and degradation products. Whereas volatilization of endosulfan in this study was neglected due to mainly to the soil columns were kept under saturated condition. 259

5. ACKNOWLEDGEMENT

The authors wish to express sincere thanks to The Royal Thai Government scholarship, to Kasetsart University and to PHP Institute for their partial financial support of this research.

6. REFERENCES

1. Parkpian, P., Anurakpongsatorn, P., Pakkong, P., and Patrick, W. H. .J. Environ. Sc. Health, B33(3), 1998:211-233. 2. Scheunert, I., Fate of Environmental Chemicals in Soils, Plants, and Aquatic Systems. Boca Raton, Lewis Publishers. 1993: 1-22. 3. Weber, J. B., Mechanisms of Pesticide Movement into Ground Water. Boca Raton, Lewis Publishers. 1994. 15-42. 260

wowi thnnu uasiJjw nviu.i 10900 \m. 579-5230 W8 511 lvi5Pfl? 561-3013

IOO, loo ims 93.28 ± 0.09 % hV# ifl Cs-137

Co-60, Cs-134 ims; Sr-85 V 0-40 O.69

28 TIU 50°c o, o.i, 0.2, 1,2,3,6,7, 10, 14,21 ims30TU

« 9«ititT^uwtnju9^fU9mfii1i4m95iJj'u«n^miJis;injm'inii 20% Co-60 tins; Sr-85 f Cs-134 wuQi59mim?ifm9U«ioflpm<3fliiJ5sus:n?n ?fivi Cs-137 2 Ill III! !•!'• •••" -••" TH9900025 TH9900025 261

Leaching Studies of Radioactive Cobalt, Cesium and Strontium

of Cemented Sludge from Liquid Waste Treatment Plant

Monta PUNNACHAIYA, Fookiat SINAKHOM and Pathom YAMKATE

Radioactive Waste Management Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

Tel. 579-5230 ext. 511 Fax. 561-3013

ABSTRACT

The chemical process used for treatment of Co, Cs and Sr contaminated in radioactive liquid waste at OAEP yield 100, 100 and 93.28 ± 0.09 percent recovery. The chemical sludge remaining composes only very slightly of Cs-137. The chemical sludge used in this study were spiked with radioactive tracers of Co-60, Cs- 134 and Sr-85. Cemented waste forms were prepared for 0-40%waste loading with 0.69 water to cement ratio and tested for compressive strength after curing for 28 days. Leaching studies via water at ambient temperature and at 50°C were performed within the duration of 0, 0.1, 0.2, 1, 2, 3,6,7, 10, 14,21 and 30 days.

The results revealed that compressive strength decreased with the greater % waste loading. The optimum sludge loading was 20%. There were no leaching of Co-60 and Sr-85 in any % waste loading at both temperatures while Cs-134 was decreasingly leached upon the time, Cs-137 was slightly leached after 2 weeks and gradually decreased afterwards. 262

UTTWI

i'u

3 itasmi

inn9

nwinmiwui

wgmin^ni viu vnu?i9tniifi3 263

JU «n Tm

300 Kg/cm2 (me 5 - 30 MN/m2) ^5uviniJii9i4iii)

V V

2 ibsfrnfis l.

iw

*=» a"=»

2.

V ta 15 - 40 % 28

3.

4. m9^n'wiv(q^fiiiijfn?ma0V!tinfj

5.

imsvi 50°c 6. o

4096

2. ( Jar Tester) VI1OJJi

3. 1.5

4. 300

5. o-i nltmfu 6. ^ 7. Water Bath 8. Desiccator

io.

11. Co-60, Cs-134 ims; Sr-85

12. tniasmwue^ CoClr6H2o, CsNO3nas SKNO3)2 aoiPiioutni^saiwlTiSfniui^u'uu 2,000 ppm

13. fmiflfiei'U'n ^0 Na3PO4.12 H2O, Ca(OH)2, K4Fe(CN)6.3 H2O, CuSO4.5 H2O,

Fe(NO3)3.9 H2O, NaOH, 0.1 N HNO}, DDTC(Diethyl Dithio Sodium Carbamate) Uf»S Bentonite 14. niS V 15. iS (§°g 265

16.,

fmUIY-35.5 Tttl.

18. cnfigfjflmtJjj^THfuitt^iQgdi^fnnfisfigtimS

19. finifi9i uvnufhfTU nisijgnen^ nwvj9fiSmfju^TH'5'iJu?i-3vi'un§m\4P) panchet

20. uiflunmuipifmjjsj 500 fM.^

21. •uQfivifnfT^fi'utJififniJj^ 250 ftu.inj

Co-60 , Cs-134 uas; Sr-85

4096

3.

3.1 Wf1WS;n0ulflll0aWfl'3t)lS Cobalt Precipitation

3.2 «fl?lSf10'u5l5t)lJpilltJQB Copper Ferrocyanide Coagula

3.3 einflSfl0UfrV)10Ul5mJ&)tni5 Phosphate Coagulation

4.

5.

ff x loo

Cs-137 mni unsSiJiJjifu^i ^•iTvifl^wo^iwujnsnujj'upif^^wpifnjj'uo^ Co-60, Cs-134 uns Sr-85 266

Cs-137

60-80 °c

v v i v l. iHi%flinumjm0iJiDnaiuifidlum9§mufl s 6

i^uinnn (%) m0cKiui4(n 0.256 ± 0.009

fnnwsfiouififlsnnlmiuiJTuVifnnmQ^mjni 93.380 ±0.134

• 2.

15, 20, 24, 30, 33

3. Co-60, Cs-134 ims Sr-85 mulilmnu l ^ SV tilii Blank Cs-137

4. oumn?i

0.69

% mnnrncwinij % thiilfl % lUcHflUUfl 15 34.60 50.10

20 32.66 47.34

24 30.98 45.16

30 28.58 41.42

33 27.40 39.80

40 24.50 35.50

5. i3i 267

Blank

6. wan uehwQwu'iehoo'uTmfmj uasfWYis'H24'

7. niMUfivtunoia floiifmuyi'uiii-affa^fiAs 4-5 wioih-a

8. unsuimvia'0'waia'pifi00fi nas^'n^l^oQi'HnSiio-Juiu 28 i\i(

(ui«vishimadzu) vxiwYiim 1.15

l. M^snfiisusna'mufn 28 q 400 aiJ.'KU. mo^fitJTwqwniDJiiasennmitnaeutim'us^a'iinjjjJuwi^a Co-60, Cs-134 ua

i i Sr-85 ^0tWHfjCw0-3Ufls;^ 50 ° C

2. inuwiom^'uiflifiinpi 200 au.'flw. iiJpiiTo^iliuifui-j^isitJ^nai 0, 0.1, 0.2, 1, 2,3,6,7,10,14,21 nas; 30 iv. 3. inTUQtU9(?inmilfia0UmtJ^0-3a'1inU3JVl?i!'^^I?iyiB Paige Leach Test

Leach Rate (LR) = At. Wo g/cm2. d

Ao. S.T

• 1 V i3J9 Ao = At = iJfjJioi^^ifiaouSitJoonininnwawrfunininiliJistisnai T Wo=

S = •wufiNTKn'HUfl'iiO'Wioth-a (cm )

T = iso

4. ^nuifnima0wmt)

5. 6. v ^^ 1-6 268

flmmOH

WHUJJ ims

Co-60, Cs-134, Cs-137 s; Sr-85

s Sr-85 mni Cs-i34ims Cs-134 ims Cs-137 3-8 9-11 Cs-134 ims; Cs-137 mmzuznm 20 % nas 40% 2

Cobalt Precipitation Ifll 100% Copper Ferrocyanide Coagulation 1« 100 % Phosphate Coagulation Ifi 93.28±0.09%

osphate-Iron Coagulation

28 TU iflu 251.10 ± 20.09 Kg/cm2

*• 150 Kg/cm2 uu 20 % 5B-3flfiiSu0?in?Tii4Wprjj^i'Huis;it}jaivifiJfniw5nm0fnnciTrufliii 269

nil

Cs-134 ffiviCs-137 50°c

Cs-134 ims Cs-137 j

Cs-134 Cs-134

Cs-137

ri 20 tl Cs-134

20 150 Kg/cm2 24 % V V

150 Kg/cm2

1. Hideo Matsuzuru, Noboru Moriyama, Yoshiki Wadachi and Akihiko Ito; Leaching Behaviour of Co-60 in Cement Composites; Atomkernenergie (ATKE), 1977 , 287-289 2. Hideo Matsuzuru, Noboru Moriyama, Yoshiki Wadachi and Akihiko Ito; Leaching 270

Behaviour of Cesium-137 in Cement-Waste Composites; Health Physics Pargamon Press, Vol.32

(June), 1977 ), 529-534

3. Hideo Matsuzuru; Leaching Behaviour of Strontium-90 in Cement Composites;

Annals of Nuclear Energy, Vol.4, 1977, 465-470

4. J.A.Ayres; Decontamination of Nuclear Reactors and Equipment; The Ronald Press

Company, New York; 1970

5. Judy F. Sese " Motar and Concrete Theory, Concrete Control and Testing " IAEA

Regional Training Course on "Management of Spent Radiation Sources and Other Waste from

Small Nuclear Applications" at Philippine Nuclear Research Institute, Manila, Philippines;

23 January - 10 February 1995

6. M. Punnachaiya, P. Yamkate; Study on Detergents Efficiency in the Radiactive

Decontamination Process; Proceedings of the 4 Nuclear Science and Technology Conference,

Bangkok, Thailand; 20-22 October, 1992

7. Takashi Matsumura, Toshio Ishiyama, Takashi Karino and Tetsuo Mamuro; Study on the Treatment of Radioactive Waste Water by Flocculation; Radiation Center of Osaka

Prefecture, Sakai, Osaka, Japan; Vol.2, 1961

8. Conditioning of Low and Intermediate Level Radioactive Wastes, IAEA-Technical

Report Series No.222, IAEA, 1983, 175

9. Flocculation and Coagulation of Liquid Radioactive Waste ( Technical Paper );

Radioactive Waste Management and Decontamination Division, Oarai Research

Establishment, Japan Atomic Energy Research Institute, Japan; 1996

10. Liquid Waste Treatment of JAERI; Radioactive Waste Management Division,

Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan;

April 1993

11. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimen,

ASTM Designation : C39 American Association State, Highway and Transportation Officials

Standard, AASHTO No. : T22 , June 1986, 25-30

12. Treatment of Spent Ion Exchange Resins for Storage and Disposal, IAEA- Technical

Report Series No.254, IAEA, 1985, 19

13. iI'UYmifu osmhjsn uas IJJJJ imuumq " niiibsqnwl#flhiuamiJatn4''lt)eei4 271

^vrm-anidYivmyitnat) tl 2535

14. 1J3U ims ihjvniiai

15. uaj

16. uon.409 1J2525 wui 1-16

3oms aisinij PH tfiinudv) iJsranomw aisnuiJURso3 lums fSnnmnau nnffcfidu

Cobalt Fe(NO3) 3-9 H2O ( Fe 30ppm) 10- 11 Co-60 100 Precipitation NaOH 7-9 DDTC lOppm 7-8

Copper K4Fe(CN)6.3 H2O ( 40 ppm ) 5-6 Cs-134 100 Ferrocyanide Coagulation

CuSO4.5 H2O ( 50 ppm ) Bentonite ( 50 ppm ) Phosphate Na3PO4.12H2O(800ppm) 10 Sr-85 93.28^0.09 Coagulation

Ca(OH)2(180ppm)

% woomneirnauluHaDinnjiimnM nynrmjusjiTfl ( Kg/cm2) 0 251.10+ 20.09 15 166.67+ 15.70 20 150.00+12.60 24 133.33+ 13.50 33 110.00 + 9.50 40 83.50 + 8.70 272

Cs-134 15%

Leaching Time Activity LR x 103 Activity LRxlO3 (d) (At, cps) 25°C (R/cm2.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=487.30+6.10 0 Ao=495.40+1.80 0 0.1 0.11+ 0.01 3.14 0.32+ 0.01 8.97 0.2 0.42+ 0.03 5.63 0.65 + 0.01 8.58 1 1.08+ 0.06 2.46 1.56+ 0.07 3.50 2 1.48+ 0.01 1.69 2.11 + 0.04 2.37 3 1.71 + 0.08 1.30 2.75 + 0.08 2.06 6 1.82+ 0.13 0.70 3.42+ 0.07 1.28 7 2.32+ 0.16 0.76 3.63+ 0.18 1.16 10 2.63+ 0.02 0.60 3.88+ 0.22 0.87 14 2.84+ 0.06 0.46 4.89+ 0.25 0.78 21 3.41 + 0.27 0.37 5.57+ 0.06 0.59 30 3.58+ 0.27 0.27 5.96+ 0.20 0.45

Tsmae'umrj'ua^aii nmrupmt Cs-134 fSaVrnffTuwarmieuruemn

Leaching Time Activity LR x 103 Activity LR x 103 (d) (At, cps) 25°C (g/cm2.d) 25°C (At, cps) 50°C (g/cm\d) 50°C 0 Ao=15.41±0.13 0 Ao=15.44±0.03 0 0.2 0.14 ± 0.004 30.60 0.57 ± 0.01 124.35 1 0.45 ± 0.01 16.72 1.19+ 0.03 44.14 2 0.75 + 0.05 13.94 1.49+ 0.01 27.63 5 0.94+ 0.04 6.99 2.01 + 0.02 14.91 7 1.07+ 0.02 5.68 2.02 + 0.02 10.70 9 1.18 ± 0.01 4.87 2.02 ± 0.06 8.32 12 1.20+ 0.06 3.72 2.03+ 0.13 6.27 14 1.20 ± 0.02 3.19 2.04+ 0.12 5.40 21 1.33+ 0.15 2.35 2.36+ 0.01 4.17 30 1.40± 0.01 1.73 2.41 + 0.03 2.98

emi-sri 5 aemniiifiae3flm fmimema Cs-134 rlaemfrTUNfmiia^memni 24%

Leaching Time Activity LR x 103 Activity LR x 103 (d) (At, cps) 25°C (g/cm\d) 25°C (At, cps) 50°C (K/cm2.d) 50°C 0 Ao=427.01+3.27 0 Ao=426.28+2.38 0 0.1 0.12+ 0.01 3.46 0.43+ 0.01 12.40 0.2 0.29+ 0.01 3.93 0.67+ 0.01 9.10 1 0.89+ 0.01 2.05 1.61 + 0.03 3.72 2 1.47+ 0.01 1.69 2.73 + 0.07 3.15 3 1.84+ 0.04 1.41 2.81 + 0.07 2.16 6 2.61 + 0.02 1.00 3.92+ 0.11 1.51 7 2.87+ 0.04 0.95 4.03 + 0.002 1.33 10 3.10+ 0.09 0.71 4.52+ 0.13 1.04 14 3.58+ 0.17 0.59 4.92+ 0.18 0.81 21 3.90+ 0.08 0.43 5.26+ 0.10 0.58 30 4.17+ 0.19 0.32 5.40 ± 0.01 0.42 273

Cs-134 30%

Leaching Time Activity LR x 10"3 Activity LR x 103 (d) (At, cps) 25°C (g/cm2.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=14.06±0.08 0 Ao=13.91±0.50 0 0.2 0.14+ 0.02 25.84 0.41 + 0.02 76.50 1 0.36 + 0.02 11.30 0.89+ 0.01 28.23 2 0.44 + 0.02 6.90 1.07+ 0.01 16.97 5 0.56 + 0.06 3.52 1.02+ 0.04 7.61 7 0.65+ 0.01 2.91 .30+ 0.06 5.89 9 0.72 + 0.02 2.51 .44 + 0.02 5.08 12 0.72+ 0.01 1.88 1.44+ 0.02 3.81 14 0.73 + 0.09 1.64 1.44+ 0.03 3.26 21 0.76 ± 0.03 1.14 .50 ± 0.07 2.27 30 0.77 + 0.02 0.81 1.53+ 0.01 1.62

r Tsiflaowmauosieni mwimemff Cs-134 fiefemafTUHau'Ufnmomni 33%

Leaching Time Activity LRxlO"3 Activity LR x 10J (d) (At, cps) 25°C (g/cm2.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=235.22+3.66 0 Ao=227.37±1.28 0 0.1 0.09+ 0.01 2.59 0.28 + 0.02 8.33 0.2 0.26+ 0.01 3.52 0.49+ 0.04 6.86 1 0.43 ± 0.01 0.99 1.10+ 0.06 2.62 2 0.50+ 0.01 0.58 1.22+ 0.004 1.45 3 0.57+ 0.04 0.44 1.52+ 0.11 1.21 6 0.88+ 0.03 0.34 1.76+ 0.05 0.70 7 0.93 + 0.05 0.31 1.81 + 0.05 0.62 10 1.05+ 0.04 0.24 2.03 + 0.03 0.48 14 1.20+ 0.07 0.20 2.03 ± 0.08 0.35 21 1.20+ 0.11 0.13 2.06+ 0.12 0.23 30 1.20+ 0.08 0.09 2.11 + 0.04 0.17

wm-afi 8 Cs-134 40%

Leaching Time Activity LR x 103 Activity LR x 10 3 (d) (At, cps) 25°C (g/cm2.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=15.40+0.57 0 Ao=l 5.14+0.49 0 0.2 0.26 ± 0.01 38.41 0.65+ 0.04 97.68 1 0.39+ 0.02 9.80 1.54+ 0.07 39.34 2 0.54 ± 0.01 6.78 1.93+ 0.02 24.65 5 0.61 + 0.07 3.06 1.99+ 0.06 10.17 7 0.72 + 0.004 2.58 2.21 + 0.05 8.06 9 0.75 + 0.03 2.09 2.22+ 0.06 6.03 12 0.78+ 0.04 1.63 2.25 + 0.02 4.79 14 0.89+ 0.03 1.60 2.26+ 0.07 4.12 21 0.95+ 0.12 1.14 2.31+ 0.08 2.81 30 0.97 ± 0.02 0.81 2.35 + 0.02 2.00 274

Cs-137 20% Leaching Time Activity LR x 103 Activity LR x 10 3 (d) (At, cps) 25°C (g/cmJ.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=2.77 + 0.02 0 Ao=2.77±0.004 0 0-11 0 0 0 0 12 0 0 0.136+ 0.001 2.139 14 0.041+ 0.004 0.053 0.139+ 0.020 1.874 21 0.050 + 0.004 0.045 0.139 ± 0.030 1.249 30 0.051 + 0.003 0.042 0.143+ 0.010 1.198

fim^ 10 eViiifminaa'Ufirmiie^am smmuemff Cs-137 ^aViiiefiwwaw'UBvimamiii 30% Leaching Time Activity LR x 103 Activity LR x 103 (d) (At, cps) 25°C (g/cmJ.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=22.46 + 0.01 0 Ao=22.28+0.09 0 0-11 0 0 0 0 12 0 0 0.099 + 0.005 0.168 14 0.040 + 0.006 0.058 0.152+ 0.010 0.222 21 0.053 + 0.008 0.051 0.181 + 0.020 0.176 30 0.050 + 0.005 0.045 0.201 + 0.010 0.137

11 Cs-137 viefrmenuHau'uajruefnnt 40% Leaching Time Activity LR x 10 3 Activity LR x 103 (d) (At, cps) 25°C (g/cm2.d) 25°C (At, cps) 50°C (g/cm2.d) 50°C 0 Ao=17.85±0.14 0 Ao=l 7.24+0.01 0 0-4 0 0 0 0 5 0 0 0.157 + 0.002 0.716 7 0 0 0.174 + 0.010 0.567 9 0 0 0.183+0.004 0.464 12 0 0 0.193+0.002 0.367 14 0 0 0.199 + 0.008 0.324 21 0.054+ 0.004 0.057 0.202 + 0.010 0.219 30 0.063 + 0.004 0.046 0.210 + 0.010 0.160

0.8

-LR(50oC) 0.6 -l.R<:5oC)

04

12 14 21 30 -02 0 0.2 1 2 5 7 9 12 14 21 30 Leaching Time (day) Leaching Time (day)

jlifl 1

Cs-134 20 % Cs- 40 % TH9900026 ®® \_TH9900026 275

?rmeuriitiu-90 tias

tfim {kyfymnemfjmnemfja uasmfiuasmfi?? wavMu

iyi 1m. 5795230 ffo 142 Twitm 5613013

-90 na ».rt. 2539-2540

f^^ tTnteuwoij-90 In UWMUJ IUW imsiiJai Sfintflu 0-3.0 0-0.2 mfiifi8i5fi/n1finfjjfff) uns; o-o.i B? 1u«i9m-3ifltnni4 fifhiilu 0.8-3.3 5aniufiifiowa/a«i 0.2-0.9 ims 0.1-0.3 mflmona/nlann>tffi

Sr and Cs in Environmental Samples at Ongkharak Nuclear Research Center and Surrounding Areas

Yureeporn Panyatipsakul and Pornsri Polphong Radiation Measurement Division . Office of Atomic Energy for Peace Tel. 5795230 ext. 142 Fax. 5613013

ABSTRACT

Determination of Sr and Cs in environmental samples collected around Ongkharak Nuclear Research Center (ONRC) and surrounding areas during 1997-1998 were

90 obtained. Radioactivity of Sr in surface water leaf and fish were 0-3.0 mBq/1 0-0.2 Bq/kg fresh and 0-0.1 Bq/kg fresh . Radioactivity of Cs in the same samples were 0.8-3.3 mBq/1 0.2-0.9 Bq/kg fresh and 0.1-0.3 Bq/kg fresh respectively.The levels of the radioactivity show the base line levels of radioactivity at ONRC for preoperation situation which will benefit for radiation protection to the public. 276

l. umii

alkaline earth group II A uasiriuiiifl0*Wniiin«jufitiMttnj flwuujeifigWumoufo «sliia"sa#uvifnsgn miiovulfuijSwaifjle'kTmJ ufllelvi'mJNtf-imym) fryneuromj-89 CST) iiastTYtteuiirtJij- 90 Csr) uri ""sr SfmutfimymnnTiw Sr mnsjjfl«in»mimfrii "sr if)utm™3»jn)u yield fioi4^n^^[-a«e ~ 3-4 % itfftaWi yiS-wm-jntiiflaej 195.8 MeV ims 0.546 MeV tfmmithumwiin 28.8 il Vt e«m1au-90 ("V) H?

alkaline wSfjQjfTjJTJwyn-jtfiSluVi^mt) fl^iofl^nu group IA Sl^ lumeuioo'olmeuioo' u (soft tissue)luu^woims;^T 3 letolioiJ wSfmu^imy «ot?4in«^ou no 5WOJJ-134 (l34Cs) (136Cs) uas WMM37 (137Cs) 137Cs ii5ucn?fj9 nSfmiJ^iflqj innn-h 134Cs uas136Cs inns Si 137Cs iftutiitf

i 661.6 keV l37C 90 Sr uas 137 Cs iS%4ttT3f-3^ YiSfii-mwtm iiasinwflinu^wtJttf^'wvi ivni

j i.fl. 1945

yju^iii^i ™ Sr iias 137Cs

90 Sr fnimfnifmsTi'l&ia'itnil u«TlviHfi8fn?HniPiyJu5<3lu«?n -v- ufiai5tJjjDsu«nB0n«initvi50V4ift)jj

scavenge m recovery yield iflomiiN'U'munfmuoiufl 2 mifrnfmeW ""Y viinfluti8g1lwtTfmsfTu

faftftaj*n&tnn?flfrthieai"h-m«n imu gas flow proportional vi2

Sr nas; l37Cs

y If i V • ftftau ^tmtmiiflatJUMflinvuYmYiihsinfu 316 "W

flfn«

2.

2.1 l. wow (carrier) W'I-J i Re «TwifTii78Ui5t)u 10 S 20 2

50

10 wimmfln 5 2 5 2. nifnruwfli-j l&iri niwlslfi^flaoin vuf»i^u^i4 6 luaiT lias l luai? ims o.si

3. luffiriifmn «i I&iri uoulumtju Isfiionlw vuwrfu^u l Turn's uns o.i

4. tmmSoun l^iin T«»I«OJJ mfuemw

uoulumwu osvmfi ijVldoi pH 5 flou lfl?uj« ivu'iiu 1.5 lutm 278

fmeW ivuvu 10 % ueaneaea 5. t1*U DOWEX 5OW-X8 (50-100 mesh)

7. IWilMfiliuleTjyil'BU^fnTiWQem-l ( stirring hot plate) 8. wntWifoed'N ( muffle furnace) 9. ^ouwiem-j (oven) 10. ifiio-aivnwwsneii (centrifuge) 11. iftte-nfii^ueaYh-iuen uuu gas flow proportional 2.2 v 2.2.1 v l. mv wTWifTYiieuwftiu fauiu 50 Saanfjj uv\z

2. mowiemaahmenifafrmi'DiuaQulutfieen «u«uimj 3.6mitimmifiin$$iv mfAs^n^rnvmu 6 Turn?

5. wnflsnoiiwieti^lw^ilDa^fniueiiiw ^ pH > 10 $wX

137Cs 6.

4,2 ('ihjflfmvliilufi'mwjnman eon

6.2 iHiwtnevi^fjQjvifjC 550 °c 6.3 tiSEntiwsineti^Qoiiin (iiumuii mvifiiinan 6.4 pH 5.5 6.5 279

6.6 asaitiflsnoufoa mfllslflsfinein flnnsnou ivle?n laflienl* w pH>9 (menifa daughter «uo^ ^Ra ivu21°Biims;2l0Poe8nflinfl'3Bm-3)

6.7

6.8 nstnowsnauflin^e 6.7

6.9 Ti^f-3^m«TUe-3 '"Y ^QfJliTlifl^^lieiiyli-tUfnimiJ gas flow proportional

7. mrjifmsiiCs-137

ammonium phosphomolybdate (AMP) frnuf

7.2 asjnt)AMP^n-3i4u^'3^'J0NH4OH mu lm^it) resin DOWEX 50W-X8 elute #10 7.3 «jjwiom-3^im«3 doafoumflluflifiuj

7.4 «nws;nou«'30m-3'lv4^iJ<«84 §ISOJJ fiaol^miwumw mm ou

7.3 Tflf^tUfl'ttie'J 137Cs ^'JOlTlQflfflSuon'Hi-mtnuiJlJ gas flow proportional

105°C 48 VQIU-3 IH1Y1 400°C y v J

l. ftihwuniJiaiiJOW'JOth'JihsiJiQi 10 mu uas aTrnvrnmifawni 20 Saanfu 280

2. rioomntiwhod'ufofjmfllalfufmeinnmtf u 6 lutni feu me-wieth-j immifaK v y 3. VhlllfltrcmJlJ'lH'MUl flhUWlfo 5 2.2J iJai

me wu'muniueiJfn oim 105 °c iftuntn 48 %i\w miv 400 °c iilu ny multf

3.

Ti '"sr uas:

wifiao-3 ihu'e 12 tfumu-a 12 wiom-a RO iliiiij v V it ihfme-a 2 MQBfli^ wiiio 3 flierin itas; ilifTis: l ^ Sr ims;137 Cs l^fil

wiem3 fovttyi 5 «ie« 2 wiorn^ lu^fnSiiwtt l fliom-3 ims y ™ Sr ims; "7 Cs lll

6 vu« RO

imsiJintitrn ^oiijJiD0^iJ?iJiainjjjjv4«/iiyi!'-3^ ™ Sr s B7 Cs 281

^nw^W!/ ., _-^S=w'"

^

^ -1^="^.-.'.-'.'. •^-^;^:-:(::>>^^:::;q^y--:•••••• 282

uas §MKJN-137

iJTU1ttAl]JUM1-m?4t}0llB(|A)

&SMJ-137

y v 2.0+0.8 1.4+0.5 y y 2. 1411]!) iJeuivmitjutM <1.7 3.3±0.5 y y 3. uiiie iJ9'U'iVnqjvi&f[

4. 1411J0 iweifni^SUIfJWI^IUoBIO (lUeM'U'HVl'U'ihflUtH) 2.6±1.1 2.7±0.5 y y 5. vinfljio^ iJ^siw?snnyviifiiiB'3utiij5svnv4 fiiio^ l 2.8±1.0 0.8±0.4

6. •U1llJJl4114m\n«fl 60M\i^7 t1UV4O-3fil'n^1Um

1.8+0.7 l.l±0.4

10. iliiwJuiufi^Tjnon Tifiijtyiuw ui>Ji4i^mn 1.4±0.8 1.2±0.4 y y 11. •uimjuiufiivnon ifm^om^ <3.3 1.3±0.4

12. iliuii'uiufiiuion QPiiJinfiiio^'wisoisnit) 1.8±0.8 1.2±0.4 283

iliuiai n u JJ ww/n-wf-J ^

flQ08"l-3UflSitflTUyuniJW19fJ1'3 (Bq/kg. fresh)

fTV110UtSfJU-9O «l«WI-137

l. luyfiiBilflft WNflS'mvmthtju&'i <0.13 0.9210.04

2. nsyi 60 najw7 miuO'jfifmy^Tumuo 0.1610.03 0.6510.04

3. msmjaii-an 60 WNYI 7 ouvie^mnw^Tumvlf) <0.05 0.7610.07

4. Mtyi T?-3t1ouuTuvint)^a <0.05 0.3110.02

5. "Mtyi llTSqiS;inOl41fli18i9

O.15±O.O2 0.3910.02

7. Mtyi il'5j;g'5*intJvniitT)fnw0^pf'5 0.08±0.03 0.8210.05 ** •* rf 8. vtqji ifiijcyww ui-3ui-3mn 0.06±0.02 0.4810.03 v v <4 <0.04 0.2310.02 laAnmnm trtmmHmstmii <0.03 0.32+0.02

iJ^UItunuijUW/nnf^^ (Bq/kg.fresh)

fTyi^0TilUCJJJ"9O ««mi-137

l. iJaTiJou <0.02 0.1210.02 2. iJjnqn <0.02 0.3010.02

3. llflTUfi <0.02 0.16±0.02 4. lJtntmu <0.02 0.2710.02 5. ilai«u <0.01 0.0910.01 0.0610.01 0.2610.02 284

4.

uas wSeju-137

Sfhiilu 0.8-3.3 {tamimifimia/Hfli 0.2-0.9 0.1-0.3 T iS

iD

5. 1. Finston HL , Kinsley NT. The radiochemistry of cesium. NAS-NC-3035 ,1961. 2. Japan Chemical Analysis Center, Japan International Cooperation Agency. Textbook for the group training course in environmental radioactivity analysis and measurement. TITC JR 93-236. 3. Kahan et al. Determination of low concentrations of radioactive cesium in water. Anal Chem 1957; 29(B): 1210-3. 4. Kathren Ronald L. Radioactivity in the environment: sources , distribution, and surveillance. New York : Harwood Academic, 1984. 5. Milintawisamai M , Panyatipsakul Y. Behaviour of Sr and Cs released into the pond of Office of Atomic Energy for Peace. Radiochimica Acta 1991 ; 54 : 155-7. 6. United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing radiation : sources and biological effects , 1982 report to the general assembly , with annexes. New York : United Nations , 1982. 7. Science and Technology Agency. Method for determination of radiostrontium. 3 rd ed. 1983. 8. m%v i?«udijD. ims'UTMiflQiuflin....g'u«u'3if)ao?im>jl

qjjpli was miei arniiarfri

i

2186781 1yi?(t1? 2186770

cu

mu

v v v ^9

(ufiJj0Pitn>in?53JiJii)?n'w?iuas;vnpiiJii4ivi 14.60 - 545.19, 7.94-20.97 tms 3.39-38.78 286

In Situ Gamma-Ray Measurement

Using A High-Purity Germanium Detector

Tatchai Sumitra, Nares Chankow and Paratee Sarapassorn

Department of Nuclear Technology. Faculty of Engineering, Chulalongkorn University

ABSTRACT

Technique for in-situ gamma-ray measurement have been investigated and tested to be used for environmental gamma-ray monitoring. A portable high-purity germanium (HPGe) detector with relative efficiency of 10% was used in this research. All Calculations such as the relative detection efficiency, curve fitting, angular response correction, photon flux and so on were easily performed by using the developed formulas on the Microsoft Excel. Field gamma-ray measurements were carried out in 5 areas i.e. the field in front of Chulalongkorn University, the new site of the Nuclear Research Center in Ongkarak District of Nakornnayok Province, Banrai

District of Utaitani province, Rayong Industrial Estate at Maptaput and Banpae beach of Rayong

Province. The radioactivity of K, U and Th were found to be in the range of 14.6-545.2, 7.9-21.0 and 3.4-38.8 Bq/kg of soil respectively which were in good agreement with those obtained from laboratory analysis of the taken samples. 287

m m£jinii?n90i-3 IIII^I-JCT mMe^ilgiiPifniiiaiui 111 V V t r V l^i'f^ l - 2

[Nai(Ti)] (high-purity germanium, HPGe) iJ

V V

U

(relative efficiency) YJVmWU 1.332 MeV 10% •HcnE)1J0-3 (multichannel analyzer, MCA) vUlfflB CA^fBERRA \M Series 10 UUliniSllJwJ

10 s< f v y v v i i JJJW5 T'f^llf#5 Tl^

6000 iinvi 288

137 662 kev 'Oin Cs vniogtmwnwiiiu l mm ms rvu (l)

n.

i).

fi. fa VITA 55-3Siiinjj3JU9)f-3^a^jilsili4nijtiiflijS n

LiTf^ftSOEJl^UQEJ 2 flfl mi4Hfn 6000

ibswifu 1 - 2 (gamma spectrometry)

GANAAS (International Atomic Energy Agency, IAEA) 289

N A - NTT

A fl8

flfjJ (pCi/g) M10W!)llJfllflOl1f1/nlfiniJJ (becquerel/kilogram :

Bq/kg) N m oVinuimfltfYii (WBiinvi, s')

\\1®U \\imnuh\il\llim-ift/l\ilY\ (counts per second : cps) WB

N0 s

ma —- m

cps per photons/cm -s)

2 471 (100). 8 (3)

8 fl9

Nf A NT"'

nu ^8 1nn^^^lM^4^fn^uantlc1s;}JiJ?n-3n^J

Nf_ _ [ 72 R de (4) No r(|) Jo"° d SG • (°) o

(photons/ cm -s) VIMIlfliNn 290

7 a*ii

(n)

S-S0Ka/pXpz)]

C s = 291

\\ 2 exP[~(a//P)(Pz)] •ex P (— cosG)-2TIr sinG-rdrd9 4n r (5) 0 f7i/2 foe ~2 ° h/cosG (6)

fin s() exp [-(alp) (pz) ] ^9 fn^JJ^DU'u^JDQ^3'u^1flcl^nJJJJ^4Plf-3S^1^;^lJan z a/p fl8 tnunaUIIQ-J relaxation length

ivnnu s0 (fn a/p = 0

— ^9 do nu

exp(-ji h/cos9) (7) 2p

R(G) fis

R(0) y (NQ) Ju o° (No) nuijw 9 vn-j 1 IJJWI R (0) (D) nufniimui (L) 3 nas 4

fin

photons/cm -s 0)9 pCi/g Vt50 photons/cm -s ?19

Bq/kg) wiotn-jfin 292

R(G)

1.6

1.4 = c()+c,e + c2e' + c,e"

1.2

0.4 30 60 90 e AMSLZ OF mCrDEKOC;

(1) 4 ?i'loej^fl1"lvlfmiJaiJ'WU!iTSVni-3 N6/NO nUJJU 9 662 keV 293

(3) l m <))/s ims /i

2 Y energy <|>/S (xlO2) <(>/I (xlO2) Y energy <|>/S (xlO2) /I(xlO~ )

-2 -I -2 -1 Nuclide (keV) Ycm'V Nuclide (keV) Y cm s Y cm s ycm s per ^R/h per pCi/g per pCi/g per )iR/h K-40 1461 3.63 2.03 Pb-212 239 1 725 2.57

U-238 series Ru-224 241 2.57

Ra-226 186 0.458 0.252 Ac-228 270 3.62

Pb-214 242 1.04 0.571 Tl-208 277 ' 1.02 3.62

295 2.91 1.60 Ac-228 282 i 3.62

352 6.01 3.30 Pb-212 301 0.553 0.196

Bi-214 609 9.42 5.18 Ac-228 338 2.18 0.773

666 0.339 0.186 Mixed 328-340 2.90 1.03

768 1.17 0.643 Ac-228 463 0.920 0.326

934 0.810 0.445 Tl-208 510 1.93 0.684

1120 4.21 2.31 Tl-208 583 6.39 2.27

1238 1.72 0.945 Bi-212 \ 727 1.86 0.560

1378 1.49 0.819 Ac-228

1401-08 1.25 0.687 Ac-228 755 0.270 0.0957

1510 0.712 0.391 772 0.410 0.145

1730 1.02 0.560 795 1.20 0.425

1765 5.39 2.96 830+835+840 0.940 0.333

1845 0.791 0.435 Tl-208 860 1.18 0.418

2205 1.95 1.07 Ac-228 911 7.55 2.68

2448 0.666 0.366 965+969 6.13 2.17

Th-232 series 1588 1.23 4.36

Ac-228 129 0.290 0.103 Tl-208 2615 16.7 5.92

210 0.580 0.206 294

7 uas R(9) (4)

/2 Io" g • R(9)

-n h/cos0) R(9)d6 2p

sin9 p/ — f exp(-u h/cos8) In 2 p [ (a / p) cos 0

•(8)

(numerical calculation)

0 M^UM o°°, o.i°o°, o.2°°, 0.303°° 90° uairnwanu

5

4fititiiiniinni

* «& . I *• •,is;J i* '••••/' •"' r-. *. iri4o<4in jivnriBiu

,. ;-;. •••- •"' QAWZ

:,:-;.:*• '•*';• , - ' • . <• ,

QJ 295

mfltNniw^

10000

1000 o

o o o o CO 2: O a

500 1000 1500 2000 2500 3000 3500 .4000 CHANNEL NO.

10000

1000 « o o o

CD l c u

1000 1500 2000 2500 3000 3500 400 CHANNEL NO * silvi 6 296

x Microsoft Exce IN SITU GAMMA

8 (deCree) 0 0 OOOOOE+00 0 OOOOOE-KJO 9 04900E-01 0 OOOCOErtO Energy = 1461 keV 01 1 74533E-03 1 61781E-02 9 03526E-01 146173E-02 in(Energy) = 7.2868764 02 3 49066E-03 3 23561E-02 9 02155E-01 2 91902E-02 fls = 0.0850741 per cm 03 9 00787E-01 5 23599E-03 4 8534OE-02 4.37188E-02 JJLa = 6 344E-05 per cm 04 8 99422E-01 6 98132E-03 6 47118E-02 5.82032E-02 p - 1 59 05 8 98059E-01 S 72665E-03 8 08894E-02 7.26435E-02 Efficiency = 2 71E-05 06 8 96700E-01 1 D4720E-02 9 70667E-02 8 70397E-02 07 8 95343E-01 1 22173E-02 1 13244E-01 ;01392E-01 R(») c« = 9.05E-01 08 8.93989E-01 139626E-02 I 29420E-01 1.15700E-01 cl = -788E-01 ffi 09 8 92638E-01 1 57080E-02 145597E-01 129965E-01 c2 = 4.64E-01 8 91289E-01 12 1 1 74533E-02 1 61773E-01 144186E-01 c3 = -1.40E-01 8 89943E-01 1 1 1 91986E-02 1 7794Xt01 1 58363E-01 8 88600E-01 14 12 2 09440E-02 1 94123E-01 1.72497E-01 8 87260E-01 1 3 2 26893E-02 2 10297E-01 1.86588E-01 8 85923E-01 16 1 4 2 44346E-02 2 OO(535E-O1 Net Peak Counts = 1580 per 6000 s 8.84S88E-01 1 5 2 61799E-02 2 42643E-01 2 14639E-01 0263333 per second 8 83256E-01 18 16 2 79253E-02 2.58815E-01 2 28600E-01 8 81927E-01 17 2 96706E-02 274986E-01 242518E-01 m f Ready [ ©HP Status Window llaSMicrosofl Excel -1...

x Microsoft Excel IN SITU GAMMA £te £« jrawl Jool. gate

JTimes New Roman fT~3 fg" JT [ fll E905 B 1 887 885 1 54462E+00 7 31808E+00 2 77675E-01 2.03204E-KM 886 1 54636E+00 7 19283E+00 2 77048E-01 1 99276E-+O0 88 7 1 54811E+00 7.05089E+00 2 76421E-01 1 94901E+00 850 88 8 1 54985E+00 6.88877E+00 2.75792E-01 1 89987E-KM 891 88.9 1 55160E+00 670189E+00 2 75163E-01 184411E+00 S92 89 1 55334E+O0 6 48426E+00 2 74532E-01 1 78014E-HKI 893 89.1 1 55509E+O0 6 22777E+00 273900E-01 1 70579E+O0 89.2 1.55683E+O0 5 92131E+00 2 73267E-01 1 61810E-+OO 893 1 55858E+O) 5 54929E+00 2 72632E-01 1 51292E+OO 894 1 56032E+O0 5 08931E+00 2 71997E-01 1 38428E-KB 897 89 5 1 56207E+O0 450862E+00 2 71360E-01 1 22346E+O0 89 6 1 56382E+00 3 75937E+00 2 70722E-01 1 01775E+O0 m 89 7 1 56536E+00 2 77691E+00 2 70083E-01 7 49997E-01 1.56731E+00 408240E-01 898 1 51512E+00 2 69443E-0I 1 56905E+O0 6.61500E-02 901 89.9 2 46O92E-01 2 68802E-01 902 S(d*/dO) = * • 5158.720426 : R(6)] , 2.34249E+03

905

Ready aBifa»Start| pHP Status Window [}SS Microsoft Excel -1... 297

10% V V V t 1 V 6000 iwm mo ibsinoi 1 •tfilu-j 20 vnvi wofmTflftS 1 fif-3 30% flzlifnaiTflfj^mtuibsinai 30 uivi rm v v

ims

v v l (fall out)

Mr. A. Miyagawa UH^ Power Reactor and Nuclear Fuel 1 1 1 V V 1 .y Development Corporation (PNC) iJismfmjlJ'U vilAHilwnilll4SU1

1 1 t 1 V Science and Technology Agency (STA) UVUlbsmmyiJ'ufiTm'JlJ Mr. Miyagawa IS!

1. K. Miller and P. Shebell. In Situ Gamma-Ray Spectrometry : A Tutorial for Environmental

Radiation Scientists. EML-557, Environmental Measurements Laboratory, New York, 1993, 45

pp.

2. E. Sakai, H. Terada and M. Katagiri. In-Situ Measurement of The Environmental Gamma-Rays

by Portable Ge(Li) Detectors. Japan Atomic Energy Research Institute, JAERI-M 6498, 1976.

100 pp.

3. H. Beck, J. DeCampo and C. Gogolak. In Situ Ge(Li) and Nal(Tl) Gamma-Ray Spectrometry.

Health and Safety Laboratory, HASL-258, 1972, 75 pp.

4. NCRP. Environmental Radiation Measurements. NCRP Report No. 50, National Council on

Radiation Measurements,Washington, 1976, 246 pp. 298 <3°®

(1) ki -s*^- M (2) «* *» ^ (3) In^ins o lif In uas fiiaiun «BI1M

pfiTjfniuvia^^iT4il?3Jitutvi9ffvi?i flwsin? n^mn 10900 ' fft4fjtf)2^ifi?ismivi^ilismfriyi]ti 295-3 tfuTu-Iij aunns-n 5us; 263

va SPE-IOOO ^ifliiNrajuiiJisnn^ SPE-500

0fuHf) 50 tiQjjud^^^9u1>i7^

IOOO Saaam'MnmsaiafiWlamnu 2.3 75 CaSSfi? ^nnM^wiMfi^^TpioHififa^wn^fluilfuiwi 5 nf^ lpit)1wi0t)i^^?t^wuii5Y?i^wfi1

ujjw ( TC'Ti ) 5fh 8.3 r 0.4 iiasfiniujj-3iu^jJi?|i?siuHiJ'»Nvi5iyiinu 4.8 %

5.78

(Tf/Ti) nuiliui^iifjjpiu (Vi) (O.S271og(Vi) - 1.587) Ti = Tf/10

400 50 uauuib UTU IO tn^ «5n?T0-3fi?4 •u 10 ^ ^ aiO (Decontamination Factor) iJirunJUlviirill 1000. • II UM !•»• ••»" TH9900028 TH9900028 299

The Analysis of Tritium in Natural Water by Electrolysis Enrichment using Solid Polymer Electrolyte

(1) (2) (3) Pisit Suntarapai , Keisuke Isogai and Kaneaki Sato Health Physics Division , Office of Atomic Energy for Peace , Chatuchak , Bangkok 10900 Japan Chemical Analysis Center , 295-3 Sanno-cho , Inage-ku , Chiba 263 , Japan

ABSTRACT

Solid Polymer Electrolyte ( SPE ) is a cation exchange resin , and applied to tritium enrichment

by electrolysis technique to have functioning as an ionic conduction . The experiments were

carried out using the lastest model , SPE-1000 prototype , which developed from previous model .

SPE-500 . The results were found that the cooling units of SPE-1000 prototype are not efficient to

cool down and condense the vapour . A high current , 50 amper applied to electrolytic system

made the system hot and temperature rose up to 50 degree Celsius .

For test run , initial volume 1000 ml. was electrolysed for 2.3 days until reaching the final

volume 75 ml. that fixed at each run by using level sensor . Five runs using tritium spiked samples

shown the reproducibility was a little poor , the variation of the concentration factor ( Tf/Ti ) was

8.3 ± 0.40 and the relative standard deviation was 4.8 % . The apparent seperation factor was

calculated to be 5.78 . The experiments established a linear relationship between concentration

factor (Tf/Ti) and its initial volume ( Vi ) providing an equation of tritium content in sample as 10.827 log(Vi)- 1.587) Ti = Tf. 10

As the electrolytic system was found memory effect which keep the the tritium activity from previous run . We should carry out the procedures as follow . 1) wash by using 400 ml. of deionized water and apply current at 50 ampere for 10 minute twice , When the above procedures were done then 2) wash by 400 ml. of tritium-free water 50 ampere apply for 10 minutes twice , the decontamination factor was approximately 1000. 300

1. OBJECTIVE

1.1 To examine the performance of the SPE-1000 prototype

1.2 To determine the relationship between concentration factor and initial volume

2. INTRODUCTION

Solid Polymer Electrolyte ( SPE ) is a kind of cation exchange resin which sulfonic groups are grafted to the polymer chain as shown in fig. 1 . SPE was applied to electrolytic cell by functioning as an ionic conduction instead of electrolyte solution for tritium enrichment by using electrodes. SPE electrolytic apparatus as shown in fig. 2 can be devided into 4 main parts : SPE cell part, Sample reservoir part, cooling unit part and Power supply unit.

FC-CF3 0 Pt SOjH Fig. I Solid Polymer Electrolyte (SPE) structure

hydrogen gas oxygen 4 as outlet outlet

cooling part

water censor

D c j : bubble level power supply

Fig. 2 SPE electrolytic apparatus 301

SPE cell part

The SPE cell part consists of electrolysis unit , shown in fig. 3, which is constructed by porous

dimensionally stable anode covered with Titanium chamber and porous stainless steel cathode

covered with stainless steel chamber , the SPE membrane is held between two porous metal

electrodes. Water is decomposed at the anode generating oxygen gas and hydrogen ions , oxygen

gas released passing through the porous anode to anode side reservoir . Hydrogen ions move passing through sulfonic group to cathode and accept electrons become to hydrogen gas releasing to cathode side reservoir. Oxygen and hydrogen are generated seperately.

Anode

Anode : 2H2O > 0, + 4H

Cathode : H + e > H.

Fig. 3 SPE cell part (Electrolysis unit)

Sample reservoir part and Cooling unit part

Water sample is kept in both reservoirs : anode side and cathode side , each reservoir contains 500 ml. the reservoirs are seperated but water can pass through the tube inside the electrolysis unit. A cooling unit is installed on the top of each reservoir's stainless lid to keep the temperature of water vapour down and condense to liquid dropping into the reservoir . The cooling units are set at zero degree centigrade . 302

Power supply unit

Power supply provides DC current , 50 ampere and connects to a level sensor which control the

final enriched volume constantly at each run. The power is designed to shut off automatically when water level reachs to level sensor.

3. EXPERIMENTAL

3.1 The performance of SPE-1000 prototype

Fifteen electrolysis runs were examined and observed the performance of SPE-1000 during operation . Four items below were observed .

Electrolysis unit

Sample reservoir and Cooling unit

Evaporation and spray loss

Automatic shut off system

3.2 The fluctuation of concentration factor

The experiments were done for 5 inns by keeping all parameters constant at each run as condition below :

initial volume ( Vi ) : keep constant at 1000 ml. , an error in volume measurement for 1 ml. give a relative error of 0.1 % final volume ( Vf) : keep constant by sensor level control which shut off automatically initial concentration ( Ti) : 0.6 dpm/g approximately final concentration ( Tf) : Tf was measured by LS counting current : 50.0 A. counting : Aloka LB III 500 minutes

Teflon vial 100 mi.

water : scintillator ( Ultima gold LLT ) 50:50

Concentration factor f Tf/Ti) was calculated and compared the results . 303

3.3 Memory effect and Decontamination factor

SPE is a strong acid type cation resin film which contains exchangeable hydrogen atom that tritium can be easy substituted. Their electrodes are porous metals : Anode is porous dimentionally stable anode ( DSA ) , Cathode is porous stainless steel . For those characteristics , enriched water is always maintained in the both porous area and tritium is substituted to the exchangeable hydrogen in SPE film as memory effect . A special wash is necessary to decontaminate the system.

At the end of spike runs ( standard tritiated water ) , SPE electrolytic cell is washed by amount of deionized water , background water ( tritium-free water ) and applied the current of 50 A., for a moment. To determine the memory effect, after decontamiantion , 1000 ml. of tritium-free water is enriched , measured to obtain the decontamination factor ( DF ).

3.4 The relationship between concentration factor and initial volume

The theoretical relation of tritium concentration factor versus water volume is expressed in equation 1 as following.

Vf/Vi = (TfVf/TiVi)^ ( 1 ) when Vf = final volume

Vi = initial volume

Tf = final tritium concentration

Ti = initial tritium concentration

(3a = apparent tritium separation factor

The relation in logarithymic scale derived from eq. 1 is

log(Tf/Ti) = (l-l/Pa)log(Vi) - (l-l/(3a)log(Vf) (2)

When the final volume is kept constant at each run and [3a is apparatus constant , only two independent variables are available , initial volume (Vi) and concentration factor (Tf/Ti). If the relationship between Vi and Tf/Ti in logarithymic scale is plotted by vary the initial volume , a slope is ( l-l/|3a) and intercept is -(l-l/(3a)log(Vf). 304

3.5 Analysis the samples

Two samples were analysed by SPE electrolytic enrichment and compared with the previous

analysis which were done by conventional alkaline electrolysis enrichment . The first sample is

deep sea water ( 500 meters in depth ) and the second one is surface sea water ( 1 meter in depth ).

The samples were measured by Aloka LB III and calculated the tritium content of the original at

sampling date by using formula derived from the ralationship between concentration factor and

initial volume as below : (AlodVi) + B) Ti = Tf/[10 ] (3) when A = (l-l/(3a)

B = - (l-l/|3a)log(Vf)

4. RESULTS AND DISCUSSION

The performance ofSPE-1000 prototype

SPE part

0 Many electrolysis runs show that the temperature of both surface electrodes rises up to 50 C

during electrolysis making the water hot. After using a electric fan to cool down electrolysis unit, o the temperature decrease to 40 C as shown in fig. 4

Sample reservoir and Cooling part

Sample reservoirs are inspected and found that they have no o-ring seals between reservoirs and

theirs stainless lids causing some water vapour leak from system .

Cooling part were not efficient to cool down and condense the water vapour circulating in system.

The temperature of the cathode side cooling part was normally higher than the anode side at each

run as shown in fig. 4

The case mentioned above should be improved by the first hand to avoid the effuent from sample

leakage . 305

SPE-B SPE-C

60.0

50.0

g40.0

S.

H 20.0

10.0

0.0 24.0 Ronniol boon (bra.) Running time (hn)

SPE-D SPE-BACKGROUND

Running hoarCbr.) t hoar(bn.)

SPE-1500 SPE-2000

60 0

50.0

40.0

J JO.O S.

H 20.0

4J0 T2.0 naiDf hour (bra.)

Fig. 4 Temperature of reservoir's cooling units [Cooling] -»- Cooling Cuhodc and electrolysis unit [Electrode] during operation -*- Cooling Anode -»- Electrode Citnode -o- Electrode Anode ! Run no. SPE-B SPE-C SPE-D had no cooling fan Run no. SPE-Background (hr.25) SPE-1500 SPE-2000 were cooled down by cooling fan 306

Evaporation and Spray loss

Many electrolysis runs were checked and found that water vapour was trapped by two tube of silica gel moisture absorber about 1.5 - 2.5 gram at each run . Such loss decrease the seperation factor . If the electric fan is installed to cool down the electrode , the cooling part of both reservoirs is improved more efficient and o-ring seals added in the system such loss will be controlled and keep minimum .

Automatic shut off system

SPE-1000 prototype use level sensor shutting off power supply automatically when water decreases to sensor level. 15 electrolysis runs showed that the deviation of final volume between runs was within + 3 ml.

The automatic shut off system of SPE-1000 is not suitable and need to improve for more precision. Amp-hour counter may be a good choice for controlling the final volume constant with high precision.

Counting performance

Counter Aloka LB-III Liquid Scintillation Counter

Counting time 50 min. x 20 cycles

Standard Tritiated water : 15194.868 dpm at 9 May 1996

14158.820 dpm at 15 Aug 1996

Counting Standard : 3653.81 ± 6.07 at 15 Aug 1996

Background : 5.07 + 0.31 cpm

Counting efficiency : 25.770 % 307

Table 1 The fluctuation of concentration factor

Run no. Initial Final volume Ir.^ial Final Concentration

&ID volume (Vi) (Vf) concentration concentration factor

g- g- (Ti) dpm/g (Tf) dpm/g TfTTi

1 998.91 constant 0.5880 4.829 8.81

SPE-A > " g 9 May 96 15 Aug 97

2 constant 0.6020 4.437 7.91

SPE-B 999.45 > 62.7 g 9 May 96 15 Aug 97

3 999.24 constant 0.6004 4.439 7.93

SPE-C > 65.0 g 9 May 96 15 Aug 97

4 1000.04 constant 0.5803 4.791 8.27

SPE-D >63.5g 2 Aug 97 15 Aug 97

5 1000.00 constant 0.5803 4.976 8.59

SPE-E > 62.2 g 2 Aug 97 15 Aug97

Average 8.30 + 0.40

( % SD ) (4.8 % )

Concentration factor

9.5

3.3 >--

I 1.5 2.5 3.5 4.5 5.5 Run no.

Fig 5 The fluctuation of concentration factor

We expected the main problems of the fluctuation of tritium concentration factor were :

Evaporation loss rate are not constant because ofSPE performance.

Automatic shut off system is not efficient to control final volume constant as described.

Dilution error of each standard water is not unity. 308

Memory effect

The decontamination precedure A

rinse with 300 ml. of deionized water and apply current at 50.0 A. for 5 minutes twice then rinse

with 300 ml. of tritium free water and 50.0 A for 5 minutes , dry the water reservoirs , all nozzles

and tubes with clean and dried paper .

Table 2A Memory effect & Decontamination factor , using decontamination procedure A

Tritium concentration Tritium concentration of tritium-free water (Af) Decontamination

of previous run ( Ai) (dpm/g) factor (DF)

(dpm/g) original after enriched Ai/Af

4.976 0 .0088 560

The decontamination precedure B

rinse with 400 ml. of deionized water and apply current at 50.0 A. for 10 minutes twice then rinse

with 400 ml. of tritium free water and 50.0 A for 10 minutes , dry the water reservoirs , all nozzles and tubes with clean and dried paper .

Table 2B Memory effect & Decontamination factor , using decontamination procedure B

Tritium concentration Tritium concentration of tritium-free water (Af) Decontamination

of previous run ( Ai ) (dpm/g) factor (DF)

(dpmyg) original after enriched Ai/Af

10.569 0 0.0110 957

0.091 0 0.0030 30

Memory effect was found in the SPE system. We expected the memory effect was kept in SPE membrane mainly. The porous area of electrodes were the second priority. The decontamination procedure B was examine twice and found that the decontamination factor (DF) of the first wash is 957 and the second is The result showed non-linearity and we expected the relationship between DF and decontamination run to be exponential. 309

Tablei The relationship between concentration factor and initial volume [Aloka LB counter]

Gross count (cpm) Net count (cpm)

BG-1 4.760 ±0.356 (average) BG-2 4.728 + 0.250 4.744 + 0.435

SBE 12.844 + 0.418 8.100 ±0.603 STD 3620.18 ±10.01 3615.43 ± 10.02

ID Initial volume Final concentration Initial Concentration concentration

Vi log(Vi) Bq/1 Bq/1 factor

SAE-500 500.01 2.699 50.748 ±0.416 11.682 ±0.250 4.344 ±0.100 SAE-1000 1000.00 3.000 93.061 ±0.550 11.692 ±0.250 7.959 ±0.177 SAE-1500 1500.68 3.176 131.405 ±0.633 11.683 ±0.250 11.247 ±0.247

SAE-2100 2099.91 3.322 170.411 : 0.714 11.669 ±0.250 14.604 ±0.318 SAE-2500 2500.01 3.398 189.187 ±0.743 11.658 ±0.249 16.228 ±0.353

The relationship was plotted in the logarithymic scale and shown to be a linear relationship Using regression , slope calculated to be 0.827 and intercept to be -1.587 . The relationship can establish a formula expressed the initial concentration of unknown sample as following .

( 0.8271os(Vi)- I 587 ) Ti = Tf/ 10

Relationship between Concentration factor and initial volume

1.300

1.200 ;-

1.100

_ 1.000 a Experiment H 0.900 —— Regression

~ 0.800

0.700

0.600

0.500 2.600 2.700 2.300 2.900 3.000 3.100 3.200 3.300 3.400 3.500 log (Vi) Fig 6 The ralationship between concentration factor and its initial volume 310

Table 4 The analysis of unknown samples

Sample ID Tritium content ( mBq/1)

SPE electrolytic enrichment Conventional alkaline

electrolytic

97 GWHE 24 338 ±25 200 ± 23

97 GWHE 25 216 ±24 96 ±22

Comparison the analytical results between SPE enrichment and Alkaline electrolysis method was

not corresponding. We can not specify which number is correct , the intercomparison is

necessary. However we should be careful the memory effect as mentioned previously , such low-

level tritium samples may be affected. Contamination during sampling , storage and preparation

is not negligible . quality control must be considered.

5. CONCLUSION

The SPE-1000 prototype was examined for 15 runs and found very useful for tritium enrichment

of water. This enrichment method is more easy and safety than conventional alkaline electrolysis .

Especially it was able to reduce the electrolysis time .However the SPE-1000 prototype is need

some improvement for the best perfomance as described below :

1. Cooling unit part : To cool down and condense the water sample which evaporated and

sprayed during electrolysis .

2. Electric cooling fan : To cool down the electrode and electrolysis unit . deciease the

temperature of water sample .

3. O-ring : To prevent the leakage of water sample from the sample reservoirs .

4. Automatic shut off system : For precision shut off the current when final volume is fixed at

each run . 311

6. ACKNOWLEDGEMENT

We are special thankful to Dr. Masaaki SAITO , Tokyo Metropolitan Industrial Research Institute

, that give us a chance to visit his tritium analysis laboratory . Not only a paper but also an advise and comments on this research are very useful for us .

The electrolytic apparatus , SPE-1000 prototype was supported by Permalec electrode company.

7. REFERENCES

1. Masaaki Saito. Automatic stop type SPE tritium enrichment apparatus. The 5th low level counting conference using liquid scintillation analysis, proceedings June 20-21 , 1996.

Yokohama , Japan, pp. 102-110.

2. M.Forster , M.Kessler. Low level counting for electrolytically enriched tritium water samples. 312

na mwiiifm u tfiun4Turia«"mibinsyi'W8m4« twos^ns 10900 . 579 - 5230 P10 511 . 561 - 3013

V ¥ V mnisnn

59

37

8Tn

Reillex HPQ lflfJ^fiyifn^'lJll13^Svi?slJa-3m?ni^infJ^1 ( distribution

1 coefficients , Kd ) 1)9-3mfimi5E)JJ Hc1S;fmiJltnJJ11finJ9-3tl 5l4i\4fnH?]^fllJmfimi5EJll(

Breakthrough Capacity ) fnenf fm 11 flc)aWllIIfl8mj 14 Nam?yiflflB>JVIimi1l5lJUVt-3V1"Un 5

enimoftumfU'unfrjiJ-99 lumniJTn-3i^^fli£i9-3ifi o.i mw viiamnnij 0.0017 m TH9900029 &fl® L TH9900029 313

The Removal of Technetium from Radioactive Liquid Waste

Pattra Supaokit Nanthavan Chantaraprachoom

and Fookiat Sinakhom

Waste Management Division. Office of Atomic Energy for Peace. Chatuchak, Bangkok 10900

Tel. 579-5230 ext.511 Fax. 561-3013

ABSTRACT

Radioactive Liquid Waste in Thailand are generated by Research Reactor Operation and also from other activities involving the application of radioisotopes eg. isotope production

facilities,agriculture, medical and research. The OAEP Liquid Waste is collected in the storage tanks at each division building, allowing the short - lived radioactivity to decay then it will be transfered to an underground waste hold up tanks. When the liquid waste is accummulated to a certain volume , then it is pumped and treated by chemical precipitation process at the liquid waste treatment plant.

It was found that the activity of the liquid waste contaminated with Tc - 99 from

Isotope Production Division was 59 Bq/L. which was above the OAEP discharge Limit. The liquid waste requires a suitable treatment method.

In this study, the simulated waste sample was investigated to perform batch equilibrium TM and packed column breakthrough capacity using Reillex HPQ resin. The results showed that

5 gm. of this high efficiency dry resin can remove 0.1 gm. of Tc-99 or equivalent to 0.0017

Ci. 314

lbsfl81J1)0>J

it i V neuttrons) UasSotji'Ufni'lbsflOlJO'U'n imilwflWaflflindgfnei'mlwym-J-n'lJflN (high energy reaction) niJa'llJlb~naijf)1unJ9^flf)9fl3Jf) (other components of cosmic rays) I t • i V i i *" i m^suB^mmui§ejn£ncuynn^2m

4.5x10 fl ilu^imlfinnnmfi^ij 9EJi^1in^n3jlkijfiiiwH?iivifimi5yjj-99 yn-3fnilL'Wnot?THflimifntJ1l'U0-38n (radiation oncology) mfHiuStJJJ-99 l'flvil9lcKlyilJi-3^filvif-3^m?nfiv<^-3niJ 0.29 thermal fission yield 6.1% 'l'lJ nimijmmiuStJjj-99 v v v

( Mo3o

i n?n 10-12 ^

(methyl ethyl ketone ; MEK) W1Ufn?f1S;cn£)1'U':tf'U5U9~3 MEK

II < ( Ai2o3) me uflfi^uiJaniJfi8jj00n mimtiii^t^iu MEK • V 1 y inM) 0.9 % m0as;fnfjmfii"ui5Ejjj-99 m iwoolmihaolwiouiilB^mflmmp) (sodium pertechnetate)

400 fji

66 5BiliJ-3mamejijniimfimtSfj}j-99 (Tc-99) viSfif^inflemo-a 2.13X10 5

y V , 3> 3/ I 4x10 fji ^iui4fm}jtii-3f-3^tiJ9^mfit^i5Ej}j-99 1i4iJB^'ficif)sCii^S'u 16 luTfiifji maivnnii

59 315

37

Table 1. Analysis of OAEP Liquid Waste

Parameter concentration unit

pH 8.8-9.0

TDS 943-1700 ppm

conductivity 1.36-3.98 ms/cm temparature 26.3 °C

Total hardness 48-55 ppm

ppm

K 15.9-19.5 ppm

NO3 0.6 ppm

Cl 22.1-26.5 ppm 2+ Ca 5.7-10.1 ppm DO 6.5

Tc-99 340 Bq//L

(pertechnetate anion,TcO4 0.1 ^•uniTn 1 nfii innfni^nuTU0-3 Del Cui G.D. iron dust vu~\® 40-60 V V 1 mesh ( Fisher 1-57) fnwiTtifliU TcO4 lumaSicneji'UieiinnJJJnJ'U 100-250 flfu?103P1I liasS fmumuFn-asu pH~ 8.5 Ifim^eon-jpi uenflinfi Del Cui G.D. 1(piyififi0^1gKiniimniil3£ji4

00U ( organic ion exchange resin)vm"mifU?10TVl Dowex SRB-OH, Reillex HP WH Reillex TM HPQ m^viinmin^tiii-99"\>ir\^i'S(\Z(\immir\uiiM" mfimiTOJJ-99 (Breakthrough capacity^g^iwmfnmjfjmOfJSSyn'U 20-50 bed vol 316

Reillex HPQ lA0fi[ntnfn?T}JlJ5S?TVlfillJ84fniniSfl'lfl«'3 ( distribution coefficients , Kd )

Breakthrough Capacity )

2.1

1. iflf9-3l

2. mfaWJjinvntl-JaVlTuiji ( automatic centrifuger )

3. waQfUifntfiwflliiWUWnCN ( centrifuge tube )

4. fiamJUUm ( glass column )

6. lfl19^1flI-3?fUfl3Jin!BUflMllfl Ge(Li ) Vl?ianiJtf1ia-31lfin"'HH'LI1JV131fJ£Ba-3 ( multi channel analyzer)

2.2 115 mi

2.2.1

mnnu l.sxio g

1. Tc - 99 simulated solution

^i ( Mo3O) 0.96

95 m ENiiiao'uas: 4 DuSS^ii imTdiuiliiJifiimu 1 awi pH 8-9

2. Interference-free Tc solution

- 95 m a^liJotn^fis; 0.2 im. iJiuiJiinwii^^ 50 ua. pH 8-

3. Tc-99 317

* " -1 - fmuiujjuu 1,10,10 ,io ims 10 Tusn?

- 95 m illinfliatn-aas 4oljjlfiiHwi

2.2.2 5 TM a. a/ Reillex HPQ «U0^U?yvl Reilly VWf{ 30-60 v v %> , , v v v mesh otjlmitaao n?i •uit?€uuicn-3pntjiunfi^i4 ( 4x8 wa. Pienfu) mwifn-i^iiJ snnuuili v v v o.i liifni ilfunwi 20 bed vol. ih

j mulilij desicator

2.2.3

i < < 1. fn?VlPia8^M1fna 'jJlJ?S;^YlB lJ8^fninTS; O1t)Wl (Distribution Coefficients, Kd )

Distribution Coefficients 1)0

D = amount of component in exchanger phase at equilibrium

amount of component in liquid phase at equilibrium

Distribution Coefficients ( Kd )

0.02 nfjj unsjfNlu

2.0 jJn.i4i1ilisu£jiuutfifa^isuEJimol'viin^n'u^ci£)i^vm?n 30 vn^, 1,3 nei-a 5

Kd ^i

Kd = AQ - As x s As W Ao uas As ^!/S

S f?0 ll?JJ1fl?U8-3tn5f)£fn£J ( 3Jf).

W f)0 UIVfllfl'UB-Jli'if'UUVN ( «a « TM 2. fnivnfn Breakthrough Capacity U 0-311 =1*14 TO fl Reillex HPQ

fli Breakthrough Capacity 318 (3^'A'

Breakthrough Capaeity

5 im. ( minui bed vol.)

0.8 ims 10.0 rau^m^i ^nuan^ii

i^ijlafiionlTffifnTiji'uij'uu o.i limn

Tc - 99 simulated Ei^1i4fiaaij'Ufn£jQ?iinm?lvici 1.0-1.5 iJEi.

( effluent ) "vin io Ha.

KCI sorption equilibrium time cTIKIlJPfTaci^aiEJ Tc - 99 simulated llfIS interference-free Tc

Sfnimnu l "ihlu-auas; 5 \i~\Y\ wiuvufii] ^ii?rfi-a1i45iJ^ l mdma^inni'UfTiTfiscnfj Tc

- 99 simulated JJBOSUHll ( anions ) I5^ll1^4cn^4^J•^^n91ls^J^^^n1f^S;fntJBEJ}J^n^n^ f?1H?lJ m Kd

. i

Reillex HPQ lfl£)WTUtnTasfnEJn)a-3 Tc-99 simulated

VYimsm Breakthrough capacity tUB-3li5cuflfntVnniJ 4.3 ScianiJJ 319

15000

g 10000 1 Interference-free Tc solution

5000 • Simulant solution

30 60 180 300

Time ( mins )

Fig. 1 The values Kd for Tc as a function of time

30000

NaOH solution 0.1 0.01 0.001 0.0001

concentration ( molar )

Fig.2 The values Kd for Tc as a function of NaOH concentration 320 •S- :J -b

Fig 3 Breakthrough of Tc - 99 80

60 U U 40

20

Bed Volume

TM Fig.3 Technelium removal from simulated liquid waste by Reillex HPQ

Reillex HPQ - 99 5 n?w - 99 \

( Storage )

( Disposal ) ^la

1. Johann Kokisch, Handbook of Ion Exchange Resins, Volume I, CRC Press,Inc., p.

11 - p.49

2. W.D. Bostick, J.L. Shoemaker, P.E. Osborne, and B. Evans - Brown, Treatment and

Disposal Options for a Heavy Metals Waste Containing solble Technetium - 99 American

Chemical Society, Washington, DC 1990, p347 - 367 321

Electropolishing

QUHIlh^U UQZ Kazuyuki Mishima

fl"iiIfmvma^~mihiJ"i£umam4Sa^~mihiJ"i£umam4S ciuinfmm-jlfciuinfmm a lusnen^ni nnjji 10900 5795230 PIS 511 TynfTTJ 5613013 2 Waste Management and Decontamination Division, Oarai Establishment,

Japan Atomic Energy Research Institute, Japan.

< vifa

Be $3i$u?\iftziftwii\iim®'u i^iumfa^ilgn^miJiintuifle) JMTR

•? ^i^=i Electropolishing lf)tlVlfia9-3 iTJflT^'US^cnjTfinnj'UIPl 10 3^11

s iliuifu 5 SPI? Ifieji'tfuw'umAn'taa'iJiKSUS 304)i'fli4 S'ifnly)fi

Be mtJ'ffionl'UPi TftEiiMfiTstmivlrln DC ^fmnwi-jflfno 200 Iiavi 12 uauuiJ?

109 mA.cm2

nunnai^i'Hinspf}j1t4m?m^iJgn?En1^9fic»^tYJJij5mfiri0 30 •uivi

98 % iiaS V V

3.7 TH9900030 322 TH9900030

Radioactive Decontamination of Be-Reflector Handling Tools

by Electropolishing Method

1 2 Nanthavan Chantaraprachoom and Kazuyuki Mishima

Waste Management Division, Office of Atomic Energy for Peace, Chatuchak. Bangkok, Thailand.

Tel: 662-5795230 ext 511, Fax: 662-5613013

2 Waste Management and Decontamination Division, Oarai Establishment,

Japan Atomic Energy Research Institute, Japan.

ABSTRACT

The radioactive decontamination of equipments and handling tools, the objective of

which is to reduce the exposure dose to reach the radiation safety limit for workers. The

decontaminated equipments and tools can be reused for economical benefit. In this experiment,

decontamination of Be-reflector handling tools from Japan Material Testing Reacor (JMTR)

was performed by electropolishing method. The experiment was conducted in a 10 litre plastic

container filled with 5 litre acid electrolyte using stainless steel plate (SUS 304) as cathode

and Be-reflector handling tool as anode. The current applied was DC 200 Volt, 12 Ampere.The

-2 , density of current was about 109 mA.cm. The experiment s results were as follows, the

optimal time for redox reaction was 30 minutes, the decontamination efficiency was about -2 98 % and the surface activity after decontamination was less than 3.7 Bq.cm inwhich was

within the contamination limit for material reused. 323

U1TU1

fia iw viuMa-j imiiuilgijlmu eiJniaufif8-a3J8en-a

eiJniiu

0.37 lUfHfiBisfiflBemi-wumiJfis uas fiunimfi^iiNf^Hflpn vifannuuiSfn 3.7 llJfim9l5a?10Pnn^t<:K'uiiiJ^I 5-31'dufn^ni'UlQJJJTinn Dose Equivalent Limit UfiS flCUS, 2539)

iLlai4vn-3i-)Huv4'wi4N'3 UINIIIU 2 uuii ^9 l. mi^n^iPilpiopi^-j (Direct Method) tai

2 ' a tllti Bq.cm 1Hf991i)Tl^1l4

C = N/ sE «a -2 1119 C = Contamination Level ( Bq.cm )

N = Net Count Rate (counts/sec) 2 s = Area of Probe (cm )

E — Efficiency of Detection

2. fmemfllflipioeajj (Indirect Method M59 Smearr Test )

C = N/sKE A -2 IJJ9 C = Contamination Level ( Bq.cm ) 324 @°L1D

N = Net Count Rate (counts/sec)

s = Area of Probe (cm )

K = Smear Coefficient MIQ Removal Factor

( K =

E = Efficiency of Detection

jnilpi ( IAEA,

1985)

115 Eiectropoiishing iju upin?n-3«inismit5iis?n-3'!fi£JtnjJty'ni1iJ

( IAEA, 1983)

wasIBmi

(Be-Reflector Handling Tool) 10 H 325

(Stainless steel, SUS 304) (Smear Test Kit )

Survey Meter (GM) W8llnilU1?1VtflJlJgn?En1vlvlilflS; Power supply, Electrolytic cell (Acidic Electrolytic Solution) (Liquid detergent)

ilmi

2 TU lflt)lttfmi0^{nn«fniJJUI^1-3tT (survey meter) Bq.cm ) smear test

2 5iJ tins; I? smear test electropolishing Electropolishing

v v electropolishing

stainless steel flpH 5 H«n?

electrolytic cell (stainless steel plate sus 304) im 326

DC 150 - 200 Volt rinm 5 10, 15, 20, 25 nas; 30 u~m %t %t %) V V

Power Supply DC 200 V

Polyethylene container

Acidic electrolyte

Stainless steel Plate Contaminated handling tool

1?! 1 Electrolytic Cell

200 12 nouiiil? IfifjflTuicufm3J'Hi4nimt!su9^fiis;ui>f1piiynnu 109 mA.cm2 30 MIV ilis;Svi5fn'VNiyfni'rtfiis;fn4fm}Jiil?as;i'fl9V!Tn-3f-3SiJ?s;3Jia! 98 % Sfn DF 50-80 3.7 327

V V

• •

V i 2 5uvi (Bq/cm ) (Bq/cm )

i 13.88 1.88

2 22.22 3.6

nan (vnvi) a&WfjU (°C)

5 25

10 29

15 36

20 38

25 40

30 43

electropolishing

«TOfn-3 iSfn5«&ii£fnjuiiijjnij£ij 1iifniih5£cl"nullll Electropolishing

% Decon fmmnwH fmjjin-ifaS % Decon

Efficiency DF Efficiency DF (Bq/cm") (Bq/cm') (Bq/cm") (Bq/cm2)

1 13.88 13.24 0 1 13.24 0.27 97.96 49

2 22.22 20.54 0 1 20.54 0.27 98.68 76

4 lJTH"UflsU9^T'?f^nayU£iS;'H?l-3ttfT3S;?n^]plOl1 Electropolishing

l 464.78 464.78 1.62

2 466.51 464.71 1.80 328

(irradiation)ifl ^VhiMlfkmsnJiQSiiia'lJrnwmilJll Fixed form

Electropoiishing

? Electropoiishing

f^l U H0(piping) glove-box art

, Sfn DF ( Decontamination Factor ) ?N, mfimnniJ3J'U^1-3^lJ?JJiaJlJ9£) tm

adniaiiTu0! •vlnl'Hc'nu^ti'uinaiiuii'Kilisifj'BTjifianaEjn^ilfiofintj mumi

s rm ?i fn 1

IAEA, Decommissioning of Nuclear Facilities! Decontamination, Disassembly and Waste

Management, Technical Reports Series No.230, page 10-12, International Atomic

Energy Agency, Vienna, 1983

IAEA, Decontamination of Nuclear Facilities to Permit Operation, Inspection,

Maintenance, Modification or Plant Decommissioning, Technical Reports Series No. 249, page 1-2, International Atomic Energy Agency,Vienna, 1985. v v

l^S zwi} 2, vm 12.6- 12.9, 2539 329

2 Kazuyuki Mishima

M 5795230 fit) 511 Ivntm 561-3013

Japan Atomic Energy Research Institute, Oarai Establishment, Japan.

fie ivmn bfTuwimA sus 304

137

no willou uasHiviiJsnejiJ'uanyflisjnJ'un'UHati finuuPin^n-3nj0-39iuMfiC

80

ALARA-Decon, Rempack-X200 clear, JD-P5-Mrs.coat UflS Pro-Blue-color guard aan

99-100 t'iJ0?lt;tf'U?l'nnii0'u1iU€ll0^^'10O1-311-3'HiJ^ ft ALARA-Decon, ft JD-P5-Mrs.coat UtTfl-3iJi"S'M5nTVNc10Ejl'U1fl-3 98-99

94-97 iiJ0TicBi4?ittTHiij(ni0fji-3^1

1 iriTJPro-Biue color guard

60

uasiJisuiiu 40 uas 30 ._,., mmni ••!•! (|||| || 330 TH9900031 TH9900031

Radioactive Decontamination by Strippable Paint

Nanthavan Chantaraprachoom 2 Kazuyuki Mishima i Office of Atomic Energy for Peace, Bangkok, Thailand. Japan Atomic Energy Institute, Oarai Establishment, Japan

ABSTRACT

The strippable paint.one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet , SUS 304 stainless steel and

137 polycarbonate plastic, contaminated with radioactive Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, o normal condition at room temperature and overheat condition ( ~ 80 C ). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200clcar,JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal.

The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100 % for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which arc 98-99 % decontamination efficiency for the normal condition set of specimens and about 94-97 % for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue- color guard showed the lowest decontamination efficiency of which 60 % for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly. 331

mgmjwi

1. mitflfSfniiudson'flQulAtm^meJfl'm Ml© vn-Jfia ( Physical or mechanical decontamination) WT9En-3l^T41BfniPjflpJ'U( Vacuum cleaning) iSfnfUPItjpn-J ITJT4 scrubbing, brushing, polishing, blasting Qil£B

(adhesion)UA£ niilfftffl^£UfnillQ?[^(uitrasonic decontamination)

2. mi'ih5£fni3Jllta0£lllau1fleJYI~umfi ( Chemical decontamination)

3. ni1cK11Sf11imUS0£m0'U]fienfimffW W14 miV1f19JJf1S?n£)(Melting) llciSElectropolishing

adhesion Tallin 15mi

V 3J V i

ss steel) lia

wim

hot plat

DF (Decontamination factor) im£ DR ( Decontamination ratio)

•am

DF = f^ 332

DR = 1 - (1/DF) x 100 %

1. JTlfiagUirUAYicigniA ( strippable coating paint) 4 inlfl tflUfl

- ALARA-Decon

- Rempack-X200 clear

- JD-P5-Mrs.coat

- Pro-Blue-color guard

2. 'OTU'UU?^ ( planchet ) 4 UUU iflUfl

- uuu A nJinvmrTberuu sus 304 WIIIJJU iecumpmejficn-3 50 im tf-3 10 JJW - uuu B i^wmlnii^fujj sus 304 wiluiiejuflcnfjij'umi'yaoilufmMgEj

ififumm4ejn?i"u 50 uu ^r-3 5 JJJJ

- uuu c t'dij'Wfntt^nwfii'Mafniugmgi wniem nTuwnflf^Ejncn^ 50 JJJJ QI IO SJJJ - uuu D miivmifT^nTnlAlwafmugruei HI mtifjuSfnejwvjnviTigej

50 JJU 1T-3 5 JJJJ

3. fni?is;aiEJ^ilutil9u?nE)5i^EJ}j-i37 fmuui^i-3^ilis;intu 400 Bq/mi.

4. iflf9-3'UUT'fl^S'H11?lctf'U^ proportional counter UUU sample changer.

1. sB^'Ul'H14nini4l4U1-3lTYl^ 4 TfUfl^ciS 16 IJV! (4x16 . if V 2.< Hei?i!mAs;ai£j'nu'ui'fl9UFno§i§E]ij-i37iHiJ-i£u 7

3. uu-sehgen^gfuuij 2 ^ITIW 'onuilu^f 32 en90"N wmn ( 4x8

4. inuihji^ 32 5i4 'Kfiviirg^ •ml'HUM^I'ugflTuieieji'Hfnimg'Uinn hot plat so

5. I 10 333

r V V

V 1

4

2 V It V V V

8.

9. 10. iJij'nnHaiiiisflnuQQiinfn DF tias; DR

WamiVlflfiB-a'HlfnDecontamination ratio(%DF)

4 'vufi

• • fin %DR flinminon^j!ntJ'iJijf-3^

80 9^ftitcK?it$fj?fun?i'i9fJi-3\ntiui)^Sii-3it9-3':tf'UPi

A ims B

Fig.2.

fli DF, %DR lias % Soild content of coating paint VIVIABB-3

4 uuu ff-jufYfi-a^ TABLE I-4 fniniotr^iJifina^'n-j 4 if

lpm^Rempack-x

99 o-a 100% uf V V

V It

^ALARA-decon im£ ^ JD-P5

95-97 V Tbl SlSi 99 % o' a- fin?iiam?i ^'V]nsfrnvi-Hi4wi^itfms;iJni tms; 96 J 334

Pro-Blue SibstniSfnwibsinai 60% itai 40% nas30%

mil

JJU

% Soild content

i > fn % Soild content eh

niim-3

INTERNATIONAL ATOMIC ENERGY AGENCY, Decommissioning of Nuclear

Facilities: Decontamination, Disassembly and Waste Management,

TECHNICAL REPORTS SERIES No.230, IAEA, Vienna (1983).

Mishima K, Decontamination Technique, Oarai Research Establishment, Japan Atomic

Energy Research Institute, Japan (1995). v v

1 ' V

i f^mj 2, tTTun^iuvia^^nuiliiJiaima^^, Dpuntiij 2539. 335

( Normal condition )

% DR

80 - B ALALA-decon 60 - J Mini HI 111 i'BwH| Emm in i ^"'IBflflHU *W Rempack-X200 40 - 1 MM H| II • JD-P5-Mrs.coat 20 - ~~1 — 1 T -1 H Pro-Blue-color guard f\ _| 1 J ,1 HI u 1

A i j c D specimen type Fig.l The comparison of various strippable paint at normal condition.

(Overheat condition)

W ALALA-decon

• Rempack-X200

• JD-P5-Mrs.coat

II Pro-Blue-color guard

A B specimen type Fig.2 The comparison of various strippable paints at over-heating condition. 336

Table 1. The decontamination of A-Type ( stainless steel.flat) specimens by using

various kinds of strippable coating pain

No. Activity ( Bq ) Type of % Solid DF %DR strippable Content of

before Decon after Decon Average Average coating paint coating paint

A-1 2851 150 17 94.1 AL ALA-decon 48.5

A-2 2836 186

A-3 2940 15 125 99.2 Rempack-X200 53.2

A-4 2781 51

A-5 2903 15 153 99.3 JD-p5-Mrs.coat 52.5

A-6 2720 24

A-7 2857 1890 1.5 33.4 Pro-Bluc-color 28.5

A-8 2766 1777 guard

A-9 2815 242 15 93.4 ALALA-Decon 48.5

A-10 2949 157

A-ll 2837 46 46 97.8 Rempack-X200 53.2

A-12 2820 92

A-13 2817 87 30 96.7 JD-P5-Mrs.coat 52.6

A-14 2875 100

A-15 2868 2155 1.4 28.6 Pro-Blue-color 48.5 A-16 2774 1894 guard

Note: A1-A8 under room temperature condition.

A9-A16 under over-heating, condition. 337

Table 2. The decontamination of B-type ( stainless steel, convex circle ) specimens by using various kinds of strippable coating paint.

No. Activity ( Bq ) Type of % Solid DF %DR strippable Content of

before Decon after Decon Average Average coating paint coating paint

B-l 3068 31 75 98.7 ALALA-decon 48.5

B-2 2957 56

B-3 2978 19 228 99.56 Rempack-x200 53.2

B-4 2991 10

B-5 2891 23 94 98.93 JD-P5-Mrs.coat 52.6

B-6 2904 47

B-7 2881 1192 2 50.0 Pro-Blue-color 28.5

B-8 2995 1665 guard

B-9 2975 217 24 95.8 ALALA-decon 48.5

B-10 3008 85

B-ll 3005 22 112 99.1 Rempack-x200 53.2

B-12 3031 35

B-13 2843 61 47 97.9 JD-P5-Mrs.coat 52.6

B-14 2985 60

B-15 2912 1993 1.5 33.4 Pro-Blue color 48.5

B-16 3018 2020 guard

Note: B1-B8 under room temperature condition. B9-B16 under over-heating condition. 338

Table 3. The decontamination of C-type ( polycarbonate,flat) specimens by using various kinds of strippable coating paint.

No. Activity ( Bq ) Type of % Solid DF %DR strippable Content of

before Decon After Decon Average Average coating paint coating paint C-l 1947 4.4 418 99.8 ALALA-decon 48.5

C-2 2055 5.2

C-3 2222 1.2 168 99.4 Rempack-X200 53.2

C-4 1966 1.3

C-5 2121 1.5 1270.0 99.9 JD-P5-Mrs.coat 52.6

C-6 2030 1.8

C-7 2079 930 2.4 58.3 Pro-Blue-color 28.5

C-8 2217 876 guard

C-9 ------

C-10 - -

C-ll ------

C-12 - -

C-13 ------

C-14 - -

C-15 ------

C-16 - -

Note: C1-C8 under room tenperature condition C9-C16 under over-heating condition(could not be tested because the carbonate planchets were melted). 339

Table 4. The decontamination of D-type ( polycarbonate, convex circle ) sperimens by using various kinds of strippable coation paint.

No. Activity ( Bq ) Type of % Solid DF %DR strippable Content of Average Average before Decon after Decon coating paint coating paint D-l 2174 1.7 1467 99.9 ALALA-decon 48.5

D-2 2154 1.3

D-3 2007 1 1981 99.9 Rempack-X200 53.2

D-4 1956 1

D-5 2050 1.8 908 99.8 JD-P5-Mrs.coat 52.6

D-6 2103 3.1

D-7 1893 795 2.7 62.9 Pro-Blue-color 28.5

D-8 1952 651 guard

D-9 ------

D-10 - -

D-ll ------

D-12 - -

D-13 ------

D-14 - -

D-15 ------

D-16 - -

Note: D1-D8 under room temperature condition. D9-D16 under over-heating condition ( could not be tested because the carbonate planchets were melted) 340 TH9900032 @cJS TH9900032

fjomfvy gsuqusnnii n^fu *IJYI *itad))WW B'wi'H'yaEi

16 fl. n5-JIVlVIJJ>nUfl5 : 562-0088, : 562-3013

llalaiiu-i31

(air sampling) 169 no vmii l lalali4-i3 0.94 - 262.66 ^wi

Derived Air Concentration (DAC) -n 1 (700 mnifiai3cl/f)f)inflniym)

Radiation Safety Assessment of 1-131 for Medical Personnel at Department of Nuclear Medicine, Siriraj Hospital

Pentip Khunarak Kun Suttsiri Warunee Tueypo

*Nut Asawachatrode *Prajuk Tanapiboonpon

Health Physics Div., Office of Atomic Energy for Peace

16 Vihhavadi Rangsit Rd., Chatuchak, Bangkok TEL. 562-0088, FAX. 562-3013

ABSTRACT

Radiation safety for medical personnel in using 1-131 were assessed and carried out at the Department of Nuclear Medicine, Siriraj Hospital. Air sample were employed to determine concentrations of 1-131 in laboratory environment. The air sampling was performed on a daily basis in front of a fume hood using for treatment of 169 hyperthyroid patients. The daily concentrations of 1-131 in air were found at range of 0.94 to 262.66 Bq/m . All values were well below the Derived Air Concentration (DAC) of lodine-131 (700 Bq/m ). The place is safe for working with 1-131.

ijffsnmnJvi 4 fitusmfivlfimiuviyitl 341

ivifmihimia'Iafl'U-m > laTaau-131 laTaim-m

DAC (Derived Air Concentration)

(film badge) ^ifl'umii^iJijjiftii^a'Mi^fu^inrnouan^i^mfjm'TU'u n?i1aT9«\4-i3i

ill-U unsealed source cK^

\ (critical organ) WVmfiimz^Vfzmifit} 0.3 PfTU 9fl 0.7 16 iKiIiJ4vi^^nnfml'u1aIa^i4-i3i mgi^mfj m 0.3 1tll4^fl'lJfiit)99flJJ1flf^ll5n'UmW fast component clearance 2 effective half life 0.35 - 0.6 TU (-8.4 - 14.4 illllA) rfau^'UlJfhtJggflinfnemmill'U slow component clearance 5 effective half life 6 - 7.8 TU 342

2.1

1. IQIBAU-DI activated charcoal 2. Activated charcoal (TEDA impregnated charcoal) 3. Glass microfibre filter, 4.7 cm 4. Iflf fUflflQimff Model 0522-V138-G21DX No. 0575 5. Multichannel analyser (MCA) 6. PCA-II Program 'meUBlJmd'lJisneiJ 7. HPGe Detector Model CPVD 330-15190 No. 2491

2.2

1.

1.1. 025

1/1 j*t ' °- eL aJ iu OJ «• r+ oi activated charcoal

1.2. Z activated charcoal 2.

T 3 cps /ie (Bq/m )

cps = flTUUTVltJYlS (count per second) Y1VIPI-3-3TU 365 keV X = fin T = t = nmfilwnfluiQlfwu-iai (invi) v = ffanmiqfitnmff; 0.025 fni-uv

Ej = i)?s^vi?myifni'uuT'fi'\je-3?s;DiJfn?

f = mQVUnMttmmiYiWfiwu 365 keV ^8 0.82 343

3.

1. Monitoring of the working place

DAC DAC )u

2. Individual Monitoring (thyroid)

intake rthliJ Intake CIT

2 x 10

T

intake ^9^1aTe^-131 lim WmY^^l^niMltum committed effective dose equivalent mflifl ICRP 54 :committed dose equivalent per unit intake for thyroid = 2.9 x 107Sv/Bq thfhiJ?infu1aTaAiM3i ^rfajjiYijaofliilnJfoumtiijniifii dose limit •na'au f)9 300 mSv/y "H5a 6 mSv/week Tif 9 1.2 mSv/l\4 344

• 1 UflfU Charcoal filter (tmjja) Na-22

fj General Electric A-C Motor Code S 345

TllM 3 High-purity germanium detector 346

TlJvi h lltifl^tiTU Voltage power supply 347

TTJVI 6 iitffi>nnnnfflfl™lifonfnwnlaTawu-i3i im 348

3.

TW leia'w iJ Time interval in Concentration of 1-131 intake CED in Thyroid

using 1-131 (min) 1-131 in air (Bq/m3) (Bq) C«Sv)

1 it.PI. 2540 3 12.96 0.777 0.227

5 cT.fl. 2540 3 0.94 0.187 0.053

6 iT.fl. 2540 7 8.22 1.150 0.333

7 iT.fl. 2540 - 8.18 - -

13 iT.fl. 2540 1 9.82 0.167 0.113

14 iT.fl. 2540 18 11.56 4.167 1.207

18ff.fl. 2540 2 20.72 0.833 0.240

19 iT.fl. 2540 22 6.61 2.900 0.843 20 iT.fl. 2540 2 8.58 0.967 0.097

25 iT.fl. 2540 2 11.92 0.467 0.137

26 iT.fl. 2540 2 68.12 2.733 0.790

27 iT.fl. 2540 2 11.19 0.433 0.130

28 cT.fl. 2540 3 33.66 2.033 0.587

4 fl.El. 2540 7 106.40 6.400 4.253

5 fl.El. 2540 8 40.06 6.400 1.860

11 fl.tJ. 2540 10 40.66 8.133 2.357

12 fi.El. 2540 10 16.75 3.367 0.390

16 n.El. 2540 7 99.83 13.967 4.053

24 D.EI. 2540 5 56.34 5.633 1.633

25 fl.E). 2540 8 23.29 3.733 1.080

26 n.EI. 2540 9 25.39 4.567 1.327

30 fi.EJ. 2540 22 25.85 11.367 3.297 349

4.

rm 2540 tvaiflaufvutntm 2540 SfhfmwHnjuu

0.94 - 106.40 q Ii DAC IIB-aiaTafl'U-ni (700 Bq/m )

1\iiiif50imfr fisjSfiiadisvn'i^ 0.053 - 4.253 //Sv na 1.2 mSv/iiJ

5.

i

6. ianfnf9ij0

1. ICRP 10. Report of Committee IV on Evaluation of Radiation Dose to Body Tissue from Internal Contamination due to Occupational Exposure., p. 24, 64-66. Pergamon Press, New York, 1968.

2. ICRP 26. Recommendation of the International Commission on Radiological Protection. Pergamon Press, New York, 1977. 3. ICRP 51. Biological Effect of Inhale Radionuclides. Pergamon Press, New York, 1987. 4. ICRP 54. Individual Monitoring for Intake of Radionuclides by Workers Design and Interpretation. Pergamon Press, Oxford, 1988. 5. ICRP 60, Recommendations of the International Commission on Radiological Protection. Pergamon Press, Oxford, 1991. 350 TH99000331 frJ^ TH9900033

WTnivKJiaouetmriti e.ujfn q.nfmuriu 40002 (043) 242330-9 fl'a 2248 Tmtm (043) 244416

ml "Din isotope Products Laboratiories

214 Ut\Z Bi-214 TOIDW iliJJIGl Ra-226 cB^^TU'3tu1pi1DiniJ?intUU0>3 Pb-214 ims Bi-214 Yl Biinennu-j uintuiJispj^vtun ^^•wuiiiyiimwuSfmjjiii^ 447.44 Bq/kg. 'i 10%

Determination of Quantities of Radionuclides in Uranium Series in Soil via Gamma-ray Spectroscopy.

Somporn Chalermsuk and Rattana Bunsan

Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002

ABSTRACT

Gamma-ray spectrometric determination of uranium-series radionuclides in soil samples was done using a HPGe detector. Calibration and investigation of detection efficiencies were investigated using mixed-standard sources of soil in a 500-ml plastic bottle from Isotope Products Laboratories. Soil samples from IChon Kaen University, Amplhur Phuweang, Khon Kaen and Amphur Sahassa Karn, Karasin were detected. Quantities of Ra-226 can be investigated from the photopeaks of Pb-214 and Bi-214 and the highest activity of Ra-226 from the soil sample at Ampher Phuweang where natural uranium was discovered is 447.44 Bq/kg with less than 10% error. 351

unun

uinm pmihsjna (2538) wasnru ibsitns aieian-nru (2539) vmri mnruaima ^awwuauurm wasanmaawijuij foV Vhusnf uu

HPGe

500 ml u

U-238, Ra-226 lias Pb-210

Pb-214 vi 242 keV , 295 keV lias 352 keV niJTJa^ Bi-214 Y\ 609 keV

Ra-226 lias photopeak TJB-3 Pb-210 fi 46 keV

1.

2.

1

3. flirllmufniJT?Jftjn fl a a sjTei U I avjn tT,ufiu

D

1) HPGe Detector (Bias Voltage = +1600 Volt); ORTEC (model GLP-10180/07)

2) High Voltage Power Supply (model 3105) ; CANBERA (model 3105)

3) NIM Bin lias Power Supply

4) Amplifier ; ORTEC (model 485)

5) Oscilloscope V-422 (40 Mhz) ; Hitachi

6) Personal Analizer Computer-Series2 (PCA-II CARD) + PC computer

7) sn-5^arin'3un«mnuuT5DUi@'wan&rHmm'i?i 500 ml

8) Sample holder 352

1.

TJUi

(sample holder)

2.

2.1

500 ml

inntu tfnvmnfiu (rmi)

1 778.85 2 763.20 3 w^'wa-3il§ijiinTiuiiPiaEJi 703.30

1. 2.

3. aaniiJ 4. m^Hu'mauwai^luui'FmEnaHn'U'U'iGi 500 ml

24

2.3 itfin^masTVi^kiJn^fuI^LJ PCAII card

(U-238 , Ra-226 uar Pb-210)

A = x 100 t 353

tua At f\Q Net(c/s) photopeak

Bp fia branching ratio

8j flB li"

polynomial degree 5

3. ua^mnru B. ®iuii?ni®i i\ttima \fi}i'ua

nnL3 a.nnEJ-3

< : 2 an 59nB£Jn-3fiwnnn8°ni>/iBar'w'spmiBw'spmiB 3.1 3.2

n 3.1 ni a.miu-s 11 U tmu

mnni iHuim^u (nfu) 1 iniirtuwruan 592.30 2 651.70 3 660.55 4 <=» 574.80 s 5 mnwvisjJUfiwijn^rwnifiTuiinfih^mwBO 660.65 6 407.15 iJirjjnni 100 IJJ91? 354

3.2

°U1

mniuiJ 500 ml uu

TumVhrm Activity TJB>3 Activity Activity

fiwnninnni vieiaao U-238 TJB-3 (Bq/gram) Ra-226 Pb-210 (Bq/gram) (Bq/gram)

1 19/2/1998 - 0.446 - ani/iamiti-a 2 4/3/1998 - 0.162 - ™amirm 3 5/3/1998 - 0.040 - 4 7/3/1998 - 0.049 - 5 22/2/2998 - 0.028 -

7 6/3/1996 - 0.248 -

iim-z Activity iia>3 U-238 , Ra-226 lias Pb-210 lu vwiiu (Bq/gram) ^TwfusrTs^nadi^liuinn antnuttviJTnli/inoj a.nnej-a SI.VBU uriu uas9n<59nayn-3^nnmnru, ^ t 6 uasin?iYi 8 407.15 rnaj uat 268.90 n?u

fhuimvnfh efficiency

Y\ 8 ^tduliuYiinii^nn a.snfamiif ^.rnvrlus yYi 2 5 Spectrum viSfh Net(c/s)(count rate m

peak funsmU) (Pb-214 fi 295 KeV uaz 352 KeV , Bi-214 fi 609

KeV) QEJT.uismjYiSw.uiTuuin Activity S 7

^n TJi^i'w1a

U-238 uat Pb-210 Iiil^ fn^s^iviTVi Ge(Li)

1) Adams F. and Adams R., 1970, Applied Gamma-Rays Speetrometry, Institute Of Nuclear Science, Ghent State University, Belgium, pergamon press, 2) Burnett, William C. and Kim, Kee Hyun, y-Ray Spectrometric Determination of Uranium-Series Nuclides in Marine Phosphorites, 1983, 55, 1796-1800. 3) Enge, Haraid A, 1972, Introduction to Nuclear Physics. Massachusells Institute Of Technology, ADDISON-WESLEY 4) Isotope Products Laboratories, September 26, 1997, Certificate of Multinuclei Standard Source 5) Glen F. Knoll, 1979, Radiation Detection and Measurement, The University of Machigan, John Wiley & Sons 6) Masayasu Noguchi, Gamma-Ray Spectrometry, Radioisotope and Nuclear Engineering Scool. JAER (sheets) 356

'Ait; 'ni\f »iU Yx.ii Quit

11:35:45 PM Fs'o 37, 153? F?b 21. IS?* 3:44:33 J-. niqu:.^: Of: flWffll 1 s. » • re > | »H.'-.^' t • liner: Live

j Roi- Off iOain." 2343 iCffssi: 8 ^v . : j

jOws?]ap.' Of? ;k;v: 4.63 iCts: 31 Eiissd: 8546S 8b42b 8 53 130" 1 Psrcgnt Bead T->* M

Fl-ftcniir; F2-Er«5e F3-??es* F5-Hent Iso-ROI

Help JiJ? die Setu? Options Bode fliiit 2S3K I.NI Kk-U 9:47:53 PH Feb 13, 1938 H&r LI, 199S 85:4313? s« kquln'. C/f Me: m liser'. live Stilt' Lag uifiri l

M fa'- Kmt hi: m { (kin: m j (i Offset: 8 ftfc fidd

Ck1. 18u kv" %.41

tasef. «« Dvet 8S«8 fed- Km i " ' " '«" " " M; ?9Ken5 teid "Use !

Ti-leai 357

-i.T'lT'l ! 3-- 1 •-•3-.. « |

!..- !.- 5.7! c. ?: r 71 7 *T?

n?l-5fniunu

Poh-nomai Degree 5

7 J 5 Y = C, + C,X +C2X + C3X +C4X * +CjX (4.4) lilt) Y = In (efficeincy)

X = In (Energy)

C.--621.308, Cj-515.193 , C,--171.124, C,= 28.263 358

f«b 2i, im 2:53:12 PS ! jiiV)(T)iJn?lTJJTjajtnifrnat Acquire: Off

node. IDH •liss?: live j " "_ GMI»." Fall Roi Ifc: Ifcig • 1 1 iSoi: m teh: U92 Offset: B nuC• nuu

L, :.

cu'. a r.apsed'. 1WL ?sal1. H24 8 53 i^ S

file Ca]c Sstup Options Xcd? Quit 272?i I?'I K.i-11 — U ^( 4 A ill p?i Nov 21, lj;i Fei

fcqili?s: Off

liaer'. i. lag p: Fall Hoi Ifc: ftone Sci: flff

Offset: 8 fide: Add

dm'. kev1. 13.5B

d'. 1B888 leal1. 19812 58 1» 5eid liss 359

(Alt) Hsl? File Calc Sstii? Options fail .Quit 345K Nucle-is PCft-11 63:37:89 a* Mai. BS, 1598 Mar 11, 19*8 f 0?:2S:24 is Acquire: Off

liisr: Liv- Seal?: Los- Group: Full H"W1T1 1. Sol fie: i*one Sai: Of? .Gain: 2948 Offset: 8 fide: fidd Display: 2348 Overlap: Oi f ;ksv: 4.2B Cts: 343 ! Preset: 864S8 EJavsed: 664^8 Real: 86436 199'! Percent •0 !!

F2-Era5? F3-Preset F5-Iaent F5-Loa« F7-S«ve Eso-ROl (a) *BUM11SLUSUJJ3LMLBU * C' SLULttCUCfttt TH9900034 TH9900034 363

rowflqflfn nnu. 10900

(Reactive Oxygen Species; ROS)

AO) •ugfiinm^mmi ROS

ROS iia^ AO 1^i'i-3fnointnti9^nii1if)u?is;'WEn??Yfn'Hfiii-ji:i nn UZIIA iinvmu

iifu

ROS ims AO iiiunw miStjDfiTw^fifii'jtj AO

ila-jnulifi

From Radiation to Antioxidants

Jarunee Thongphasuk

Biological Science Division. Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

ABSTRACT

Radiation induces the formation of reactive oxygen species (ROS), which can damage cells. Antioxidants (AO) can decrease these damage. In addition to radiation, ROS is normally generated by metabolic processes in our bodies. Alteration of ROS and AO levels is related to several diseases and pathologic conditions e.g. cancer, diabetes, Alzheimer, AIDS, and aging. In addition, emotion such as stress can change ROS and AO levels. Antioxidants from nutrient and happy mind will make us healthy, decrease radiation-induced damage, reduce the medical cost, and consequently assist in the development of our economy. 364

V

(Direct

Action) (Indirect Action) (T\\Y\ 1) ^9 fill

^9 m?

(Reactive Oxygen

Hall, 19881)

ROS funflfllfaYHllvmwiJcigtm (Free Radicals; FR)

(Unpaired Electron) QlJ^ 2) lias ROS ^SlfllfluaVjljjflSttiS; IW Hydrogen

Peroxide

filfia - AO: Antioxidant, rmjniviavnjcno^il; CAT: Catalase ; ETC: Electron Transport Chain; FR:

1 ice Radicals. 0UJJASJT1S:: GPX: Glutarhione Peroxidasi LET: Linear Energy Transfer; NADPHO:

Nifotinamide Adenine Dinucleotide PhosphateOxidase; ROS: Reactive Oxygen Species, BUJJJITB-JIT; SOD:

Superoxide Dismutase. 365

Unpaired electrons

X-rays f • ;H

H water molecule HO.radical H.radical Illff 2. g'Wljeng^llijg-a'UIYUnflfnn!^ (flin Tubiana et al., 19902)

Linear Energy

Transfer (LET; Na«1UYmmhmiillimm?m (keVjMBMlilOSSJOSJYIH (urn)) Ml

ROS fj^tnJJUOlliliWltr^waffflJtyili (Signal Transducers) l umil (Signal Transduction) i^olfiiSnO^TU'ilf^mias; ROS

i^aawiu miaen^Mtr (Transcription),

(Cytokine Production; Cytokines l^lltl

Y\V\m'illie\id^i'V£\c\dM) llH^mi^nfJ^UUU Necrosis UflS Apoptosis (fniiifi?no?n3J gifj^fj; Programmed Cell Death) ^S (Normal Cell Turnover and Development)

1 1

~ 2

Walter Reed

(Radioprotectors

2,000

v dl< J/ III Vd a M I q 9> flinntrm uaz Ifiumivn 111 hf ilni 366

(Antioxidant; AO) (< 0.01%) n?nuiifmq?itfo Oxidation viCjiil'uth'muiJinlflf'"4

mU i n Yli inn 9 TLIinUfln UBS AO n5l«mo^UWt1PI Lipid Peroxidation

AO ?nui?oniflfl ROS lwejm?impnwafim?in?i ROS (initiation) ^ ROS 2wa«19m9^ (Propagation; Chain Reaction) AO YHlfTfNWaftasus

Initiation ^9Q1lllu Preventative AO I'VTJ AO ^niflfl Substrates Vffs Products llgniEJI Haber-Weiss Fe

Haber-Weiss Reaction 2O2" + H2O2 —> OH" + OH + 2 O2

Superoxide (O2 ) tnuiitl^finiflflfno Antioxidant Enzyme Superoxide

Distnutase (SOD) (friimiYl 1), Hydrogen Peroxide (H2O2) fmfhfopha Antioxidant Enzyme Catalase (CAT) MI9 Glutahione Peroxidase (GPX) 2), Hydroxyl Radical (OH) fjfiniflfl^QO Dimethyl Sulfoxide Vff9 Glycerol ^^ Metal Chelators Iiil4 Desferrioxamine

SOD + O2" + O2•'+ 2H —>O2 +H2O2 (1)

GPX

H2O2 + 2GSH —> 2H2O +GSSG (2)

AO WiqflOnJgfnU'igfllif nemilll Chain Breaking AO '1l9nSi49 ims llPliCuf ^inuiStlVIOPIO^ lign?01^flleK^ Lipid Peroxidation

L,H + X—> L," + XH

L," + O2 —> L,00 367

L,00' L,H —» L2 L,OOH

L,OO' + AO —> L,OOH + AO AO AO

ROS uas AO

ROS ROS IW Y\

Mitochondria, Plasma Membrane, Peroxisomes, U?l£ Cytosol

IW3J 2 5 wfi Electron Transport Chain (ETC)

114 Mitochondria

Plasma Membrane Mitochondrial Lipoiygenase Proslaglandin synthcUse Electron NADPH oxidasc (phagocytes) peroodation Soluble Enzymes and Proteins Htmoglobin Tryptophan diojygariast Xanthinc oiidase Small Molecules Oxidasts Flavoproteins Rtducttd flavins, Thiols Epinephrin«, Antibiotics Endoplasmic Reticulum Divalent metals and Nuclear Membrane Environmental Factors Electron Transport Air pollutants, Toiic chemicals High energy irradiat ion Cytochrome Ptcn Cytochrome b^

Illfl 3. Deshpande, 1995s)

ilme^£unIfieJ Phagocytosis (?ll^ 4)

Nicotinamide Adenine Dinucleotide Phosphate Oxidase

(NADPHO) ^f)Sl?3llgn?£nfni1trN Superoxide (ftUfli? 3)

Hydrogen Peroxide (fTJJfn5 4) lias; Hypochlorous acid (itJjmi 5)

NADPHO + + 2O2 + NADPH + H —> 2O2" + NADP + H2.

SOD 20,'" + 2H+ —> H,0, 368 2=0

Myeloperoxidase + H Cl H2O, —> HOC1 H2O.

Phagocytosis

ptasmi The oxidise complex is switched on and produces extracellular OJ A foreign particle uuchci ihc membrane and phagocytosis begins

The panicle, when engulfed, is wrapped up in a superoxide- general ing piece of membrane, Other vesicles in Ihc phagocyte cytoplasm then fuse »iih the phagocytic vesicle 4. mini^^^lllli1f1llf1!)3j1l451>3fnfjIf1fJl1 Phagocytosis

(Halliwell et al., 19893)

WW \\£\%?\ Chronic Granulomatous < if

Disease %3mh{jflfn"iuiinvn0Wf)3 NADPHO n^vhlm^nitjflfu'tfQlfl-nej ROS Ijii^flupiiyiw ^isif^nTi ROS n\um\i\m&z AO ROS tttuas: AO MITOCHONDRIAL ELECTRON TRANSPORT

Inner membrane space ROT^NONE SUCQNATE 2H2O GLUTAMATE

UBIQUINONE

Matrix 5. Electron Transport Chain 1^ Mitochondria (BTfl Crapo, 19826) 369

ETC \il Mitochondria m ROS warnrn)) ETC ATP Intermembrane Space «U0-9 Mitochondria ATP 13J9 H+

Matrix 1J03 Mitochondria ETC

t Superoxide IVI Matrix *U0^ Mitochondria ^llvi 5

ROS

ROS mans flu

1. leiiqfojJWIViB^ya'iBflll (Antioxidant Enzymes) 1^14 Manganese-

containing Superoxide Dismutase (MnSOD) (fllflPl Superoxide 114

Mitochondria), Copper and Zinc-containing Superoxide Dismutase

(CuZnSOD) (fhfa Superoxide 111 Cytosol), Glutathione Peroxidase

(GPX) (fh^Vl Hydrogen Peroxide 111 Mitochondria UBS Cytosol),

Catalase (CAT) (nifa Hydrogen Peroxide 111 Peroxisomes) 6) 1/2 O2 + H2O ^ C> Supcroxide *• HJOJ

H,0

6. ("Olfl Halliwell et al., 19893)

2. luiaqaiiinflian i^

(Glutathione), fl5«glfl

3. Metallothionein Cytosol n\i af^nsff ne^iifn ufifuflau

n ROS nas AO luii^mo mu Oxidative Stress M ROS 370

ROS was AO

ROS AO U mi usm mivnnTw

(Alzheimer) e1S1c1

,13 (Cancer) snnft?Hl?8 ROS ROS "Mlciltl DNA (Mutation) Vff 9 ROS (Signal Transduction)

Tumor Suppressor Gene

mi

4 Apoptosis U9flinni4 MnSOD AO YlflTOA Superoxide

Mitochondria ta Tumor Suppressor Gene

^ TCELL IM INHIBITION OF BLOOO ATHEROSCLEROSIS FAILURE PGI2 FORMATION CLOTS INFECTIOUS DISEASES

STROKE STROKE

CORONARY COLLACEN/ELASTIN THROMBOSIS CROSS-LINKING

COLLAGEN/MUSCLE CROSS-LINKING IMPROPER EXPRESSION OR REPRESSION -

ARTHRITIS MEMBRANE DAMAGE MUTATION MONITOR I -AGING CLOCK—1 MEMBRANE-BOUND ENZYME DAMAGE CATECHOLAMINES NEUROENDOCRINE DECLINE DECLINE

LOSS OF SELF- \ REGULATION & DEPRESSION REOUCED SELF-REPAIR BIOCHEMICAL ADAPTABILITY SEX DRIVE IMMUNE SYSTEM DECLINE DECLINE

7. rmlnfi ROS infJTuo^numiiwnm

(Aging) nujuinnn (nwfiwrnwuniu) iri"n (asn) (Biological rust; flfUN

wtT39iej ROS AO SOD ims CAT 7 ROS V ROS faiww0iinWtaamftafm«nouuiJ Apoptosis wiflflu ims AO

s AO

(2 Ds;fifi9iJ^fn5fni?nti

ConUOl 1 CO - D Q 2.5 lU.Vg (Lew B 25 lU/Vg jM^) r. -j - G ?S0 lU-Vg (Hi)

\VP < 0.C5 Mortalit y (% )

Day-2 to +1

T\\Y\ 8. ?njJ

7 (i)1fl Fang, 1990 )

(AIDS; Acquire immunodeficiency syndrome)

n ioinm?^ntjinci1nfniinfilifii9fiit

Immunodeficient Virus) 372

AoTuwibti Imhitrnvm AO uasmiaeimuas AO i9vmmeiYhlwfjmimij3ivnmi03 HIV uas mi

2934

AO tnJJIItwgfl^ HIV Replication

Apoptosis su93tfjAia9Attml^35~36 fl^iliim^li? AO ^lu'ivia^iwisisfiHawo HIV

AO iflieglliiSVI'in Clinical Trial lvilJlS;mfrffVtI50lJJim38

MnSOD ^uv\immv,etivii

Tumor Suppressor Gene SlliJJlfU^ia^lviHiJlfjl5fll0P11t mi^1«U0^ MnSOD Ij iSi HIV uasfni«noi)9^mpiia9?iin'3mTi4'u

«• rf 41-42 um 14 MnSOD inflmOWin HIV Tat Protein (Regulatory Protein °K^ ii V V

Hiv) jJi^u^Qnu MnSOD mRNA iijeifuwflivailu HIV

Tat Protein Tjsl Vta^ (Feedback Stimulation, Positive Feedback) ^vTuVtiflttiUIItiaPI HIV Tat

Protein

' III h?

When medicating over a disease,

I never think of finding a remedy for it,

but instead, a means of preventing it.

Louis Pasteur (1884) 373

ii "lufmfnui'bfi ^nwl

i " M8«imJgn?flTU8* ROS fhiilwqjij ROS ;i4nitii7ini7u AO ROS U8nmn AO mifliHinai AO Y\ ROS u S AO

AO

ROS

All substances are poisons:

There is none which is not a poison.

The right dose differentiates a poison and a remedy.

Paracelsus (1493-1541)

tm(vifiifu?Hil

AO

(iil^ 9) QAUII AO AO mi IiJjJin«i nifJuwunB Iwnfl Ira m

ESSENTIAL ELEMENT, DOSE •

^'/(J *• 10 50 —»• SB —•" 200 —- 103 — I04 mg 7d *.5 «• 2 »• F -~• 10—*20 -—-100

Fneden, 1984 374

11J AO fllfl9THT5

AO

i\w wn f)jjn«un

givninsjm ma

m ua

ROS ROS m (Estrogen) "nil^fl Superoxide KID

10)

UPIO NADPH

OUINONE

NADPH 10. Superoxide

(inn Liehr, 199044)

ROS

11) ROS uaz AO 375

*9v*

ZONE ONE)

w{J'3fSit

f|an WfVHffVHfu irwn

tu Drs. L.W. Oberley UBS G.R. Buettner

tu liismfftrnfjamifn nfmuH

1. Hall EJ Radiobiology for the Radiologist 3 Ed J.B. Lippincott Company Philadelphia (1988) 11,201-9. 2. Tubiana M et al. Introduction to Radiobiology Taylor & Francis London (1990) 23. 3. Halliwell B et al. Free Radicals in Biology and Medicine 2" Ed Clarendon Press Oxford (1989) 372-89. 4. Madhavi DL et al. In Food Antioxidants (Madhavi DL et al. eds) Macel Dekker, Inc. New York (1995) 1-4. 5. Deshpande SS et al. In Food Antioxidants (Madhavi DL et al. eds) Macel Dekker, Inc. New York (1995)361-470. 6. CrapoJD Lab Invest (1982)47:412. 7. FangCetal. J Trauma (1990)30:453-6. 8. Buhl R Chem Biol Interact (1994)91:147-58. 9. Constans J et al. Clin Biochem (1995) 28:421-6. 10. Cunningham-Rundles S et al. J Nutr (1996) 126:2674S-2679S. 11. Delmas-Beauvieux MC et al. Am J Clin Nutr (1996)64:101-7. 12. EhretAetal. J Virol (1996)70:6502-7. 13. Everall IP et al. Neuroscience Lett (1997) 224:19-22. 14. Favier A et al. Chem Bioll Interact (1994)91:165-80. 15. Greenberg BL et al. AIDS (1997) ll:3>'-32. 16. JohnGCetal. J Infect Diseases (1997) 175:57-62. 17 Lacey CJ et al. Int J STD AIDS (1996) 7:485-9. 377

18. LeNaour R et al. Res Immunol (1992)143:49-56. 19. LookMPetal. EurJ Clin Nutr (1997) 51:266-72. 20. Mastroiacovo P et al. Int J Vit Nutr Res (1996) 66:141-5. 21. OmeneJAetal. J Nat Med Asso (1996)88:789-93. 22. PaceGWetal. Free Radic Biol Med (1995)19:523-8. 23. Perique BA et al. AIDS (1995) 9:887-93. 24. Repetto M et al. Clin Chim Acta (1996)255:107-17. 25. Roederer M et al. AIDS Res Human Retrovirus (1992) 8:209-17. 26. Shatrov VA et al. Eur Cytokine Netw (1997)8:37-43. 27. Simon G et al. Chem Biol Interact (1994)1:217-24. 28. TangAMetal. AIDS (1997) 11:613-20. 29. Dobmeyer TS et al. Free Radic Biol Med (1997)2:775-85. 30. Famularo G et al. Med Hypotheses (1997)48:423-9. 31. Harakeh S et al. Proc Natl Acad Sci USA (1990) 87:7245-9. 32. Radrizzani M et al. FEBS Lett (1997) 411:87-92. 33. Sandstrom PA et al. AIDS Res Human Retrovirus (1993) 9:1107-13. 34. TangAMetal. Am J Epidermiol (1993)138:937-51. 35. Oishi Ketal. Scand J Immunol (1997)45:21-7. 36. Premanathan M et al. AIDS Res Human Retrovirus (1997)13:283-90. 37. Nesterenko MV et al. Biol Trace Element Res (1997)56:243-53. 38. Herzenberg LA et al. Proceeding of International Symposium on Oxidative Stress and Redox Regulation: Cellular Signaling, AIDS, Cancer and Other Diseases Paris France (1996)79,91. 39. Look MP et al. Proceeding of International Symposium on Oxidative Stress and Redox Regulation: Cellular Signaling, AIDS, Cancer and Other Diseases Paris France (1996) 258. 40. Simonoff M et al. Proceeding of International Symposium on Oxidative Stress and Redox Regulation: Cellular Signaling, AIDS, Cancer and Other Diseases Paris, France (1996) 87. 41. Edeas MA et al. Free Radic Biol Med (1997)23:571-8. 42. VogelJetal. Cancer Res (1991)51:6686-90. 43. Frieden E In Biochemistry of the Essential Ultratrace Elements (Frieden E ed) Plenum Press New York (1984)1-15. 44. Liehr JG et al. Free Rad Biol Med (1990) 8:415-23. 378

PSA

•w.n. won qmem

ropi muaaniem

fie usi^uo-woufin'mjin miPinD PSA

PSA g lJ 3 PSA ELISA KIT ijSibstfviE/nYjiufmeiii!) PSA

( r ) = 0.989 SfmUflflFltXlimum (Precision) Snnmilin Internal quality control high, medium UV\Z low control Sfil coefficients of variation m'lfVLI 4.4, 3.6 U3S 4.7% fmjj^u

Diagnosis and Follow Up of Prostate Carcinoma by an in House Prostate Specific Antigen ELISA Kit at Pramongkutklao Hospital

Ltc. Sunetra Dumrongpisutikul

Division of Nuclear Medicine, Department of Radiology Pramongkutklao hospital Col. Satit Raungdilokrut

Division of Urosurgery, Department of Surgery Pramongkutklao Hospital

ABSTRACT

PSA ELISA kit was developed and compared to a commercial PSA ELISA kit (Cobas® Core PSA EIA, Roche Swizerland) with a correlation of 98.9% ( r = 0.989, p < 0.05). The precision of the assay kit evaluated by internal quality control studies shown that the coefficient of variation of high, medium and low control were 4.4, 3.6 and 4.7% respectively. The sentuvity of detection was 0.25 ng/ml. This PSA ELISA kit has been used for detection of PSA in serum of 571 patients ages between 25-93 years old with satisfactory results. The normal range of PSA is 0 - 3.46 ng/ml (JC= 2SD, n = 384). The mean value of PSA in Prostate carcinoma before treatment and after successful treatment are 77.30 ng/ml (n = 53) and 1.64 ng/ml (n = 25) and increase to 53.71 ng/ml (n = 8) in metastasis. In Benign Prostate Hyperplasia (BPH) the range of PSA is 0 - 27.52 ng/ml (n = 74). Phi (())) coefficient analysis shown that the correlation of PSA and Prostate carcinoma is 63.8% with a sensitivity and specificity of 100% and 86.9% respectively. 380

unwi

1 lli 11 W Prostate Specific Antigen (PSA) Ivill 1979°' ^•Nll'ullliflUYiSuivmnllJmnfi 34.000 u Prostate tissue"' ii'iltffifmSmneti'unfuin'u fl9JjnimiluYiaoijrLmisfliJi)0-a 1 if if PSA ft\\l tumor marker ^1tlfi'fljTJ9^3JSt1^?i9ljgnM3Jin4'13 fni«a«^«W1tJ1«nfl PSA lvm"ima9-3 wilio^uiiumiinyn

miirnVi PSA

-70°c ?Qul^v4l^iiJiunajyiofni^iiifn?fTnfi PSA Ifitnlii^ Wang2'

COMMERCIAL PSA-ELISA KIT

Roche Diagnostic Systems, Switzerland

emwe

113 lit) Benign Prostate Hyperplasia (BOH) 74 110, 384 no

PSA PSA ELISA KIT

1. Microplate Maxisorp F-16 (Nune) 91VJ11J 96 Wells "tit coat

Rabbit anti-PSA dilution 1 : 1000 1u 0.05 M Carbonate buffer pH 9.6

2. Monoclonal anti-PSA/HRP (Horse Radish Peroxidase) Ivi diluent buffer 20 ml.

3. Standard PSA fillJJI'llumj 0, 5, 30ims 120ng/ml. 381

4. Diluent buffer \v 0.01 M phosphate buffer saline pH 7.4 mS 0.1% Bovine Serum Albumin (BSA) ims 0.11% Sodium azide huiU 50 ml. 5. Washing buffer lbsflf)U#ltJ Normal saline + Tween-20 0.05% "OTUTU 250 ml. 6. Substrate solution itasfiaiJflQU O-phenylene diamine (OPD) 2 mg 2 llJfl 0.1 m citrate 0.2

M disodium phosphate buffer PH 5.0 20 ml lias urea hydrogen peroxide (1.75 mg H2O2) 1 UJfl

7. 2.5 N Sulfuric acid 5 ml

PSA

1. ifllJ standard 200 ul microplate 2 •Hqjj?io l ehetn-a uYliliniJTIlufiimjsTfiJijN'i'iMil'unan 60 vnvi 2. $W$\lt) Washing buffer 3 flf* UflblflJJ monoclonal anti-PSAHRP fU 200 ul lynTwus^wSfJiTJ^ iflunfn 90 vnyi 3. fn-3Pnt) Washing buffer 3 fm liall^U Substrate solution 200 ul uiitlmuHlu/nvusf u2fJiTlfiiijlv(ntn 30 uiri

4. •HWPI'lJgmeJTUe-J enzyme-substrate ^1V 2.5 N H2SO4 50 ul 5. ihiljQIU Optical density UO-J^^infl'WU'n 492 mm $1t) Titertek Multiskan MCC 340 6. 'U1fi"mfhvi''lpisnn standard 3J1 plot standard curve Iviflisfnu log-log 2x3 cycles V fin PSA

In-house PSA-ELISA kit fVU Commercial kit

i^mfmiiHtJumtJiiwafmeiiis) PSA in-house PSA-ELISA kit V Roche Diagnostic System kit luwibt) flTUTU 34 ?1tJ 2 kit h B^ (Regression analysis)

1 miitn?) PSA nfi PSA eoninlu fraction ^66-84 irnsl^ 11JJ PSA fraction ^70-80 PSA fllJSlJYi 2 ill PSA willYhTtfmfalflO IB Lyophilization 1^ PSA standard iJlSJJIfli 1.5 mg. ah PSA U UltPlitJlJ standard iiiSfmiJmJUU 0, 5, 30 im 120 ng/ml •OinmillJitJlimWlJ In-house PSA ELISA kit nu Cobas® Core PSA EIA (Roche) PSA 382

( r ) = 0.989 JlJvi 3 inaiwhvitJA PSA ELISA kit U flilfllVli^ fl9 0.25 ng/ml {X + 3 SD Zero standard) fliiemflfmiJUlJlJOl (Precision) U94U1U1?mS)ll PlltJmivh internal quality control Wim SfmiJim'UthfiJJin ^iJvl 4 5 coefficient of variation U94 high medium UflS low control 'h 4.4%, 3.6% uns; 4.7% enimimj PMK-PSA ELISA kit HTumiemfl PSA vo^ibtmimijfmemwm u^iboflTUTuVfomj 571 no mm riimaouo-j PSA IVIW (n = 53) isrnufnm (n = 19) nns!>i^fnifntn (n = 25) mi niJ 77.30 ± 46.28, 22.33 ± 19.86 IKIS 1.64 ± 1.31 ng/ml WiUaifflJ ^QO^SminiSfliODQ^USJl^

(n = 8) finuaoDO'j PSA minu 53.71 ± 38.0 ng/ml wibtiviflgjjfmMinnifl (n = 74)

PSA iviinu9.42 ± 9.05 ng/ml luiims^fiuiJnw (n = 384) fifhiflaoivhnu 1.38 ± 1.04 ng/ml 1\\Y\ 5 mguiJ-JHlJ^WUSli^^lJfjnMUinillvmUU localized (n = 7) ims metastasis (n = 8) flQU

wimSfi"uiafltj

PSA Sfniuuij'uoipr-j mfJum'iniJ^ilntn^^9ionn(?ii4iJi^ivifT PSA 1fl1vnifn§n iiiiMnii^n^iifloino'inijlifiiJSJii'Jije^weijgn v v y y •oinmi'ta^i'uicnemflti IVJVIO mooii^is'H'ii-j 25-93 tl BIUTU^SU 384 1)04 PSA 05J1VJ1JQ4 0-3.46 ng/ml (X = 2 SD) lu$lboYl291fmW01Jgfminnlfn (BPH) V PSA qseo]lu

S;«UDO4 PSA q l^ 5 m9l?iiumiNi^imiis;^iiu04 PSA flsi 3 - 4 fllJflitf llJOfliimn^lllOWIU nntJfUSUO^liflllU'U localized ims metastasis

PSA uv d 1/ 383

PSA iilu turmor marker viflynnlunniifliisftniinisqiunto^fiiisii^ijgnMiJ'rn nrm ougmiinn fraSui-3ebi4vimne€gmeSmin?s:qio?s«uije3 PSA 3 ^^ilfiTH cB-3imnoios;^a^Q'US)«tjlMm?fninmjJiW3Jiilwn{jin liJ

12 nu nu'3im05m?nis;snt)'ue^1ifiiJs;ii-3«!iefjnM3JinvliJ^wiiJims;fi?s;gn «mjufN PSA

PSA mnsSfmu'ta ioo% ^ PSA vtawintfu 3 - 4 mJfiTH uasvjn 3 imm •nn 4 i«o^ Imlvme-a nas^n 61^014

Schering-Plough fi

1. Cancer Facts and Fogures-1992. Atlanta, Ga : American Cancer Society Inc ; 1992 ; 10. 2. Wang, M.C., Valenzuela, L.A., Murphy, G.P., and Chu, T.M. ; Purification of a human prostate specfic antigen. Invest, Urol., 17:159, 1979. 3. Wang, M.C. Valenguela, L. Murphy. G.P., and Chu, T.M. Tissue specific and human specific antigens in human prostate. Fed. Proa, 36:1254, 1977. 4. I,D., Inaji, H., Loor, R.M., \lin. M.F. Nishiura, T. Slack, N. H. murphy, G.P. and Chu, T.M.: Multiple marker eva;uation in human prostate cancer with the use of tissue-specific antigens. J. Nartl. Cancer Inst, 68:99, 1992. 5. Pontes, J.E., Chu, T.M. Slack, M., J. and Murphy, G.P., : Serum prostatic antigen measurement in localized prostate cancer : correlation with clinical couse. J. Urol., 128 : 1216, 1982. 6. Killian, C.S., Yang, N., Emrich, L. J., Vargas, F.P., Kuriyama, M., Wang, M.C., Slack, N.H., Papsibero, L.D., Murphy, G.P., Chu, T.M. and the Investigators of the National Prostate Cancer

Project : Prognostic importance of prostate-specific antigen for monitoring patients with stages B2 to D, prostate cancer. Cancer Res., 45:886, 1985. 384

7. Killian, C.S., Emrich, L.J., Vargas, F.P., Yang, N., Wang, M.C., Priore, R.L., Murphy, G.P. and

Chu, T.M. : Relative reliability of five serially measured markers for prognosis of progression in

prostate cancer. J. Natl. Cancer Inst., 76 : 179, 1986.

8. Siddall, : K., Shetty, S.D. and Cooper, E.H. : Measurements of serum gamma-seminoprotein and

prostate specific antigen evaluated for monitoring carcinoma of the prostate. Clin. Chem., 32:2040,

1986.

9. Ahmann, F.R. and Schifman, R.B. : Prospective comparison between serum monoclonal prostate

specific antigen and acid phosphatase measurements in metastatic prostatic cancer. J. Urol.,

137:431, 1987.

10. Stamey, T. A., Yang, N., Hay, A.R., McNeal, J.E., Freiha, F.S. and Redwine, E. : Prostate-specific

antigen as a serum marker for adenocarcinoma of the prostate. New Engl. J. Med., 317:909, 1987

11. Ercole, C.J., Lange, P.H., Mathisen, M., Chiou, R.K., Reddy, P.K. and Vessella, R.L. : Prostatic

specfic antigen and prostatic acid phosphatase in the monitoring and staging of patients with

prostatic cancer. J. Urol., 138:1181, 1987.

12. Lange, P.H., Reddy, P.K., Medini, E., Levitt, S. and Fraley, E.E. : Radiation therapy as adjuvant

treatment after radical pros tatectomy. J. Natl. Cancer Inst., in press.

13. Oesterling, J.E., Chan, D.W., Epstein, J.I., Kimball, A.W., Jr., Bruzek, D.J., Rock, R.C., Brendler,

C.B. and Walsh, P.C. : Prostate specific antigen in the preoperative and postoperative evaluation

of localized prostate cancer treated with radical prostatectomy. J. Urol., 139:766, 1988 385

A uwuw-nBfnittffa PROTATE SPECIFIC ANTIGEN (PSA)

PROSTATE GLAND

Homoginized with EDTA Phosphate buffer pH 6.8 4*

Stirred 2 hr in cool room

Centrifuged 40,000 xg 60 min.

Supernatant ppt

discard

ppt. with 55% sat _ Ammonium sulfate

in cool room, stirred for 30 min

Washed ppt. with 55% Ammonium sulfate

centrifuged, ppt. resuspended in

0.1M Tris-HCl buffer pH 8.0

PSA crude extract

Sephadex G-100 column 2.5 x 80 cm.

Collected 40 dr/fraction

Read O.D 280 nm. 386

fliiETnVl PSA Sephadex G-100

PURIFICATION OF PSA EXTRACT ON SEPEIADEX G-lOO

PSA

3)0 C A O-IX (\ 1 ^ 150.0. f X I / 1 \ A i. 1 1 \ 1 k 1 \ I I 11 \ 1 \ 1 •- ' _\ 1 ^ / 1 1 •A. 1^

so to 90 IOC

FRACTION HO.

frwmjm4tii]94 PMK-PSA ELISA kit Uc\Z Commercial kit

303 0

180 0 y/ 160 D yZ 140 0 y/ 120 0 yS 100° y/ 63 0 - Sonesl

&0 0

400

200 --

0C

20 o *3 p eo o 60 0 100 0 1200 K0C 16-00 IMC

PS4-EL2A ( 387

I 4 Precision of PMK-PSA ELISA kit

Quality Control Mean ± SD % coefficient Variation

High Control 42.5 ±1.87 4.4

Medium Control 10.3 ±0.37 3.6

Low Control 2.2 ± 1.10 4.7

PSA , eiBimrminnlei

Patients PSA ng/ml n X S.D. Prostate carcinoma before treatment 53 77.30 ± 46.28 Prostate carcinoma during treatment 19 22.33 ± 19.86 Prostate carcinoma after treatment 25 1.64 ±1.31 Prostate carcinoma metastasis 8 53.71 ± 38.05 Prostate hyperplasis 74 9.42 ±9.05 Normal control 384 1.38 ± 1.04

ijiJyiyi6 AU PSA

Prostate carcinoma PSA ng/ml n X S.D. Localized 7 19.93 ± 11.25 Metastatic 8 109.30 ±37.1 388

PSA Phi ((J))

^^-^PSA-ELISA PSA + ve PSA - ve Total Patients ^"~~~\^^

Prostate carcinoma 53 0 53

Normal subjects 60 398 458

Total 113 398 511 ((J)) = 0.6364 fmu*b (Sensitivity) = 100% (Specificity) = 86.9% 389

mfi

i/n ijfjnhfrc, fmiisu wnmlfrvswnmlfr , qw-aww YimuKf

•MIITWI

unnncio

106

K20 CaanfulutJitin im 2 lflo'l'Hfhjv)nci 4 tlou fiewenapm-asnn 95.3% iflu 77.9% lutlinn ims; 62.9% nu 17% lutrmtl im 390

f)TW1

i V Ermans (1) liasiJjeiSl «1 U TflEJ Tonglets HtiSfltUS (2)

mi iiasltf 3 fif-alu l iJ pniJi^tiiifi'uuiwDe-jfiQ'WQn lia l

Dunn (3) - Hi^fu ^3 imn vU lumepi Ififj iifllaeu^luuamfTo (4,5)

lav iflO Immunoradiometric Assay (IRMA) \IQ-3 NETRIA (6)

1ala«u Ipieniiuo-a Riccabona (7) - •Bfji0t)^ljj1fiT]cK3ja 11014^110^^

\

^ ©IJJ 14-45 t) UW^^TUM'3«IUIU fl.ujJsajpraij hum 106 fiw

MacLennen ims Gaitan ()

5 fiu iSufioijl'Vi-SFi nwoii^ileia^ 20,50, loo, 200 wa

Dunn (3)

imsui 24 tfli ^g^ HnDa^tni'UTuiJjuielaw'U'Mil'Hfia'WBn^ija^i^iJin 00 Sewiififin^flin 95.3% 77.9 % lutJu^n, uas, Bin 62.9% nar 17% lu 2 uas 6 iJ wiuaiau (51)^ l) 391

100 T

GrO Gr 1 Gr2 R-e-tesl Yr 1 Yr2 Yr6

(n) u?T«Nfnjquiie™e)Jitijeti« Imlinn (v) thwfunm (fl) -n-

, v mu^nn 72.2% mu ioo% V t y ima-di vi4 muicu nei ^ ie?r im w DU l wf9 2

s; 24 n^^nnnu 20 (40 imsjidofiiu 4 7.5)

l)

nunfi I t (ufin/i 40 Sannfu nw thufiif il'Bnanilvn'u

number of cases urine 1: ng/L (SD)

Pretest 106 80.4 (5.7) Day 1 23 19,712(7,755) Day 2 27 9,835 (3,667) Day 3 22 8,575(1,549) Day 7 10 6,305 (3,074) Day 14 10 5,848 (2,322) M1 13 3,992 (3,142) M2 10 2,020(1,256) M3 20 307 (2.22) M4 20 119(7.5) M5 18 53.4 (4.9) M6 17 23.3(1.1) 392

20, 50, loo ims 200 mu enuaim uflfNfh'UYHiVUn'uuin

200

V • 20 unn 2) tfuihsmivivi-j iJnngii lunai 4 20-40 Sannfu b 200

2 iiafulol8«'ulvii]tTfm::u04fi'un5^itfvii 20-200 Cnnnfu

uinnii 20 un.

Dose Pre-test D1 D2 D3 D7 D14 D21 M1 M2 M3 M4

20 142 17,500 8,667 6,500 2,500 2,400 2,400 720 156 160 196 50 182 22,000 15,000 13,000 7,000 4,000 3,470 1,220 196 166 200 100 178 63,000 28,000 20,000 7,800 4,200 3,600 2,520 288 216 200 148 158,000 71,000 33,000 7,750 5,600 4,400 3,240 392 333 269

Urine I (ug / L) 1000000 T •— 200 mg •— 40 mg * Pre-test 100000 ••

10000-

1000

100 1 V / " 10 -+- H V -t- H D1 D2 D3 D7 D14 D21 Ml M3 M4 Time

JTJYI 2 Htt«^H£1UB^l8l8Swlvii]aantM8^[ljJ88-)tr8U

tnihmirih IOIBHVI (40

(200 jjn. 393

(30-40%) fmfiinnnija'nnn na

fmib Itlfncj IYICJ vi^ Ifi 106 fiu iinsYiu fievien 101 fiu (95.3%) \iiWnfngna-3iilvj 1/5 irli

20

3)

iiluviPitfwfviJWHaftuwutvifofeQU uj widuvnuTuiifu fiuwuiviiolenuoyluiJin uaz iout\,

1wiioo

l.

2.

3. fifn^ntwilu 1/5 mi 15 ua. 4. 1'Hiil'uvifjfi itlufmuiiuQirii nauwoviiJi^l^ 5. 394

6. ih mo

yyd Mil' id 7. Kqiuu mflo*imtj

20 lutluin ims 40 CrnHniu 1ml J "] quielofl'umao 100 u-3 «i uo^fiuiJinw l^wafio no ^ l iJ

4)

ITU TSVIQI-3 2-4 aiJpnviuin 20 lias 200 flaanfu

uin IVJUVJIPI 200 Snanfjj muyn-3i]?Tfms;

mi'HU-a QniJis;fniviu-3 1VJI-8 ailfnvf vnn 200 {jaaniu ^d Kinvj 500 lulfiinfu meimvi 019 1,500 10 fflJfnM OlSflsVhiMinfl Jodbasedow(13)

200 mg 40 mg Re-test

D1 D2 D3 D7 D14 Ml M3 M4 MB Ml 2 nan

jilri 4. ror 12 IHBW DB^TJujuivilBleSu 3 fifwiotl jiJfinnfuii 200 Sannfu SnuSuiiJfio^ l«o^uoonnnln (uintutiiHi 3 IIVI'-J) loloSuTiiiluihiiinii JIIIW 3 nft 395

(00'n Lugol's solution) (l)

4 ilmvi ^9 mf iJvnj-a 17.4%

l. (l JJH.) wfe 240 un. v 40 2. miuunuDVJi*ii

3. n uiaju (20-40 SaBniu) TM 3 fif-aweiJ iflwaunnniTUQ 1 mn

woo (17.4%) iipiiJQtjniTiJuiPi'uiJJui'uiioleflUJJin (UUIPI 960 CciSnfjj vif© 2 ua) n?i 1lJUinvi0 BU"nilMinPl Induced Thyrotoxicosis (IT )

^0 Reversible Hypothyroidism fieUfmifafllin (1 15 ) WTuvmm (16-18)

^•ni

V i c IIWTUTU 200 CaSnfu tins; 2 fif-a nn1iiSfniiiyi?n K9\j in« IT 8 no 240 no (1.7%) U'Ufl'ufi hypothyroidism mWTIU'ihfim (19-23) ^•Hiw^npnTn? iwflewnfjeviQnl'uil 1995-1998 iilu 16.2, 18.9, 20.9 V it ims 21.9% n^liiijnjjijmieleiiw 100 un. 2 ni^fietl ufT«-a'iioToiosin« transient hypothyroidism fliflfnimssinm^ Y\ 10fT 10* muiWJJ (24)

20-40 jjn. V 396

»» nm

imsethwun

1. Ermans AM. Effectiveness of discontinous administratin of supra-physiological doses in the

long term control of sporadic non-toxic goitre. Abst No 95. Sao Paulo, 9th International

Thyroid Congress, 1985; 88.

2. Tonglet M, Bourdoux P, Tshilembi M, Ermans AM. Efficacy of low oral dose of iodized oil

in the

control of iodine deficiency in Zaire. New Eng J Med, 1992; 326: 236-41.

3. Dunn AD, Crutchfield HE, Dunn JT. Methods for measuring iodine in urine.

Modification from Gutekunst in Method A. Wagenigen, Netherlands, ICCID D, 1993; 18-27.

3. Chapman RS, Ratcliff JG. Covalent linkage of antisera to microparticulate cellulose using

l-l'-carbonyl diimidazole: a rapid practical method with potential use in solid-phase

immunoassay. Clin Chim Acta 1982; 18: 129-34.

5. Edwards R. Immunoassay: an introduction. First published. London: William Heinemann

Medical Books, 1985.

6. North East Thames Region Immunoassay Unit (NETRIA), St. Bartholomew's Hospital,

London, UK. .

7. Riccabona G. Thyroid cancer and endemic goitre. Stanbury JB and Hetzel BS ( eds). In:

Endemic Goiter and Endemic Cretinism..New York, Wiley Medical Publications, 1980;

340.

8. Thymune-M and Thymune-T. Haemagglutination kits for the detection of thyroid microsomal

and thyroid antibodies. Murex Diagnostics, Dartford, England May 1994.

9. Jaipetch T. Pattanchak C, Chongchirsiri S. Pleehachinda R, Suwanik R. Preparation of seed

iodized oil. Siriraj Hosp Gaz 1994; 46: 939-42.

10. Ma Tai : Personnal Communication. 397

11. Stanbury JB, Pinchera A. Measurement of iodine deficiency disorders. In SOS for a billion, Hetzel BS Pandav CS (eds). Delhi, Oxford University Press 1994;75 ' Indicators for Assessing Iodine Deficiency Disorders and their Control Programmes.' Report of a Joint WHO/UNICEF/ICCIDD Consultation, 3-5 November 1992, WHO, Geneva.

12. MacLennen R, Gaitan E. Measurement of thyroid size in epidermologic survey. Dunn J, Medeiros-Nato (eds). In: Endemic Goitre and Cretinisnrcontinuing threats to world health. Washington,. PAHO Sci Pub, 1974; 195-7. 13. Stanbury JB, Brownell GL, Riggs DS, et al. Endemic goitre. The adaptation of man to iodine deficiency. Cambridge, MA: Harvard University Press, 1954; 66-8. 14. Pleehachinda R, Suwanik R, Pattanachak C, et al. Control of endemmic goitre by oral iodized oil in Uttaradit province, N. Thailand. Unpublished paper 1993. 15. Pharoah, POD, Buttfield IH, Hetzel BS. The effect of iodine prophylaxis on the incidence of endemic cretinism. Adv Exp Med Biol 1972; 30: 201-21. 16 Maberly GF, Cocoran JM, Eastman CJ. The effect of iodized oil on goitre size, thyroid function and the development of the Jod Basedow phenomenon. Clin Endoclirinol (Oxf) 1982; 17: 253-50. 17. Braverman LE. Placental transfer of substances from mother to fetus affecting fetal pituitary- thyroid function. Delange F, Fisher DA, Glinoer D (eds). In:: Research in congenital hypothyroidism.. New York, Plenum Press, 1989; 1-14. 18 Morreale de Escobar G, Obregon MJ, Escobar del Rey F. Transfer of thyroid hormones from the mother to the foetus.Delange F, Fisher DA, Glinoer D ( eds). In: Research in congenital hypothyroidism.. New York, Plenum Press, 1989; 15- 19. Connolly KJ, Pharoah POD. Iodine deficiency, maternal thyroxine levels in pregnancy and developmental disorders in the children.. Delong GR, Robbins J, Condliffe PG. (Eds). In: Iodine and the brain. New York, Plenum Press 1989; 317-32 20. Pharoah POD, Connolly KJ. Maternal thyroid hormones and fetal brain develoment. Delong GR Robbins J, Condliffe PG.(Eds). In: Iodine and the brain.. New York, Plenum Press 1989; 333-523 21. Braverman LE. Thyroid dysfunction induced by excess iodine . Delange F, Dunn JT, Glinoer D. (eds). In: Iodine deficiency in Europe, a continuing concern.. New York, Plenum Press 1993;79-92. 398

22. Delange FM. Endemic Cretinism. Braverman LE, Utiger RD (eds). In: Werner and Ingbar's The Thyroid, 6* ed. Philadelphia, Lippincott 1991; 942-55. 23. Dunn JT. Adverse effects of iodine deficiency and its eradication iodine supplementation. In: Braverman LE.(ed.) Diseases of the Thyroid. New Jersey, Humana Press, 1997, pp. 349-60.

24. Vongsatala P. Personal communications to the authors. TH9900036 TH9900036 399

NEW SNS/S AND SNN/S MIXED LIGAND OXORHENIUM AND OXOTECHNETIUM COMPLEXES CARRYING A PENDANT NITRO GROUP ON THE MONOTHIOLATE MOIETY AS HYPOXIA TISSUE IMAGING

Jaipetch T.*, Pirmettis I., PapadopoulosJVl., Nock^B., Main^T.,

RaptopoulouXT., Terzis^A., and Chiotellis,E.

* Section of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol

University, Bangkok 10700, Thailand.

Radiopharmaceutical Lab, Institute of Radioisotopes and Radiodiagnostic Products, NCSR " Demokritos", Ag.

Paraskivi 15310, Athens, Greece.

ABSTRACT

As part of our project to develop small size, neutral, mixed ligand oxotechnetium and oxorhenium complexes of the general formula MOL,L2 , we have synthesized and characterized four novel complexes of general formula MO[EtN(CH2CH2S)2][p-O2N-C6H4S] and MO

[(Et,NCH2CH2NCH2CH2S)(p-O2N-C6H4S)] where M=Re (complex 1 and complex 2) or M=Tc

(complex 3 and complex 4) as a new approach for hypoxia or ischemic tissue organ imaging.

Complex 1 and 2 have been synthesized by exchange reaction in equimolar quantities of the tridentate and the monodentate ligand on ReOCl3(PPh3). Only the syn isomer have been isolated and characterized by elemental analysis, IR, UV-vis, and H NMR. Crystal datas reveal a trigonal bipyramidal geometry around the metal for complex 1 and square pyramidal geometry around the metal for complex 2. Complex 3 is prepared by exchange reaction using Tc-99m-glucoheptonate as precursor and equimolar quantities of two ligands; EtN(CH2CH2SH)2 and p-O2N-C6H4SH while complex 4 is prepared by simultaneously reacting the Et2NCH2CH2NHCH2CH,SH and p-O2N-

e C6H4SH ligands with the Tc gluconate precursor in equimolar amount in MeOH.

It may be concluded that the result of SNS/S and SNN/S mixed ligand of oxotechnetium is comfirmed by comparative HPLC studies with complex 1 and complex 2, since rhenium is a surrogate of technetium. 400

INTRODUCTION

Nitroimidazole derivatives labeled with a number of radionuclides, such as I, C and

1 Q F, have been evaluated over the past few years as potential agents for the non-invasive imaging

of hypoxia tissues. As far as Tc is concerned, Tc complexes based on the nitroimidazole-

BATO or the (2-nitroimidazole)-l-PnAO system have demonstrated promising results in terms of

selective localization in cerebral or myocardial ischemic tissue in animal models [1,2].

As part of our recent work on the development and evaluation of rhenium (V) and

technetium (V) mixed ligand complexes with potential medical application, we report herein the

synthesis and characterization of four novel complexes general formula MO[EtN(CH2CH2S)2][p-

O2N-C6H4S] and MO[(Et2NCH2CH2NCH2CH2S)(p-O2N-C6H4S)] where M=Re (complex 1 and

complex 2) or M=Tc (complex 3 and complex 4). In both metal chelates a nitro group is

introduced on the aromatic monothiolate ligand, expected to direct the radioactivity on the

ischemic tissue in question acting as the radiosensitizer [3].

METHODS

Preparation of the Re complex, 1 and 2 : The complexes are produced by simultaneous

action of EtN(CH2CH2SH)2or Et2NCH2CH2NHCH2CH,SH and p-O2N-C6H4SH ligands on the

ReOCl3(PPh3)2 in equimolar quantities in a refluxing AcONa methanolic solution. Dark-green

and Red-brown crystals separate by slow evaporation from a CH2Cl2/MeOH mixture and are

then characterized by elemental analysis, IR, UV, HNMR, HPLC and X-ray crystallography.

Preparation of ™Tc complex 3 : Complex 3 is prepared by exchange reaction using EtN

(CH2CH2SH)2 and Tc-99m-glucoheptonate as precursor and equimolar quantities of the two

ligands. Only one complex, the syn isomer, is formed. Its identity is confirmed by

comparative HPLC studies with complex 1, since rhenium is a surrogate of technetium.

9yp 99ii Preparation of the Tc complex 4 : The analogous Tc complex 4 is prepared by

simultaneously reacting Et2NCH,CH,NHCH2CH2SH and p-O2N-C6H4SH ligands with the

Tc-gluconate precursor in equimolar amounts in MeOH. The crystalline product 401

precipitates by slow evaporation from CH2C12 /MeOH mixture and are characterized by

elemental analysis, IR, UV-Vis, 'H NMR and HPLC analysis.

HPLC comparision of complex 2 and 4 : Both Re and ^c complexs are injected on a RP

C18 column, which is eluted with 85% MeOH and the complexes are monitored both by

photometric and radiometric detection.

RESULTS AND DISCUSSION

Simultaneous action of equimolar amounts of EtN(CH2CH2SH)2 or

V 998 V Et,NCH2CH2NHCH2CH2SH and p-O2N-C6H4SH ligands on a suitable Re Oand Tc O precursor leads to the formation of the isostructural complex 1, 2 and 4, according to equation [1] and [2].

V M O + EtN(CH2CH2SH)2 + p-O2N-C6H4SH • 1 eq [1]

M = Re

+ Et2NCH2CH2NHCH2CH2SH + p-O2N-C6H4SH • 2,4 eq[2]

M = Re or ""Tc

Structure and purity of complex 1, 2, 4 are established by comparision of analytical (UV-

Vis, IR, 'H NMR) data with that reported for other SNS/S and SNN/S complexes of established structure [4] and by X-ray structure analysis of complex 1 and complex 2.

Crystal data of complex 1 shows a trigonal bipyramidal geometry around the metal. An

ORTEP diagram is given in Fig 1. The basal plane is defined by the sulfur atoms of the tridentate ligand and oxygen, while the two apical positions are occupied by the nitrogen of the tridentate ligand and the sulfur atom of the monodentate thiol. 402

Fig. 1 ORTEP diagram of ReO[EtN(CH2CH2S)2][p-O2NC6H4S], complex 1.

Crystal structure analysis of complex 2 reveals, that the compound adopts a distorted square pyramidal geometry around the metal. As shown in the ORTEP diagram of Fig 2, the SNN atoms of the aminethiolate tridentate ligand occupy the basal plane of the pyramid. The coordination sphere is completed by the sulfur atom of the monodentate thiol in the basl plane and the oxo group of the Re=O core positioned on the apex of the distorted square pyramide. 403

C7 c-6

CIO Cll

C2

Fig. 2 An ORTEP diagram of ReO[(Et2NCH2CH2NCH2CH2S)(p-O2N-C6H4S)], complex 2

CONCLUSION

The chemistry of rhenium complexes was studied by spectroscopic method which has the identical property with technetium complexes. Thus Rhenium is a surrogate of technetium for chemical study while Tc is used for biodistribution study. Further studies of Tc complexes are made in progress in order to evaluate the behavior of the complex in experimental animals.

ACKNOWLEDGEMENT

I would like to thank Dr. M. Papadopoulos, Dr. I. Pirmettis and Dr. E. Chiotellis for their great guidance, invaluable advice and supervision and encouragement throughout. I also would like to thank Prof. R. Suwanik and Dr. R. Pleehachinda for their kindness to support this work. This work was carried out at Radiopharmaceutical Lab, "Demokritos" , Athen, Greece. I am indebted Siriraj China Medical Board, Siriraj Hospital, Mahidol University, Thailand for the scholarship which enabled me to undertake this work. 404

REFERENCE

1. Under KE, Chan YW, Cyr JE, Malley MF, Nowotnik DP, Nunn AD. J Med Chem 37: 1994, 9. 2. Linder KE, Chan YW, Cyr JE, Nowotnik DP, Eckelman WC, Nunn AD. Bioconjugate Chem 4 : 1993, 326. 3. Denny WA, Wilson WR. J Med Chem 29 : 1986, 879. 4. Papadopoulos M, Pelecanon M, Pirmettis I, Spyriounis DM, Raptopoulou CP, Terzis A, Stassinopoulou CI, Chiotellis E. Inorg Chem 35, 1996, 4478. 405

00m. TC-ECD

w>)Yta iifr-aqitm wni'ttfu ihuiiqa rruemamTU'U'n lias tmtmuVl Ivnpfvivi 5795230,lmjni 5613013

unneida

L,L-ethyl cysteinate dimer Vila ECD llW^'vW^l'Hmi'Unfjim'l? diamine dithiol (DADT)

a 3/ I d

ECD P. Blondeau et al(1967) I^ECD III^VIBIVIIIIUO^ ECD dihydrochloride flftfiSlbsinfU 3.89 V (22.8% yield) mi^Plttain ECD filtl Tc-99m ilvi !)S;iPl1(JU ECD

1 V V r\\ (ready-to-use kit) fio'u^ttnuiioinioulw'n-jliitnifisaioiJi vifelii 0.025 M n pH 6.0 mol'WitllWtJ'Uafltie bfl (SnCl2) m^iPn^ieiOWW Ucnsi^mu m|lJw^llVl^ (freeze dried kit) Ynauviss'U'm'isnpmjnfi^iw Tc-99m iiS (radiochemical purity) 1(?ltJQ? TLC, ITLC UflSlB HPLC y v 95% nii^nynniini^flifj^me^^Yii^SQiYimiJo^tTiim^wiuw^n^i'uiiJviiJvifiae-a (rat) viu

""TC-ECD 406 TH9900037 TH9900037

GO|f| Synthesis, Preparation and Quality Control of Tc-ECD

Soontree Laohawilai, Jatupol Sangsuriyan, Nipawan Poramatikul, Chuchat Thongyoi,

Taweesak Thantawiwatananon and Tippanan Ngamprayad

Isotope Production Division (OAEP), Chatuchak, Bangkok 10900 Tel.5795230, Fax.5613013

ABSTRACT

L,L-ethyl cysteinate dimer or ECD is one of the diamine dithiol (DADT) derivatives of which

Tc-99m complex shows good potential as a brain perfusion imaging agent. The ECD ligand was synthesized by the method of P.Blondeau et al (1967) which gave average yield of 22.8% (3.89 g./batch) of purified ECD dihydrochloride. The ready-to-use kit of ECD was prepared in two formulations. Sterile water for injection and 0.025 M phosphate buffeKpH 6) were used as solvent in formulation A and B, respectively. Then the kits were lyophilized and subsequently labeled with Tc-

99m. The radiochemical purity was evaluated by various chromatographic systems (TLC, ITLC and

HPLC) and obtained the value of 95% or higher as well as good in vitro stability up to 5 hours after labeling for both formulations. The radiochemical purity analysis by HPLC provided one peak of

Tc-ECD at retention time of 25 min. The biodistribution studies of Tc-ECD in normal rats showed significant activity uptake in brain. 407

single photon emission computed tomography (SPECT)

1flm*nN1S0tJ1-M)VlmsilintasenY)?blJnfm (central nervous system) "Mfm^flin brain i V t perfusion imaging Ifltllflffl-J SPECT UUPm-ai* fmiflffof)0Jc»il'-3fi' (radiopharmaceuticals) VlSfjQl i fi0 ahjncnwNiylvIn (neutral) uasSfliiufnyiiaiiimiasaio'luiijihj (lipophiiic) Ifi W'llJ blood brain barrier (BBB) Hh1lJi« UV\ZZ radioiodine WfU 1-123 IMP1, 1-123 HIPDM2 imsVnn^«fl«aif)«ltJ Tc-99m

Tc-99m fl ^ Tc-99m ^H1fls;Q^luill1DO^?nilJis;f101imi!»Oy Tc-99m nil ligand fl?J3J ligand ndjJU1f19J;i3uQ^1Wl4B?ii^

( CH, H3C^ EtOOC COOEt x^ 'Tc 1

H3C^ N ^CHj OH L

nTc-d,l-HMPAO WmTc-L,L-ECD

99mTc-d,l-HMPAO UfiS """TC-L.L-ECD

diamine dithiol UiHlUO-JSJin ligand

910 liJ lij^tiin^u^BVimdBW HMPAO 99mT^ c nlMfiilllofl^liM radiochemical purity tNlfllJ 95% UtisS i"« vitro stability UTUfrh 4-5 *JJ. "m Tc-HMPAO Iwfil radiochemical purity ihsinfU 85-90 % UflsS stability mO-Jllfl 30 408

brain perfusion imaging agent ifWUlfitJlflll Tc-HMPAO """Tc-ECD f1^«s;SlliS;Iw^iyQ«n-3Uin?iofni^n%JimfJQnU brain perfusion

ECD, fTmsnitJU ECD luilJw^im-3 (one component freeze dried kit) ^^

Technetium-99m pertechnetate ("""TcOJ (DQ-JWaPliQl^ivilJ INlJtt.), L-cysteine hydrochloride monohydrate (Sigma), pure hydrochloric acid gas (TIG), pure ammonia gas (TIG), formaldehyde (Merck), sodium metal (Fluka), EDTA disodium salt dihydrate, D- mannitol

FT-IR (Perkin Elmer), HPLC (Waters, Millipore) , 'H-NMR (Varian), Freeze Dryer (Virtis), Radiochromatogram scanner (Raytest), ITLC-SG (Gelman), TLC (Whatman), llflSMIJ Sprague-dawley

4 9 10 'H L, L-ECD ECD liUflintni^WU L-cysteine

O HO HCHO/pyridine N-MH 1. HS~ CH2- CH —\ ^ y Acid I OH L/ s NH2 L-Thiazolidine-4-carboxylic acid Bog 409

OH

HO l.Na/liq.NH 3 ^- „„ Addn 2. 2.H O, H c^N SH W Acid I / HO""V L,L-Ethylenedicysteine (L,L-EC)

OH OEt 0 = 0 =

\H EtOH/HCl SH p r SH A L-N SH V-/ / HO" EtO' <

Acid II L,L-Ethyl cysteinate dimer(L,L-ECD)

141 cysteine hydrochloride monohydrate (60 fiiU) asaitiltJlJI 150 Ufi. 10HJJ 37% formaldehyde 44 Ufi. muSuHmfllJgniEJI^eQJVIfjCMQ^lltSUIQJ 18 %M. imQ?^f)9fJcl l^JJ pyridine 50 JJfl. flSlflfltisneuiiniie-J Acid I ne L-thiazolidine-4-carboxylic acid PlflO0f1U1 nia-3 S^tJfni?)flHaflll4'Unl'9V! UWnwanllJ'nilwim^l'U desiccator (vacuum)

Acid I 3J1 reduced #10 sodium metal (Na) \\l liquid ammonia (liq. NH3) iflumiasfliU

Acid I (33 flfll) lu liq.NHj (300 U3.) ^iw'OinmifniJim'uDe^lintT NH3 \\i flask ^a^O^jlvj liquid

( N2 vi^snni^u Na ^f\s u0o«yiJgnitnm?iitw\jifu imiiJfiQtjt'H Uq.NH3 ismo\iuim-j ^asaio i V r residue 'MmaO^tJ'UI (300 iifl.) mo-aflSnoU^lu'cisaiOQOni'lJim'llJriJ pH "UQ-3 filtrate Inlfli pH 2 Acid II me L, L-ethylene dicysteine PinDBnWI m9^U&nUt1s:?m?n£m"ltf)'U UB1 ntjiutJiiJI'iJ pH mu 9 u^flnffsn9uc»ilufn5fis:?n{jmAYi pH 2 •Mnewi 2- 3 fli-3 fltiff SisnQVJ Acid II YllJIIJVlB 'n^liiuii^lu desiccator (vacuum) Mfnon TU flifl'UlJ'UI Acid

II JJ1 esterify I«tJ?1s;anfjlv! absolute ethanol (saturated flltJ HC1 gas) 200 JJfi. UflW reflux ^

80°C 14114 2.5 VII. «s1« L, L-ECD flnflSfl9l490m absolute ethanol 1«H^nil?fjy)S

ECD ECD Iwrnprna-aiflloy 2 imu Formulation A iflitJullJihfimJtl'mA iJil) pH Iiiifl pH 6.0 fali HC1 HIS NaOH Formulation B wnioui'U 0.025 M. phosphate buffer llill pH Wlfl pH6.0 flltJ phosphate buffer m 2 formulation flsSffTUTJ^SflQlJ^i^n mfieUfTU fl0 llflas kit 'OSlbsfl 9110110 L,L-ECD

1 JJfl. D-mannitol 24 Ufl., EDTA disodium salt dihydrate 0.5 Nfl. ims SnCl2 144 lulfiinfu formulation A lias formulation B fl10-3H1U millipore filter VUW 0.22

Freeze dry

ECD ECD ui^fiflann (labeled) ffit) """TcO/ firiimni^mbsjjiai 7-8 mCi/mi flTuiu 2 ua 'n-ai'Hmfiilgnitjn^etu'HfiS'He-j 20 uivi S)ini4w?-3'ui^i9Eii-3 ""TC-ECD un

radiochemical purity 1. 1? TLC iwwK TLC Whatman KC 18F MOflWiadl-J 1 MUP1 (iJiSJUIfU 2.5 p.1) develop \\l 75% methanol m?9U#TUi1lH?lftmjimWU TLC radiochromatogram scanner 2. li ITLC-SG. lplt)l'KllN14 ITLC-SG. 2 UHU VtOPl^efJi^nai develop lli 20% NaCl ims 85% methanol MQvi'OSUCJfl """TcO^ ims WmTc-colloid Vile hydrolyzed-reduced

3 IB HPLC H column : (i-Bondapak C-18, mobile phase : 0-10 Win 0.0125 M phosphate buffer lias 10-30 \J1^ ethanol, detector : Nal(Tl), flow rate : 0.8 ml./min detector VS1 retention time 1)0-3 99mTc-ECD ims """TcO/

Radiochemical purity 'UQ-JarTSlJ'SsnoiJfrillflJlJ ECD ECD formulation A IIHS formulation B inwflfltnnfou ""TcO/ 15 mCi iJiuiRi 2 un. ^-jimnfiilgmm 20 radiochemical purity faint ITLC-SG/20% NaCl lias ITLC-SG/85% methano] (Ql^ 2)

m 99m •HitljQil^U^Q^fnillvilfieu 09 " TcO4" lias Tc-colloid nff) hydrolyzed-reduced Tc ("""Tc-HR) PliuaifTu liaiflitJiiUTnilJeil'Suw radiochemical purity flif) 411

m 99m % Radiochemical purity = 100 - % """TcOc" - " TcO4 - % Tc-HR

2 formulation VJ ^SQJMfjC 2-8 °C

Radiochemical purity lllmsOSemQflnai 5 IA

in vitro stability VQ4 "mTc-ECD

fmuthliflill ECD «Aflfnn««m TcO4" UPlQ^ITOtTOll radiochemical purity

2 ^-)«-)fn 3,10,20,60 uat: 300 uiri

V biodistribution 1)0-3 """Tc-ECD IWHU 141MWfl 140-180 nfulfltmA ""Tc-ECD

500 jlCi mi^iaSfiai^'HI-l 'H^flinfl^ 5 WYi, 20 W1^ llfiK 1 m

% injected dose

M L, L-ECD WU11fniJ"l1{Hfl1tJ3J L, L-ECD ^SfniUll?^SfniUll?1JV)1 B

L-cysteine

^ 1 "Immiblineil Acid I Vife L-thiazolidine-4-carboxylic acid UifJVlB mp.197-

199°C, yield 76-87% (17-39 flfu / batch )

'UVI^IQIJ^ 2 i&mibsnOU Acid II M1€ L, L-Ethylene dicysteine mp. 251-254°C, yield

38.8% (10.6-14.4 n«J /batch )

•UU^IQVI^ 3 Ifl L, L-ECD H70 L, L-ethyl cysteinate dimer lujlJiJB-a dihydrochloride, yield

22.4 % (3.89 niJJ) mp. 195-197°C (Ref. 197-198 °C)'

IR : 3100-2200cm' amine hydrochloride, 1735.8 cm' C=O VfH ethyl ester, 1551 cm'1 NH,

1227.7 cm'c-OC UQ-J -COOET

'H-NMR (ppm.) : -CH- 4.6 (s), COOCH2 4.35 (q), CH2-CH2 3.6 (s), CH2 S 3.2 (d), CH3

radiochemical purity iie-3 ""TC-ECD

ECD Wimlfl Tc-ECD JJ radiochemical purity fNUin PI

counts/fee 200 - Tc-99m ECD n

100 -

origin front ^- 1 0.0 1V 1 so.o 100.0 distance (mm)

2 Radiochromatogram 1)0-3 """Tc-EC" D Whatman TLC-KC18F/75% MeOH

Its Tc-99m ECD 1.0 " 1 0.8 -

0.6-

0.4 -

0.2- - n o 1 1 1 1 =+= 1 1 10 IS 20 25 30 Time (minj) 3 Radiochromatogram DfH """Tc-EC" D HPLC

Its Tc-99m ECD

1.0 "

0.8 " - Tc-99m pertechnetate I 0.6-

0.4 -

0.2- 0 D "I 1 1 1 ' t=— 1 1 \ 20 2S 30 Time (mini)

14 Radiochromatogram 1)0-3" " Tc-ECD HPLC 1)0-3 formulation A

(3 413

•mnvn 3 2 riimfHKjn0-ifliJ«neii«n-jffi sen radiochemical purity

1 Radio-chemical purity analysis 1)0-3 """Tc-ECD YUfl1tlJJ91fm'nitas:f1SU?hl592lJ ECD

1. TLC, KC18/75% MeOH -0.9 0.0-0.1 0.54-0.63 96% 2. ITLCSG/85% MeOH 0.9-1.0 0.0-0.1 0.9-1.0 98%

ITLCSG/20% NaCl 0.9-1.0 0.0-0.1 0.0-0.1

3. HPLC, retention time (min) 3.6 - 26 min 96%

* RCP : Radiochemical purity

radiochemical purity D9-3tf11llis;n€lJ^1l1flJll ECD formulation A llt\t formulation B YlWfmfnn^ltJ """TcO/ ifltniiYi 2 VIU11 radiochemical purity Ufntmibsneutniffl |ll ECD YU 2 formulation SfiifJ-afni 95% M^snfiWflflmn 20 vn^ Ifltm in vitro stability 1)0-3 """Tc-ECD ^l?i1fJUS)1fl formulation B fioi4i!l1^flS«n'in^lfl1t)JJSnn formulation A ^ 2 -3 2 formulation I^^OIMfjS 2-8 °C Vlllin formulation A flsltffh radiochemical purity a«f1-3lf 0t) °) imsfhfm 90 % ilieinijiQWIVIintJ 1 lllOU luDQls; Y\ formulation B 1T13J1I0inij1^nU0'3 5 lllOU l?lfJ^ radiochemical purity SfiiljJtlJafJl4Ulla-3

3

P1TS1-JT1 2 in vitro stability U94 """Tc-ECD

kit formulation A 74.9 92.3 97.5 97.2 97.1 96.7 kit formulation B 88.8 93.5 98.2 99.5 99.0 99.0 414

3 % Radiochemical purity U0-3 "mTc -ECD

Formulation A 98.6 97.4 97.1 55.3

Formulation B 98.8 98.7 98.2 99.4 98.3

"""TC-ECD Ivmu wim """TC-ECD 1 iJ fi tntn sen-a q

"" TC-ECD

.Prgafi/ftgsut

Blood 11.5 ± .80 6.32 ± .98 2.11 + .26

Brain 1.09 ± .30 0.80 ± .17 0.23 ± .04

Liver 22.61 ± 2.17 17.64 ± 1.70 12.39 ± 1.19

Spleen 0.29 ± .02 0.09 ± .30 0.04 ± .02

Muscle 26.99 ± 7.12 14.38 ± 1.89 6.40 ± .57

Lungs 1.24 ± .14 0.00 0.00

Heart 0.41 ± .05 0.00 0.00

Kidney 6.22 ± 1.03 19.19 ± 1.14 24.44 ± 2.92

Urine 1.22 ± .71 8.19 ± 4.90 15.11 ± 6.05

Stomach 1.07 ± .38 0.42 ± .10 1.06 ± 1.09

total GI 9.43 ± 1.39 15.57 ± 1.02 22.33 ± 2.69

Tail 1.82 ± .34 1.35 ± .19 3.05 ± 2.64

Skull 0.14 ± .30 0.09 ± 0.3 0.04 ± .01

Carcass 15.91 ± 1.43 15.96 ± 1.35 12.79+ 1.42

*n = 415

ECD

ECD tmihsnou ECD vwasii^SfmmjfffviSfiM ua 111 (ready-to-use kit) imnhui flfmtnflflnu Tc-99m U^il&lWiqhifl radiochemical purity fT-3 uin unsS /« v/rro stability « T«ocHiJiifn?iJisn0ui?iii9jiJ ECD ^in1uulu?n?as;fntj 0.025 M phosphate buffer flSlflusnilhsnQUfhli^YlijfjaiflTHW iMllJoii'VUW radiochemical purity ttt

""TC-ECD luviunuii ""TC-ECD Qii primate

(4.65 % ut\z 6.5% I.D. vi 5 uivi Ifio SPECT ?nuan«ii)5'7'8'"'12 n 416 E;=@

1. Kuhl DE, Barrio JR, Huang S. et al: Quantifying local cerebral blood flow by N- isopropyl-p-[123I] iodoamphetomine (IMP) tomograpgy. J nucl Med 1982,23 : 196-203. 2. Holman BL, Lee RGL, Hill Tc, et al : A Com parison of two cerebral blood flow tracer, N- Isopropyl- [I-123]-p-iodoamphetamine and 1-123 HIPDM . JNucl Med 1984,25 : 25-30. 3. Volkert WA, Hoftman TJ ,et al :99mTc-propylene amine oxime (99m Tc-PnAO) a potential brain radiopharmaceutical. Eur J Nucl Med 1984,9,511-516. 4. Sharp PF, Smith FW, Gemmell HG, et al :Technetium-99m HM-PAO stereoisomer a potential agents for imaging regional cerebral blood flow : human volunteer studies. J Nucl Med 1986, 27: 171-177. 5. E.H. Cheesman, M.A.Blanchette, et al: Technetium-99m complexes of ester derivatized diamine- dithiol ligand for imaging brain perfusion. J Nucl Med 1988, 29 ; 788. 6. Lever SZ, Burns LH, Kervitsky ,et al: Design, preparation and biodistribution of a technetium 99m triaminedithiol complex to assess regional cerebral blood flow. J Nucl Med 1985, 26 : 1287-1294. 7. S. Wallabhajosula, P. Strizke ,et al: Tc-99m ECD, A new brain agent; in vivo kinetics and biodistribution in normal human subjects. J Nucl Med 1989. 30 ; 599-604. 8. R.C. Walovitch.et al: Pharmacological characterization of 99m Tc-ECD in non-human primates as a new agent for brain perfusion imaging. J Nucl Med 1988, 29 ; 788. 9. P. Blondeau, C-Berse and D. gravel: Dimerization of an intermediate during the sodium in liquid ammonia reduction of L-thiazolidine-4-carboxylic acid. Canadian J of Chem 1976,45; 49-52. 10. Sarag Ratner nad H.T. Clarke : The action of Formaldehyde upon Cysteine, J Am Chem Soc 1937,59 ; 200-206. 11. Walvovitch RC, Franeeschi M, Picard M, et al: Metabolism of 99mTc-L,L-ethyl cysteinate dimer in healthy volunteers. Neuro pharmacology 1991, 30 ; 283-292.

12. Alberto Pupi, Antonio Castagnoli, et al.: Quantitative Comparison between 99mTc-HMPAO and 99mTc-ECD : measurement of arterial input and brain retention. Eur J Nucl. Med. 1994, 21 : 124- 130. TH9900038 TH9900038 417

153Sm-Hydroxyapatite lll'UfnflfllYIDivfhiifil Radiation Synovectomy

mmw u aruqnfi jiqjmaauw ^/i 'm nnu. 10900 5795230 fla 371 \mtn-): 5620127

Hydroxyapatite (HA) liWi1Y)lhinl#Wflflfnnmjfln5ftfl Sm-153 (T1/2 = 46.7 *JJ., p-energy = 810(20%), 710(50%), 640(30%) keV, y-energy = 103.2(29.8%) keV, range in tissue = 2.5 mm) imiluimiJisfiBDWfmmn 153Sm-HA Radiation Synovectomy Ifltm HA flSThwuiYUlIu beta-emitting paniculate carrier lJ5£«YISfnwlufn?WPmaifl (labeling efficiency) JJIflfrii 95%, pH ~ 4-6, llaOfllfeuns'lJaOfltni'WtJ (sterile and apyrogenic) SfiifniUfUWQnauenTi^fntJ (in vitro stability) 6 TU flifimi^nuimil'llMa (cumulative leakage) iflfjmiflfim^'rTlinJI (intra-articular injection into knee of normal rat) 2%ID M^flinnn 6 in

Optimization of Samarium-153 labeled Hydroxyapatite Particles as Therapeutic Agent for Radiaiton Synovectomy.

Ninnart Virawat, Angkanan Aungurarat, Sumrit Chingjit and Sudkanung Phumkem Isotope Production Division.Office of Atomic Energy for Peace.Vibhawadi rangsit .Chatuchak Bangkok.10900. Tel:5795230 ext.371 Fax:5620127 E-mail: [email protected]

ABSTRACT

Hydroxyapatite (HA) was studied as a particular carrier for beta-emitting

radionuclides in radiation synovectomy. Particles were labeled with Sm (T1/2 = 46.7 hrs., P-energy = 810(20%), 710(50%), 640(30%) keV, y-energy = 103.2(29.8%) keV, range in tissue = 2.5 mm). Labeling efficiency was greater than 95%, pH 4-6, sterile and pyrogen free, stability is 6 days and in vivo studies by intra-articular injection into knee of

153, normal rats showed the total cumulative leakage of Sm over 6 days was around 2%ID, The ease of preparation of Sm-HA, efficiency of labeling and low leakage from the 153 joint make Sm-HA attractive for radiation synovectomy. 418

1.INTRODUCTION

In severe case of chronic rheumatoid arthritis, surgical synovectomy can temporarily

cease the disease process and provide significant relief of symptoms but the techniques are very

difficult. If all of the inflamed synovium cannot be excised, regrowth of diseased synovium and

recurrence of symptoms will eventually occur.

Chemical synovectomy has achieved limited acceptance because some concerns

regarding systemic toxicity and local injury to articular cartilage.

Radiation synovectomy is alternative to surgical synovectomy. This procedure consists of

the intra-articular injection of the radionuclides in colloidal or particulate form and let beta particles destroy the inflamed synovium.(l)

Sm-153 has 1.95 days half-life, 0.8 MeV beta particle and 103.2 keV gamma ray which is

useful for imaging. Sm-153-Hydroxyapatite ( Sm-HA) was selected to be the therapeutic

radiopharmaceutical for radiation synovectomy. The procedure of radiation synovectomy is

simply injecting Sm-HA into the effected joint.

2. MATERIALS AND METHOD

2.1 Preparation of "3Sm-HA(2,3,4,5)

2.1.1 Preparation of Sm-Citrate

Varying quantity of citric acid monohydrate into SmCl3 (in normal saline)

in order to determine the appropriate quantity of citric acid monohydrate. Let the

compound stand in room temperature for 30 minutes. Final products were Sm-citrate solution

in various mole ratios.

2.1.2 Incubation of Sm-citrate with HA particles

Varying quantity of HA(particle size range 10-40 um) was mixed with 750 ul water

in order to determine optimal quantity of HA in labeling procedure, . Two hundred and fifty ul of

Sm-citrate solution was then added and the vial was gently rotated at room temperature for

about 30 minutes then solution was transferred into 15 ml centrifuge tube, rinsed the precipitate

with 4 ml saline solution , and was centrifuged at 1000 rpm for 8 minutes. Precipitate (labeled HA 419

particles) and supernatant (free Sm) were separated and the percentage of labeling was calculated. Finally 2 ml of normal saline was added into the precipitate and autoclaved at 121 C for 20 minutes.

Experimental varying specific activity of Sm by adding varying quantities of inactive Sm ( Sm) into a fixed quantity of SmCl3 before labeled with HA to determine optimal specific activity was performed.

Varying pH of Sm-HA was also performed. Using 40 mg HA, add H2O and 15 mCi of Sm - Citrate. And then adjust the pH. (pH range = 0 - 14). 2.1.3 Biodistribution studies in rats Joint leakage studies Evidences of joint leakage were studied in three groups (5 rats in each group) of Spraque Drawley rats at 1, 3 and 6 days periods after injection. Each rat was injected intra- articularly with 15 - 40 uCi of Sm-HA with volume of 0.15 ml. Rats were kept in metabolic cages and the total urine excreted was collected for each rat. At the end of time period for each group, rats were sacrificed and dissected. Samples from each organ were weighed and counted in MCA counter. The radioactivity uptake in organs were calculated.

Control studies Control studies were performed in the same way as the joint leakage studies but using Sm-citrate instead of Sm-HA. 2.1.4 Clinical trial Clinical trials were performed in 2 nuclear medicine centers as follows: - Departments of Radiology and Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University. - Rheumatic Disease Unit, Department of Medicine, Pramongkutklao Hospital 2.2 Baseline Clinical assessment Systemic and joint status were assessed for initial baseline records. Subjective clinical evaluation was assessed by interviewing all of the participating patients according to: - Visual analogue scale (VAS 1-100 mm) on the degree of pain in the joint (at rest and during activity) - Duration of morning stiffness (minutes) 420

- Function of capability of the injected joint in daily life. Objective clinical evaluation was then assessed according to: - Joint circumference (cm.) or degree of joint swelling - Joint tenderness score (range 0-3) Ritchie articular index for the assessment of joint tenderness in RA - Measurement of range of joint motion - Presence or absence of joint pain on motion and joint instability. 2.3 Scintigraphic assessment Three-phase bone imaging with 20 mCi Tc-MDP was performed 1-2 weeks before radiation synovectomy. 2.4 Injection procedure The injection was given in the nuclear medicine clinic. Aseptic technique and routine precautions were strictly followed in the handling and disposal of radioisotopes. Tip of 21 -gauge needle was placed into articular space. Articular fluid was removed as much as possible before the radiopharmaceutical injection. This procedure was also to ensure that the needle was correctly in place. Sm-HA was injected into the joint. A mixture of 2 % xylocaine and 10 mg of triamcinolone acetonide was then added into articular space to make total volume fit for a particular joint and also to flush the needle. The total minimum volume of solution injected was 5 ml for knee joint and 2 ml for ankle, elbow or wrist joint. The mixture of xylocaine and triamcinolone acetonide was also helpful to minimize transient local reaction and effusion after injection. The patients remained in non weight-bearing position for 4 hours after the procedure. Patients were then allowed to go home and advised to rest the injected joint on that day and could resume their normal activities on the following day.

2.5 Extra-articular activity analysis Anterior whole-body imaging was acquired immediately and 72 hours following injection using a single-headed gamma camera with a low-energy, all purpose parallel hole collimator with a 20% window centered at 103 keV for Sm. Extra-articular activity analysis was performed visually.

2.6 Intra-articular distribution analysis Anterior and lateral static images of the injected joint were performed immediately and 72 hours following injection. (SPECT images were acquired in some cases) 421

2.7 Follow-up

Clinical assessment was assessed and recorded by the same method as baseline assessment to evaluate clinical responses at 1, 3, 6, 9, 12, 24 and 36 months.

2.8 Interpretation

The results of systemic and joint statuses were evaluated on a simple scale as follows:

Excellent: Improved VAS in range of 80-100 mm

No pain on motion

Small or no palpable effusion

No joint tenderness

Either an improved or normal range of motion

Good: Improved VAS in range of 60-79 mm

Slight or intermittent pain

Small joint tenderness

Improved range of motion

Fair: Improved VAS in range of 20-59 mm

Reduction of pain but not abolished

Diminution of effusion but still in moderate volume

Moderate joint tenderness

Some improvement or maintenance of pretreatment range of motion

Poor: Improved VAS in range of 0-19 mm

No changes or worsening in pain severity, joint tenderness and range of

motion

Excellent and good were considered as success whereas fair and poor were considered as failure.

3. RESULTS

3.1 Effect of Citric acid quantity on labeling efficiency.

Table 1 : Effect of Citric acid quantity on labeling efficiency 422

Sm : Citric acid % labeling

1 : 0 99.86

1 : 2 99.74

1 : 6 98.48

1 : 10 91.98

1 : 100 76.71

1 : 400 46.40

1 : 800 23.13

1 : 2,000 7.90

Citric acid acted as anti - coagulant and ligand transfer, the higher quantity of

citric acid the less labeling efficiency, it competed with Sm to bind HA particles. In this

experiment used mole ratio of Sm : Citric acid =1:2.

3.2 Effect of HA quantity on labeling efficiency

Table 2 : Effect of HA quantity on labeling efficiency

mgHA 2.0 3.0 6.0 6.6 7.5 8.5 10.0 12.0 15.0 20.0 30.0 60.0 100.0 150.0

%labeling 79.8 84.0 84.6 84.8 88.1 89.9 90.0 90.9 91.2 99.2 99.4 99.7 99.8 99.8

Using fixed quantity of Sm labeled with various HA quantity from 2.0 to 150.0 mg, the

labeling efficiency was greater than 99% when HA quantity was greater than 20 mg. Forty mg of

HA is used in routine production to assure the high labeling efficiency.

3.3 Effect of pH on labeling efficiency

"• • -« • • 00 c

0 2 4 5 6 11 12 14 pH

Figure 1 : Effect of pH on labeling efficiency 423

At lower pH (pH < 4) the labeling efficiency decreased and some of HA particles were dissolved and at the higher pH (pH > 6) the labeling efficiency was also decreased.The labeling efficiency was greater than 98% while the pH is 4-6.

.153 3.4 Effect of Sm-specific activity on labeling efficiency

.153 Table 3 : Effect of Sm-specific activity on labeling efficiency

Specific activity 80 2.9 2.2 1.6 0.96 0.33

%Labeling 99.7 99.62 99.69 99.73 91.94 30.11

The lower the specific activity of Sm, the less the labeling efficiency was noted.But even low specific activity of Sm-153 as 1.6-2.9 mCi/mg the labeling efficiency was greater than 99% (usually produced Sm-153 at OAEP had high specific activity enough for labeling about 90mCi/mgSm)

153, 3.5 Stability of Sm-HA

100 • • • • • • •

50

0 12 3 4 5 6

Days

153,. Figure 2 : Stability of Sm - HA

153Sm-HA showed high stability in vitro in normal saline within 6 days. 424

3.6 Distribution of HA particle sizes

50 38.95 40 I 30 t 20 9.47 10 0

50 40 20 10 particle sizes(micron)

Figure 3 : Frequency (%) distribution of HA particles as a function of

particles size (micron)

Most of HA particles have particles sizes in the range of 10-40 urn (% yield >

90.00).

3.7 Biodistribution studies in rats

Table 4 : Percentage injected dose (%ID) of "3Sm-HA and "3Sm-citrate

in each group of normal rats

153Sm-HA Sm-citrate

Days post 1 3 6 1 3 6

injection

Knee joint %ID 8.54 19.55 3.85 26.70 43.05 24.43

cumulative 0.22 0.23 1.83 32.28 15.44 34.42

extra-leakage

%ID

153 The distribution of radioactivity of Sm-HA leaks from the joint to organs during 1, 3

153,. and 6 days post injection is low compared to Sm-citrate as shown in table 1. ©o© 425

153, Figure 4 : Distribution of Sm - HA in rats in 1, 3 and 6 days post injection (knee joint).

153. Figure 5 : Distribution of Sm - Citrate in rats in 1, 3 and 6 days post injection (knee joint).

4. DISCUSSION AND CONCLUSION

HA particles were easily labeled with Samarium-153 and gave the labeling efficiency greater than 95%. It followed the characteristic of the ideal particulate agent that it has high affinity binding to a relevant beta emitter.(2) HA particles could be prepared from common chemicals (3,5) and formed into particles of desired size range by spray drying instruments but the process was not so easy to control particle size. Commercially produced HA particles vary in size range 10-40 um(2,3,4,6,7) could be supplied from Ceramed or ICN company. 426

The primary disadvantage of radiation synovectomy procedure is the undesirable

radiation dose delivered to non target organ systems due to leakage of radioactive material from

the injected joint.(7)

In this experiment the biodistribution of Sm-HA in rats showed the activity leakage

from the injected joint was low (~2%ID cumulative) that meant the labeled Sm-HA remained

tight in vivo while control studies( Sm-citrate ) was so high (-30% ID cumulative) in 6 days

post injection. The activity leaked from the injected joint was mainly found in bone and liver.

It was noted that %ID of Sm-citrate retained at the injected joint seemed to be higher

than Sm-HA , this might be caused by the difficulty of intra-articular injection in rats(some

sedimentation and retention of some larger particles in the injection apparatus).

Radionuclides used for radiation synovectomy (1,3,6,8) should have beta emission with

sufficient energy for a maximum tissue penetration of 5-10 mm, short half-life, little or no gamma

emission, minimal gamma ray emission can be used to monitor leakage of radioactivity away from

joint.(9)

Radionuclides as Yttrium-90,Gold-198,Phosphorus-32 and Dysprosium-165(l,3,6,8)

were study for radiation synovectomy, those radionuclides had some advantage and disadvantage

of the properties mentioned above. This experiment used only Samarium-153 even it had

maximum range in tissue only 2.5 mm and therapeutic range 0.7 mm but particles were engulfed

by the synovial lining and distributed throughout the tissue where they retained and ultimately

degraded.(lO) This presumed that even a weak beta emitting radionuclide as Samarium-153 could

be effective in treatment of a large joint(3) and also Samarium-153 was usually produced by the

research reactor at Office of Atomic Energy for Peace (OAEP).

Radiolabeling of HA with Sm is simple to perform and provides good yield of labeled

153, particles. There are some factors that affect the properties of Sm-HA such as pH, specific

activity of Sm and quantity of HA. Lower or higher pH decrease percentage labeling of "Sm-

153,. HA while high quantity of HA increases percentage labeling. The Sm-HA showed high in vitro

stability in saline up to 6 days at pH 4 - 6.

Sm-HA showed lower leakage from joint upto 6 days compared to Sm - Citrate

The clinical trials were performed in Departments of Radiology and Medicine,

Faculty of Medicine, Siriraj Hospital, Mahidol University. The clinical assessments have 427 been followed and evaluated. The figure 6 and 7 showed the imaging of the patients entered into the study.

Figure 6 : Bone imaging of Tc - MDP before radiation synovectomy.

.153 Figure 7 : Imaging of Sm-HA in human immediate and 4 days post injection.

Product specifications are as follow. - Injected dose -15 mCi/2 ml. - The particle sizes range from 10-40 micron. - The pH is 4 - 6. - The percent labeling is greater than 95. - The product is steriled and pyrogen free. 428

6. REFERENCES

1. Davis MA and Chinol M. Chinol Radiopharmaceuticals for radiation synovectomy: evaluation

of two yttrium-90 paniculate agents. J Nucl Med. 1989;30:1040-55.

2. Clunie G, Lui D, Cullum I, Edwards JC and Ell PJ. Samarium-153-particulate hydroxyapatite

radiation synovectomy: biodistribution data for chronic knee synovytis. J Nucl Med

1995;36:51-7.

3. Chinol M, Vallabhajosula S, Goldsmith SJ, et al. Chemistry and biological behavior of

samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential

radiopharmaceuticals for radiation synovectomy. J Nucl Med 1993;34:1536-42.

4. Jin Xiaohai, et al. Preparation of Sm-citrate-HA for radiation synovectomy of rheumatoid

arthritis.Isotope department, China Institute of Atomic Energy

5. Hayek E, Newesely H and Rumpel ML. Pentacalcium-monohydroxy-orthophosphate. Inorg

Synt 1969;VII:63-5.

6. Shortkroff S, Sledge CB : Radiation Synovectomy. In : Wagner HN, Jr., Szabo Z,

Buchanan J (eds) ; Principles of Nuclear Medicine. 2 nd ed. Philadelphia ; W.B.

Saunders company, 1995, 1021 - 1028.

7. Deutsch E, Brodack JW, Deutsch KF. Radiation synovectomy revisited. Eur J Nucl Med

1993;20: 1113-27.

8. Sledge CB, et al.Synovectomy of the Rheumatoid Knee Using Intra-Articular Injection of

Dysprosium-165-Ferric Hydroxide Macroaggregates.J Bone Joint Surg 1987;69-A:970-975.

9. Noble J, Jones AG, Davies MA, Sledge CB, Kramer RI and Livni E. Leakage of radioactive

particle systems from a synovial Joint studied with a gamma camera. Its application to radiation

synovectomy. J Bone Joint Surg 1983;65,381-9.

10. Clunie G, Lui D, Cullum I, Ell PJ and Edwards JC. Clinical outcome after one year following

Samarium-153 particulate hydroxyapatite radiation synovectomy. Scand J Rheumatol

1996;25:360-6. (a) MMTBIUSUJBIUIBU<* C' siuiacurcrtu TH9900039 TH9900039 431

SKDI I

neiqiS ^cnmiqa2 inm YIO-IJJVIEJ3 uas ftaifam la irifilulat) uwnvitnmjiwj'lviij mnlwij 50200 f vnivmiatJTO^lvijj mulwij 50200 uvnivitnatJtT^iiaivifiiuvii' tt-auan 90110

fmuuiJ-3 imsfTJJTjwiwiIu'Iao ^ilisnoufiiifj fmuviuvnupiami^miie SKDii 1l^ 120 4xio17

(XRD)

Effect of Nitrogen Ion Implantation on Hardness and Tribology of SKDI 1 Tool Steel Surface

Saweat Intarasiri, Yu Liangdeng , Thiranan Sonkaew , Somchai Sangyunyongpipat, Gobwutt Rujijanagul, Vittaya Thongchuchuay and Thiraphat Vilaithong Institute for Science and Technology Research and Development, Chiang Mai University Department of Physics, Faculty of Science, Chiang Mai University Department of Physics, Faculty of Science, Prince of Songkla University

ABSTRACT

Hardness and tribology behaviour which consists of wear resistance and friction of the surface of SKDI 1 tool steel are influenced by the nitrogen ion implantation. By using molecular nitrogen ions at the energy of 120 keV to the dose of 4x10 N-ions/cm , the implantation can noticeably increase the hardness and reduce the wear rate of the steel surface. Ion-implantation- induced metal nitride detected by X-rays diffraction (XRD) is supposed to play a role in the improvement. 432

urnh

cK>38wfin5s;viij^0fiaifT3Jij^i5^na wu (U3)

o\4iJis;noupiQfjfmiJti^

i0O014Via-3-3TUll?t;)J1tU 50-100 keV l-5xlO17 ions/cm2 <45'6)

Yu imsfiois <7)

vixi 11101 SKS3 tuo? SCM440 SCM415

rm "os

Tnimf owgnmuof SKDI 1

/. •uinm^fuw'ipfutjfmn 30 mm mn 3 mm vivhsnmvmnnph

SKDii DUflfbuwmjvn-aifiS lUTfuTueni'UYi l) " '

heat treatment in I mi heat treatment lltTW'jl'UPnn^^ 2) 0.3 lumou 433

SKDII

Chemical Composition (°/0 c Si Mn Cr Mo V Ni Fe

1.5 0.3 0.4 12.0 1.0 0.4 0.5 balance

fl")1HYl 2 71flas;i0tJAfmYn heat treatment

Preheating Hardening Quenching Tempering

Temp. Time Temp. Time Media Temp. Time

(°O (min.) Co (min.) (oil or air) Co (h.)

850 5 1050 15 Oil 150 1 + 1

2.

l ehoth-j flinmsuiuni5i000UQywfni4ifl#u l# libuniu PROFILE implant

Science Corporation (8) imsllkunilJ TRIM YUWlilflO Ziegler

Biersack <9)

I900U 1M

3 UIJU ^0 UIll) Gaussian UUU Edgeworth Pearson

Pearson

3.

< vhi000uou'Wfn'ui(?i iai (N2-ions) 120 kev

(N-ions) vm-mvi 60 kev) rn'inii 4xio17 ions/cm2 IVtinil 60 [iA/ctn

1 fify nt) (ion source) (acceleration) 150 keV IS (focussing and analyzing magnet) M0 tlh (target chamber) flfo-3i000U0JJVIfnV!l9101lfl10-3U "W 434

"l#ui?s;ijufmfiiJ3JU"il# fnin

ou-q Iuisjn'ii'3fn7iniloo9uouwinuiwvu snn

io"6 ton- ioo°c Jl teu.

150 keV

y y 4.1

morphology) lliw?™m)U?rn™'WUWlfiu0*mul#Tflmfl10-a Image Microscope

Matsuzawa Seiki 435

(mark) (indenter) VlS i<\m ^tiJU S

4.3

llllll Pin-on-disk 1 disk) (fl9 pin) ^ (load) vumnsffu an

fffS 3.15 4.8 cm/s 565.5 m 10,000 101J)

COUNTER BALANCE PIVOT

LOAO

Pin-on-disk 436

4.4 fill 111 X-rays diffraction (XRD)

XRD MQi^menwTUHa

1* 1.54 A 30 keV fliSlltT 20 mA Tfia 30° QA 90°

0.05 JCPDS (15) oulmtr! a-Fe, FeN,

Cr, CrN

lilmniu PROFILE unsliJiiiniu TRIM (depth profile) ^ 3 uv\z 4 v

600-700 A°

(3)

TftRGET= SKD11 7.43G 9* Ion Dose/cw2 keU Ion Dose/cw2 Calc. Type Planari Pearson IU 66 N -14 4.B0el7 Peak Data 615A 4.99e22 37.l Sput. Loss Coef=.578 Iot.= 272fi Retn. Dose 3.78el7/c«2

3 depth profile SKDI i PROFILE 437

ION RANGES Ion Type = N ( 14 ami) Skewness = 565A Kurtosis = 70SA Ion Energy = 60 keV Ion Angle = 8 degrees TARGET LAVEFS Depth Density \ I 18x10 Stainles lun 8.868 W III iflxiO' 1 II ill UxiO fHomColors=N/N i

Ion CoMpleted= 1888( 99999) 10*10 Backscattered Ions = 36 i 1 1 Transmitted Ions = 1 8x10 Range Straggle s O Longitudina1= 672A 288A SI Lateral = 272A 137A w l.ill Radial = 429A 218A i 4x10^ •lac./Ion = 414.6 o HI 4 iNERGY LOSSC/) IONS RECOILS h 2x10 lonization => 56.82 8.71 If'acancies ==> 8.28 1.19 t honons > 8.98 32.89 •H i- Depth -> 1S8BA 1~\}Y\ 4 depth profile SKDI I TRIM

2.

YIWNTU

(defect) muuu

Ti mann^nuei SKDH ^

io18 n-3 io19 ions/cm2 fli

(16) l«mn?O-1 Image Microscope

3.

^ 6 eiinlinmu

(indentor) 438

(n)

(u) 439

, Intarasiri ( V X5CrNii8.io 120 kev 200

50 miii

y\n 1 gf

1.7 mi

1000 r I 1 111(11 1 r 1 1

900

800

"

700

600

500 i unimplanted

400 J I I I I 1 1 1 _J I I 111 I I 10 100

Log (Load)

JYl 6 (hardness) (load) fllsn-3 440

4.

4.1 (wear resistance)

i 3

ath-a

sKlfJf)?lfni^f1'H19

1.6 im

3 fmunin^iu9^i9t)^nufi^9finfni^n'Hi9 fl'^ 565.5

finurm-m«9tmn (lunioij) 0«?1fni^nV1?0 (xlO7 mm3/mm)

V 1jjl«p1^PI'3fji009U hj1#ffa#itilo00'u ^•3fllQtji999l4

Ball Sample Ball Sample Ball Sample Ball Sample

519 437 600 374 - 2.21 - 1.38

4.2 flTmtlfl (friction)

i in 100 IJJPII m?'vii1ul?iii oiji999'U0uv

I ^1 (lg) *^ 2 JllUDU 09 abrasive wear llftZ adhesive wear fmiflPI abrasive wear Unfit)

EtlUUUl) adhesive wear 15TfiSu5W"l'Ufm'!5VlfT 441

trail)

(n)

100.00 442

adhesive wear

abrasive wear

l.BB

8.88 -

8.68

8.48

8.20 -

iDISTftNCE (Meters)]

Ylfh sliding distance fii-3

5. X-rays Diffraction

XRD peak

Otj 3 peaks ^9 Yi 29 = 45.9° (d = 1.975 A°) Y\ 29 = 63.5° (d =

1.464 A°) lins;^ 29 = 84.75° (d = 1.143 °) 1f3 JCDPS VIU

iitilu peak 1J03 y-Fe4N, CrN ims y-Fe4N

(19) m annpT iinf)i)i 443

U 1% xn (jf

I 2

vV^ WJW^N

unimplanted sample

I I I I I 30.0 40.0 50.0 60.0 70.0 60.0 80.0 26

XRD

ym-a-nu 120 keV ?\ivl

i SKDII ibsuiw 1.6-1.7 ivin

(XRD)

SKDI 1 uaslawsiu'taifehfm'n 8 SKDI 1 444

(trm.) ^itfYmfYmjfli^iimejiniAtJflciefi ufisuQUQUfjai fifuilnu

(1) G. Dearnaley, in : Practical Applications of Ion Implantation, Ion Implantation Metallurgy,

eds., CM. Preece and J.K. Hirvonen, Conference Proceedings, The Metallurgical Society of

AIME, 1980, p.2-20.

(2) J.K. Hirvonen and C.R. Clayton, in : Applications of Ion Implantation for Materials

Modification, Surface Modification and Alloying by Laser, Ion and Electron Beams, eds., J.M.

Poate, G. Foti and D.C. Jacobson, Plenum Press, New York, 1983, p.422-505.

(3) S.T. Picraux, Physics Today, November 1984, p.38-42.

(4) G.K. Hubler and F.A. Smidt, Nuclear Instruments and Methods in Physics Research B 7/8

(1985) 151-157.

(5) R. Wei, P.J. Wibur, O. Ozturk and D.L. Williumson, Nuclear Instruments and Methods in

Physics Research B 59/60 (1991) 731-738.

(6) A.S. Denholm and A.B. Wittkower, Nuclear Instruments and Methods in Physics Research B

6(1985)88-95.

(7) L.D. Yu, T. Vilaithong, D. Suwannakachorn, S. Intarasiri and S. Thongtem, Nuclear

Instruments and Methods in Physics Research B 127/128 (1997) 954-960.

(8) Instruction Manual, Profile Code Software, Implant Science Corporation, Massachusetts,

1995.

(9) J.F. Ziegler and J.P. Biersack, TRIM - The Stopping and Range of Ions in Solid, Pergamon

Press, New York, 1985.

(10) S.N. Bunker and A.J. Armini, Nuclear Instruments and Methods in Physics Research B 39

(1989)7-10.

(11) T. Vilaithong, N. Chirapatpimol, S. Wiboolsake, V. Teeyasoontranont, S. Singkarat, W.

Pairsuwan, D. Suwannakachorn, D. Boonyawan, B. Yodsombati, L.D. Yu, S. Intarasiri, S. 445

Dumronggittigule and V. Tayati, Project Final Report on Overall Completion* of the Project of Heavy Ion Implantation in Metals and Alloys, submitted to the Science and Technology Development Board and the National Science and Technology Development Agency, 1996. (12) Instruction Manual, Microhardness Tester, Matsuzawa Seiki Co., Ltd., Tokyo, Japan (13) ASTM Standard, Standard Test Method for Wear Testing With a Pin-on-disk Apparatus, Designation : G99-90. (14) B.D. Callity, Elements ofX-Rays Diffraction, Addison-Wesley, 1978. (15) JCPDS Standard, Joint Committee on Powder Diffraction Standards, Designation : 1976 (16) T. Vilaithong, S. Davydov, L.D. Yu, B. Yotsombati, M.W. Rhodes, S. Intarasiri, V. A-no, S. Thongtem, G. Rujijanakul and T. Sonkaew, Charged Particles Beams Application on Ion Implantation Modification of Industrial Materials, to be publish in Journal of Nuclear Society of Thailand.

(17) S. Intarasiri, L.D. Yu, T. Chudoba, H. Reuther, U. Rammelt and E. Richter, Surface and Coatings Technology 99 (1998) 305-310. (18) D.A. Rigney, Fundamentals of Friction and Wear of Materials, American Society for Metals, Metals Park, Ohio, 1981.

(19) G. Dearnaley, Nuclear Instruments and Methods in Physics Research B 50 (1990) 358-367. TH9900040 446 TH9900040

WUINVEJ fiawu^ cu mniai Maztrnvn

5614080 iwSflTVi 5620118 email : [email protected]

4 ITUA Ifiuri

NE426 im^fjiniuTQ'uwfi BE-IO

fiiii njnvi'Hftufmd'ifjnTw

NE426

imsinn BE-IO Sll^^

Neutron Radiography by 4 Types of Neutron Converter Screen

Wichian Ratanatongchai Sasiphan Na Songkhla and Somporn Chongkum

Physics Division, Office of Atomic Energy for Peace Tel. 5614080 Fax : 5620118 email: [email protected]

ABSTRACT

Neutron beam from Nuclear Research Reactor.TRR-1/Ml, Office of Atomic Energy for

Peace, was utilized in the study of neutron radiography using 4 types of neutron converter screen

namely gadolinium foil, dysprosium foil, NE426 scintillator screen and boron screen BE-10. The

comparison upon image sharpness, image contrast, exposure time and practicality of the neutron

converter screen was also done. The result shows that gadolinium foil gives the sharpest image,

dysprosium foil is suitable for high gamma radiation environemnt, NE426 gives high contrast

image and BE-10 was the most practical screen. 447

o o flTWI

SnisuTumiditJfiiyi unuui

(Neutron converter screen)

UflJJJJI

(Sensitivity Indicator, SI)

(Gd) (Dy) mnifg-jutr-j NE426 un^-nin BE-IO

2.

1.1 Sensitivity Indicator 448

SICTION A-A

1> y XT

Dw*t Covtr 0*3mm Al

Jvi 1.2 nuasiatJflilO^ Sensitivity Indicator

flinnJ?yi4'UQ^i0i4 vlauij'u^nfnvi ntnTumifii£jn"m

In^n SR 20 UTM «nn NE426 Inflfi SR 2 vn^

«1fl BE-10 In^in CN85 20 \4TM

Inm AA 20 U1^

(Transfer method)

15-20

Sensitivity Indicator (SI) ^difJF11EJ'Ulfl10l4

2-1 2-4

Sensitivity Indicator 449

2-1 «in Gd vlmj SR

2-3 flifl NE426 vlflU SR 2-4 Win BE-10 vlmj CN85

2 flTW Sensitivity Indicator

^ 2 D1U1flme4?1tJasi0UflYm4inn1#U

.wiNhn.ihnm.

Gd SR 0.051 mm NE426 SR 0.076 mm BE-10 CN85 0.051 mm Dy AA 0.051 mm

Sensitivity Indicator 450 0=2

l&nn NE426 Kodak SR

\-\\Y\ 4 BE-10 Kodak CN85

Dy Kodak AA 451

Gd Kodak SR

4 IB wim "l&iri

3 iiJitmmuiJfjfumjiinufumfiuf) midmfiTWfiitjmj

miiiifnu (tnn/flau) diun-m*

o NE246/SR 2 UTM u

Dy/AA 30 U1^** liiS

o BE-10/CN 30 U1Y1 iiiS

Gd/SR 30 141VJ 5 30 uivi ** 15-20

1. Domanas, J.C., ed. Practical Neutron Radiography. Dordrecht, Netherlands : KJuwer Academic Publishers, 1992. ~~~ 1 _ Hill 11II IIIIIII 452 n TH9900041 fr® TH9900041

n\

fitusnninfntffli' uwnvitnmjnfmlwiJ q. IIJD^ITIOJ 50202 E-mail: kate@ chiangmai. ac. th. inSiTrJ: (053) 222268 Iniflfom : (053) 943345

u (vi) fjnflPia^i'uni^imi/Q'jI'BmyjJiPi^is-ijejsfi (pH 8) ua 340 nm nas;fm3Jtjnfiau

250 nm imsfniutjnfiaii

5-50

Flow Injection Determination of Uranium by Fluorimetry

Kate Grudpan and Sasipron Kunapongkiti

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50202

E-mail : [email protected] Fax : (053)222268 Tel : (053)943345

ABSTRACT

A flow injection analysis (FIA) system for determination of uranium by fluorimetry has been investigated. FIA systems of both single and double lines were developed. In the single line manifold, an U(VI) standard was injected into a stream of sodium tetraborate pH 8 which was continuously monitored at an excitation wavelength of 340 nm and an emission wavelength of

495 nm. In the double line system, an U(VI) solution was injected into a merged stream of dipotassium hydrogen phosphate-phosphoric acid buffer of pH 3 and aqueous sodium hydroxide. The stream was then continuously monitored at an excitation wavelength of 250 nm

and an emission wavelength of 515 nm. Calibration graphs of both systems were established in

the range of 5-50 mg/1. 453

1. U1TM1

flow injection analysis (FIA)

(1-5) FIA spectrophotometry

FIA Fluorimetry.

2. ifrq

2.1 Single line manifold FIA

t 1$ flow system Ylllisneil / 2.2 Double line manifold FIA Vi flow system ^lJiSfiQU /

3.

lJJ0i# single line manifold fn3J11t1fffi'3 calibration curve double line manifold Ifl calibration curve fl-nil 4

4.

FIA fluorimetry

5.

1. Grudpan, K., Sooksamiti, P., Laiwraungrath, S.," Determination of Uranium in Tin Tailings Using 4-(2-Pyridylazo) resorcinol by Flow Injection Analysis". Anal. Chem. Ada. 1995; 314: 51-55. 2. Grudpan, K., Laiwraungrath, S., and Sooksamiti, P., " Flow Injection Spectrophotometric Determination of Uranium with In-Valve Ion-Exchange Column Preconcentration and Separation ". Analyst, 1995; 120 (8) : 2107-2110. 454

3. Grudpan, K., Jakmunee, J., Vaneesorn, Y., Watanesk, S., Aye Maung U.,

Sooksamiti, P., Flow injection spectrophotometric determination of calcium

using murexide as a color agent, Talanta,, 1998; 46; 1245. 4. Grudpan K., Jakmunee J., Sooksamiti, P., Flow injection in-valve solid phase extraction spectrophotometric determination of uranium in geological samples, Lab. Robotics and Automation, 1998 ; 10 ; 25. 5. Grudpan, K., Jakmunee, J., Sooksamiti, P., Spectrophotometric determination of uranium by flow injection analysis using U/TEVA. SPEC chromatographic resin. J. Radioanal. Nucl. Chem., 1998 ; 229 ; 179

REC

NaRO D w I MC

I'd 1 Single line FIA manifold tfi

P = pump , S = sample , I = injection valve , REC = recorder , W= waste

MC= mixing coil D= fluorimeter (A,ex = 340 nm, Aem = 515 nm)

REC

K^HPCy

H3PO4 D

NaOH MC

id 2 Two line manifold FIA 455

O.BG

i

3 Calibration curve IJQMm'UCJJJmQ'Kf single line FIA manifold

0.15

40 BO 60 U fry/ft

111 4 calibration curve double line FIA manifold TH9900042 456 TH9900042

1v)5. 5795230 JIB 145

frmjau-14

Permafluor v iins Ready Gel 3finu?niJiiflg«5mcin? Permafluor V

The Effect of Cocktail on Radiocarbon Analysis by Direct Absorption

of Carbon dioxide

Nawarat Wattanapan

Chemistry Division. Office of Atomic Energy for Peace. Chatuchak. Bangkok 10900

Tel. 5795230 Ext. 145

ABSTRACT

Carbon-14 was analysed by direct absorption of carbon dioxide on the mixture of organic amine compound and scintillation cocktail then counted by low level liquid scintillation counter. This method can be applied for radiocarbon dating. In this study, the effects of carbon dioxide absorption, and counting efficiency were investigated using various commercial available cocktail. It was found that permafluor V and Ready Gel showed the highest carbon dioxide absorption whereas the Permafluor V showed the highest counting efficiency. 457

l.

( low level liquid scintillation! counter ) Acelerator mass spectrometry (AMS)

-14 •viSiJ?JJ1WU9E)

fnlifsnfm-3

1989 Quereshi

(scintillation cocktail )

Nair, A.R. (1995) l?i'

< Hfis;fn?nTH'U(p)fii9iejI^fjii^ l9fniii9'u -14

•wSiJfintu Iii

v 458

2. ifm eiJniCM

line line

(Hydrochloric Acid) n?flcifa'*j?fl (Sulphuric) ( Silver Nitrate ) a'W ( Potassium Iodide ) 1ala«T4( Iodine) IJ^iflTflimil ( Potassium Dichromate ) ( Carbosorb ) Ready Safe) (Ready Gel) (Hisafe) Ina (ultima Gold) (Zinsser) (Permafluor) ^^i ( Liquid Scintillation , 1220 Quantutus )

2.

3. 459

1.

(Standard ANU Surcose ) 1"U Parr Bomb U#l iJaofj mnTtffmimu leiaan lira mawiunuflnpm ^ maun mm«KfmiJ0'u laaan ltK«

ni5asm8TiJmTs<5tJiJvtaTfnmivi

250

iiJ

2.

(Cocktail) V n (Carbosorb) nil

hum 6 ifu I2i

Ready Gel , Ready Safe , Hisafe , Zinsser ims Ultima Gold

Permafluor lafjl^WttJJSsnJJPflliNiYJJnja^ Eichinger et al. (1998 )

Carbosorb niJ Scintillant 20 fl?JJ

Cocktail

1« OiniTu'U1iY1UWinJD0-3 Cocktail Bubbler

ill Bubbler 1il«8nij line \\ 2 vi

Bladder 1"U

Cocktail 460

NTU Cocktail luffaiimib^JJIfU 60 CAHA?I5 fl0 1JTY1 CWBITI Cocktail m?iJ9u1fl00n'tafliM0lJ»n ibsmtU 30 14TV1 ill Cocktail ^f Bubbler lJ^ ti flg III

3.

^T ( Low Level Liquid Scintillation Counter) luiSUUflinfl C-14 llnfni^mil^ 1000 HTM iflfJIIlHIll'U 20 791J 59UHS 50 HTM

3. an%J

3.1 wmnisflnuigflinrhufimm^mjiumii'Ufmwmj Carbosorb nu Scimiilant

Cocktail 14H!^9'Mflt'V1?TU'iT Scintillant Carbosorb "lm ^Q^npf'jum'ili 1i4»fia-j«un0t4'M'Oj;wntJii]!)S'o9\4 n ^0l1iJ 1 Vlllli Ready Gel , Ready Safe , Zinsser HAS Permafluor Carbosorb '\m ll« Hisafe UA^ Ultima Gold 1u'inuiSf)Hmjl#'I

(Quenching)

3.2 WADTi^n'yifniutnuiTtiiiinTjg^'Kjjm'Kfnf ugulfiaon'W^'u©^ Cocktail

Cocktail y'lflli Cocktail 0UOT«1Ofn51J9nl\pl00n1w imi^14TH'UfTMmJJ1)\4nJ0^ Cocktail Cocktail Ylimpfal4H?TyiJ0^ Ready Gel uat; Permafluor V 1

3.3 Cocktail

50° C atUHn Cocktail

Cocktail fl

mtli Bubbler 'M9fU'HfjJ9fUHfjJJ 10°, 20°, 30°c gtuHni Cocktail

3.4

Cocktail flu 2 Yn-3ijn?)9!UifiiiisiJijm9ififji'HfncBl«niJWtTniJ Cocktail 60 {jaaSeii ^'9

Cocktail Cocktail ll?U1tU 10, 15 UV\Z 20 wami'vupifig^niJfi 3 Cocktail vhrnHncniu'im 10 Cocktail fijwvi ' 15 infi

3.5 Cocktail

Cocktail Carbosorb HflS Scintillant 1:1 Cocktail Cocktail anfif-3

Cocktail 4 Hin'i Permafluor Figure of Merit u Ready Gel JY1\4 Ready Safe imt Zinsser Hfil W 462

Carbosorb nil Scintillant

Cocktail C : S

( Scintillant) 1 : 1 2 : 1 1 : 2

Ready Gel

Ready Safe flnjasaioicY rmasmaiar

Hisafe trna~cntniiu

Ultima Gold tmasmaiju

Zinsser tniasjnaifT

Permafluor V smasmaiiY (mat^ifjicT

C : S = Carbosorb : Scintillant

2.

Cocktail CO., absorbed ( mmol)/ Carbosorb (gm)

( Scintillant) C : S = 1:1 C : S = 1 : 4 C : S = 4 : 1

Ready Gel 8.0205 7.8295 7.1545

Ready Safe 7.2307 7.1829 7.0618

Zinsser 7.3763 7.0756 6.8045 Permafluor V 8.1818 7.8522 7.4568 463

3.

Temperature ( C) CO2 absorbed (mmol/gm of Cocktail)

10 4.3162 ± 0.0411

20 4.1589 ± 0.0437

30 4.0095 ± 0.0687

H Cocktail Carbosorb ims Permafluor 1u0?mflbl4 1:1

4. Cocktail

Cocktail Counting Efficiency Figure of Merit

( Scintillant) ( % ) ( FM) Read Safe 11.53 21

Ready Gel 34.66 341 Zinsser 16.36 92 Permafluor 35.40 335

Carbosorb : Scintillant = 1:1 window 100-440

4.

1. Permafluor l\\\l Scintillant 'M^?J«l\JfntN Carbosorb mei&ll'U Cocktail

2. 0fl11tni4YimU1SIT}JYiqA"l\JfmHmj Cocktail Carbosorb HfU Scintillant fl0!)Vmflbl4 1:1 3. 464

4. nm^l#luni^fl5]jm^m5ii9'ulta99filW fmi'tfnfnibsiJifu 10-15 V 5. fill Tfli-iff fHifl-3 Window Irfadiuih^ 100-440

^T filial? Ttm j

14uf-3a

5.

y cKeucti\j

fituiiiitua

6.

Gupta, S.K. and Polach, H. Radiocarbon Dating Practice at ANU. Handbook, ANU,

Canberra, Australia, 1985

Leaney, F.W., Herc/cy, A.L. and Dighton, J.C., Quaternary Geochronology ( Quaternary

Science Reviews). Vol. 13,1994 PP 171-178

Nair, A.R., Sinha, U.K., Joseph, T.B. and Rao, S.M. Nucl. Gcophys., Vol. 9, No. 3, 1995,

PP 263-268

Qureshi, R.M., Aravena, R., Frit/, P. and Drimmie, R. , Appl . Geochem., 4, 1989, PP 625-633

Qureshi, R.M.. Fritg, P. and Drimmie, R.J., Appl. Radiat. I sot.. Vol. 36, No. 2, 1985

PP 165-170 Silver nitrate dry ice/olcohol dry ice/olcohol lig Hj ligN3 ligN2 Solution Sample -V

moisture trap carbon dioxide trap CO2tank

l. Line lo vocuuni

lo COy Circulation pump 1 Vacuum Flow i gauyc regulator T (C) U To vucuurn CO 2 sub sampled for C analysis C'P 0 6g

C/P trup H2O trup (0) (A)

tin n

Bubbler Jacket

u V /

Cold water

TlJ'M 2. Line if 467

s i o

O o

15 20 25 30 35 Absorption Time ( min )

Cocktail TH9900043 468 TH 9900043

fl«j?fn rmu. 10900 I'm. 5795230 m 321 Ivnrm 5620118 e-mail: [email protected]

M 2 IE f)9

1.

2.

(Neutron Activation Analysis, NAA) Uc

(Inductive Coupled Plasma-Atomic Emission Spectroscopy) Parameters Effect on the Solvent Extraction of Zirconium

Chastbongkoch Srinyawach

Chemistry Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

ABSTRACT

Parameters effect on the solvent extraction of Zirconium were studied under two

methods as followed

1. TBP - Nitric acid process 2. Hexonc - Thiocyanate process

It was found that concentration of tri-n-butyl phosphate, acidity in tri-n-butyl phosphate,

nitric acid concentration and sodium nitrate effected on the extraction of Zirconium by the first

method and the second method was favoured by low acidity but high thiocyanate concentration

and the feed concentration was also effective on the extraction of Zirconium by this method.

Neutron Activation Analysis (NAA) Technique and ICP -AES Technique (Inductive Coupled

Plasma - Atomic Emission Spectroscopy) were applied for the quantitative determination of

Zirconium. [Jog 4 69

l. mm

(Zircon)

(ZrSiO4)

(Zirconia) (ZrO2)

nru

no-aifiS

( Solvent Extraction Technique )

( Aqueose phase M78 inorganic phase ) ua

2 ICUft (tri-n-butyl phosphate,

TBP) i3vjttniiiifisf

(methyl iso-butyl ketone, MIBK)

TBP

O O i C4H9 O-P-OC4H, Vila BuO-P-OBu

O C4H9 OBu 470

m9fT1 uasunihifhfmH'mfniai-3'bi

(cci4) vjgiwagamu (n-alkane) (n-dodecane) flUO^lPl^n IPIlfili (tetradecane) imSIJg-JWfTU^IpilfliflfninaUBitimu (alkane) 1TO Ifiii^y (kerosene) ^H1UfniVJ;m^^l90lJlJVnn9I?U1«n (aromatic) (olefin) ggflliai tnilB9Sn-5f?TH11J TBP ^Ct)uKuif1fl9 kerosene (chlorocarbon) efouYnn alkane

TBP

+ (mononuclear complex) iflllH M(NO3) M(NO3)2

M(NO,)P ^S^fnm&J'U'U'lJO^I'UlflieH'WJJT i' r

TBP mnmi imsijifmwijTuiil M(NO3)P. q TBP

in «- ^v ft .-* «- (MIBK)

MIBK ^S Googin

1956(5)

separation factor IJO-Jfmuune^luib-J 20 P^ 80

0.25 l 471

j (feed) 1#fu 1.5 lucn? 4 ivh1fi U?i separation factor 'OSflflfmin 80 illvi 5 V MIBK (3 m9wH?ii

Uifl (Sfh neutron absorption cross-section, CTc = 105 barns)

CJc = 0.18 barns

(100 ppm)

2.1 ^dnid

2.1.1 ififg-JilgnifuiliJJifUQflfj-i/iliuiJi-j l (IIIJQ-I/I)

2.1.2 lflf9-3UEJniViym«1l4 (Multichannel Analyser) ND62 2.1.3 WITA Hyper pure Germanium

- Model GC 3018 Serial Number 9912823 diameter 55.5 mm. Length 56 mm. Distance from window 5 mm. - Model GR 2018 Serial Number 8922548 diameter 51.5 mm. Length 42.5 mm. distance from window 5 mm. 2.1.4 ICP-AES (Inductively Coupled Plasma- Atomic Emission

Spectrophotometer) ill Plasma 1000 (Perkin Elmer)

2.2 mSflfUTI

2.2.1 Iwiuuiuwnfl (NaNO})

2.2.21eii*J9i3jfl{byifiyl9mylfl (CH3 (CH2)J)3PO4

2.2.3 nifliunin (HNO3) V 2.2.4 ihjJUfTIA (Kerosene)

2.2.5 IJJYia 19 l^lJTncifHflU (MIBK) 2.2.6 fl?mn?10 (HC1)

2.2.7 U9DiDfU{Ju"tai0'ta{nmei (NH.SCN)

2.2.8 fnAifiiglfmlfian (HSCH3COOH)

2.2.9 l

3.

3.1 3.1.1

l. IOO mu Fhtjunnrnj ?oo

60%(v/v) 5% ili'iiiJiin^il'Hiil'u 1,000 {jaHHeii phoniATufnin 5%

fflfJU SlJiiJifU^QiifimfJU 25.420 2. ?ii^^iiciscnoi(:B9i]fimEJu1

10.612

3.1.2 ^TOie'nS'WaU9-39Vmebll'U93 TBP : kerosene 1. iltiJ^pniciscnfji^gilfimfJui^i^i^^SiliwnujraeilfimfJU 10.612

3.5 2. lltlJ(n^lTV11cnfJ TBP : kerosene oVmrbu 10% 20% 40% 60% 80% tmsioo%(v/v) ioCaHa?ii Itffi^iijnnfjufjn 6 In

5 IJTVI -n^iriuEjnw 3. imru9~miicis:cnu TBP

3.1.3 l. TltiJ?ifnicis;cnEJicB9i]fimtJu1u^i^i^fiiJ?jjimii:B0i1fifUEJu 10.612 JJI 5 CaHB^i iffiunntJUEjn 4 In tiuinia

10 lucni 5,4,3 ims 1 SCIHSPII Itta^iijnnfjufjn 4 In i 0, 1, 2 ims 4 CuSS^ii a-jlufUQouon 4 lu

2. TJm?ittiias;mo TBP : kerosene 60% (v/v) 10 unan?i? m n^ 4 In wthnJunai 5 473

3.

V V y 4. YhrniYifiae^-niei'fo) 1-3 grmfo ih1iJfi"mi£uvnfhmjibsflYii

3.1.4

l. iltiJ^tnT?i^j:nfJt<;K9?lfimt)ii1'ui?ii9TMSiJ?uimtcB0i]fii'Ufj3j 10.612

6.5 £mSH(?n

inmvu 3.5

3 flaaasni im^iinns'u 0.5 CmHasni

2. lhlJem"l1Yi"ms?ntJ TBP : kerosene 60% (WV) 10 iiufnpi1i4Sp)in 5 luciii 10 CfiHS^5 fudiiil'unfn 5 V V fj 10 DsfiSfi? 1?f

3. lltll

10

4. njmniifjufjnii^ffg^mwnfn 5 UIY\

5.

3.1.5 l. t)til«;itnifis;fnfji':K9i]f)i'dfju1utf)iFi'MCiJ?jjituicK9iIfimfjjj 25.420 Ifffi-31'unnfjufjn 7 1u n

I'UU'UVI 3

2. iliiJfim^fi^cnoI^tiuiumif) 9 lucni o, l.i, 2.2, 3.3, 3.8, 4.4

5, 3.9, 2.8, 1.7, 1.2, 0.6 uas o DaHSfii a^lwni'jtiutifi'n^ 7 474

3. ThllarmvhasaiU TBP : kerosene 60% (V/V) YHaun?alua?n 4 io Sanna? a^liifmouejn 7 111 anuaimj tuehiilunai 5

invi

4.

5. vhmiYiflfig^'ij'e 1-4

3.2 3.2.1

3.2.2 ffntnoyisna'noa'minflu'flgiIfiiutflj^iffliJ yi

10 niu/nwi un 5,4,3,2, l ims 0.8 l nfjj/Swi ui 4 ims 2 {mHBei? ifTa^iunnouyn'U'uiPi 100 9.6608 lucni iJ?untu 0.2,0.4,0.5,0.7,0.9, l.o ims 0.9 ims; l.o fiiuai^u liuijnnavj 0.3, l.i, 2.0, 2.8, 3.6,3.7 ims 0.6, 2.5 Saaapii a-aiiJfnuaifi'iJi'w^nu injtinl'Hmnu^ v ]li13vlJl l flfiSS^i m 8 nnwuon (MIBK) dim™ 10 waaa^ii ttluncn 10

7 luaii ui l, 2, 3, V V 5,10 ims 20 SaBBfii Itrlufinmiun iviii MIBK ti-aiiJ 10 Sanaa? Tufmtmunvh 6 V V V V

10 invi ^"n-aiviutjnfv! •uii0i*uo"ut4Yi?olilim?is'HvniJfuitu NH4SCN 3.2.3 MIBK 2.5 nfu/aei? uas 0.25 nfu/aa? ui 5 SaSapii Iffli4n?itjutjn 5 lu iajjn?filsr1fi?fiao?n

'UJJ'UII l Caaaa? uasmuimjjlumejuiBioi^tnm?) o, 0.5, l, 2 uas 3 5 anuaiwiij iwufi?fi1s

Sanaa? iau MIBK ^Sttguiut'uouiBlgi^tnmaSjj^gti 0.6 lum? n^lil 10 Sanaa? 475

\\if\nuuur\m 5 mi ii 10 \I~\Y\

3.2.4

MIBK 2.5 nfu/Hen

0.25 in 5 Ifflunnmiun 5 lu

0.5 C l o, 0.25,

0.5, 1.0 ims 2.0 l 10 CnSStnS ? iwu MIBK

0.6 lutm 10 ^

4.

4.1

4.1.1 TBP : kerosene

TBP : kerosene

TUQ'U'UYlio #U 9 M V110

TBP : kerosene (g/D (g/D

% (V/V) (D)

10 6.291 0.607 0.0965

20 5.888 1.010 0.1715

40 5.507 1.391 0.2526

60 4.051 2.847 0.7028

80 4.026 2.872 0.7134

100 3.126 3.770 1.206

6.898 nfu/Bai 476

TBP

KZr a [TBP]"

n KZ = C [TBP] logK = n log [TBP] + log C me K C fl0

% TBP TBP (M) Log [TBP] K logK

10 0.366 -0.437 0.0965 -1.02

20 0.732 -0.135 0.1715 -0.7675

40 1.46 0.164 0.2526 -0.5976

60 2.19 0.340 0.7028 -0.1532

80 2.93 0.467 0.7134 -0.1467

100 3.66 0.563 1.206 0.08134

UVTUfh log K UflS log [TBP] fhintulflen? Linear regression VHfh n

flTC n = 1.08, C = -0.607

fmu TBP

4.1.2

2 iin£m9l

T i —n A fl hr\ l

(M) A o D A o D

5 3.300 2.006 0.6079 3.308 1.968 0.604 0.6059

4 4.302 1.004 0.2334 4.328 0.978 0.2260 0.2297

2 5.225 0.081 0.016 - - - -

1 5.869 ------

A = o = tfueuma D = 4.1.3 6.898

TBP : kerosene = 60%

3 llftfl-3SviBtnanJ9^ni?l1uf1?nl'U 60% TBP : kerosene y t y i

60% TBP : A 0 D A 0 D Kerosene (M)

5 1.542 5.356 3.473 1.557 5.341 3.430 3.452

4 2.075 4.823 2.324 1.912 4.986 2.607 2.465

A = O = D = 4.1.4 478

4 njoHmiasaiw'tfoiifH'Qimefafl'u 5.2184

nfu/nw? 4 luaii ims TBP : Kerosene 60% (v/v) \M HNO3

ftnJuM

(M) (g/D (g/D (D) 0 1.638 3.646 2.226 1 1.261 4.023 3.190 2 0.760 4.524 5.95 3 0.398 4.886 12.3 3.5 0.377 4.907 13.0

4 ims 4.5 lutnl mi 479

4.2

4.2.1 MIBK

c 5 ufT^-3O'viSvicinj04'iJ?}jnflii MailfimEJij(n-3l''u^aniitTnpira9l1fimtJ}jpi'ifi MIBK

ifHUEJU 2 v PI\

5.0 1.929 1.802 1.866 3.071 3.198 3.135 1.68

4.0 1.903 1.782 1.844 2.096 2.215 2.156 1.17

3.0 0.982 1.113 1.048 2.018 1.887 1.953 1.86

2.0 0.961 0.952 0.957 1.039 1.048 1.044 1.09 1.0 0.581 0.475 0.528 0.419 0.525 0.472 0.89

0.8

0.4 0.244 0.204 0.224 0.156 0.196 0.176 0.79

0.2 0.254 0.230 0.242 ND ND ND 480

4.2.2

MIBK

MIBK

NH,SCN(M ) M1J1MMW

A : 0 A 0 0 average

7.961 - A = *U8UliYl1o

0.1 : 1 7.767 - - O = ffuBUYliu

7.867 -

7.468 0.393

0.2 : 1 7.318 0.393 0.343

7.568 0.294

7.468 -

0.3 : 1 7.668 0.194 0.194

7.667 0.194

7.219 0.642

0.5 : 1 7.219 0.642 0.642

7.219 0.642

7.328 0.534

1.0 : 1 7.279 0.583 0.566

7.279 0.583

7.377 0.484

2.0 : 1 7.279 0.583 0.517

7.377 0.484 481

4.2.3

MIBK

MIBK

Zr Hf

NH4SCN (g/1) DZr (g/0 (ml) A 0 A 0

1.413 1.088 0.77 0.134 0.116 0.87

0.5 1.298 1.203 0.93 0.128 0.123 0.96

1.0 1.074 1.426 1.33 0.104 0.146 1.40

2.0 0.676 1.824 2.70 0.043 0.207 4.81

3.0 0.282 2.218 7.87 0.009 0.242 26.89

4.2.4

MIBK

MIBK Zr Hf

HCl (g/1) DZt (g/1) DHf (ml) A 0 A O

0.00 0.001 2.499 2499 0.001 0.249 249

0.25 0.017 2.483 146 0.004 0.247 62

0.50 0.777 1.723 2.22 0.093 0.157 1.69

1.00 1.265 1.233 0.97 0.130 0.120 0.92

2.00 1.318 1.182 0.90 0.125 0.125 1.00 482

5.

5.1

TBP ([TBP])

fhtJ kerosene lueflnfbuei'U "] fHJ flB TBP : kerosene = 10%, 20%, 40%, 60%, 80% uas 100% (v/v) UM viuii [TBP] tntntnlrnnrnjibsflYiS mi

(Distribution Coefficient, D) ?T0 m\\ m9Wn TBPflSSTUfUJ Zr (NO3)4 inflffii

i Zr (NO3)4. 2 TBP(4) Aomi vnn [TBP] g^ i^ailfimfjutiougnffnfil^uifi

iin^ifu^nfiiiijnjj^B^svi'ii-amfi^^niinisiintJ'iia^i^giifii'UfJij (KZr) niJ

[TBP] vmri KZr a [TBP] ^5 IIQIJID^ TBP iT tiiKi

ma [TBP]

(4)

Zr (NO,)4 + 2TBP » Zr (NO3)4 ma

+2 ZrO + 2H^ + 4NO", + 2TBP » Zr (NO,)4 . 2TBP + H,O TBP riBuKttnfi Invitf [TBP] til'u 60% (v/v) \m wini TBP ^SnswlupiififlSjSfii^uiJisSYiSininisjsntJ^nQi TBP

+ TBP nJumimu [H ] uas; [NO'3]

iJis;naii Zr (NO,)4 TBP Imnnnm Ii ma [TBP] uas [H+] fi^^ vnnS m^}JiJis;^viBm?nts;9i(JDs;muiui4 wS mnsatiua NO',

M r i?lu Zr (NO3)4

Zr (NO3)4. 2TBP ID

5.2

0.2, 0.4, 0.8, l, 2, 3.0, 4.0 uas 5.0 nfu/afii VJUQI fin 483

2 niu/nwi uaswim MIBK

NH4SCN luefanthuphuei o.5:i

iJ fail NH4SCN

NH4SCN I'U V

•(mum ^IIVJ fniui'iijj'ii'un)!)^ NH4SCN "Hfouintrin 0.7861

o.3

6.

7. 9

1. Robert L. Skaggs, Daniel T. Ogers and Don B. Hunter. "Revieno of Anhydrous Zirconium-

Hafnium Separation Techniques" U.S. Bureau of Mines. Information Circular 8693.; 1984.

2. Hensford, E. and McKay, H.A.C. "The Extraction of Nitrates of Zirconium by Tri-n-Butyl

Phosphate (TBP)" Trans. Faraday Soc. 54, (1958) : 573-586.

3. William A. Stickney. "Zirconium-Hafnium Separation" U.S. Bureau of Mines. Report of

Investigations 5499.

4. milUEJ WI5fl? "A Study on the Extraction of Zirconium from Zircon in Thailand"

Unpublished Master's Thesis. Department of Chemistry, Chulalongkorn University, 1964

(B.E. 2522).

5. D. Royston, P.G. Alfredson "Review of Process for the production of Hafnium-free

Zirconium" Australian Atomic Energy Commission Research establishment Lucus Heights,

ISBN 0642, 993947, Oct. 1978, 4. 484 TH9900044 TH9900044

filcyflniW aflfrsi UENaitndfrf ueitn qnqvis uas

wsim nviu. 10900 ]m. 5795230 fit 321 Iv)5ST15 5620118 e-mail: [email protected]

[ {Zr4(jj.-

OH)8(OH)8(H2o)8}.xH:o ] ^iflijUflfla1tfjnflfmijfns#Ta imsfniu^unie^w^sifQiIfimf) ll [ Fourier Transform Infrared ( FTIR ) Spectroscopy ]

( Neutron Activation Analysis, NAA ) llf

( X-Ray Diffraction

Spectroscopy, XRD)

Hard and Soft Agglomeration of Zirconia Powder

Chastbongkoch Srinyawach, Archara Sangariyavanich,

Nitaya Suparit and Papot Pruantonsai Chemistry Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok 10900

ABSTRACT

A study on the Interaction of Water, Methanol and Ethanol with Zirconia powder investigated the Hard and Soft Agglomeration of Hydrous Zirconia powder [ [Zr4(^l-OH)g(OH)8

(HnO)g]. xH.,01 by using Fourier Transform Infrared (FTIR) Spectroscopy found that alcohol washing on the precipitation of Zirconia prevented the bridging of hydroxo group which caused the hard agglomerate formation. The Neutron Activation Analysis Technique (NAA) was applied for quantitative determination of Zirconia and the structure of zirconium compounds were done by X-Ray Diffraction spectroscopy (XRD) Technique. 0=@ 485

l. ymh

nenu

(Agglomeration) 1J9-3H-3

ni?^lfinSMH-3lcK?iSnll4141JJl4nifll'0U -q (hot kerosene syntheses) (citrate syntheses) fl11^lfinSM«'3t/fii^ (alkoxide syntheses) chloride °l>m Haberko (Haberko's chloride syntheses)

1 tl FTIR (Fourier Transform Infrared Spectroscopy)

i (NAA) nas;?i?'3!)it9ijlf)i^tTl'^tniil?^n9u^ymfiijfii9n(ifiiTOrlidiniKu (XRD) 486

1. FTIR (Fourier Transform Infrared Spectroscopy) 2. Multichannel Analyzer + Detector (Hyper Pure Germanium)

- Model GC 3018 Serial No. 9912823 diameter 55.5 mm. length 56 mm. distance from window 5 mm. 3. X-Ray Diffraction Spectroscopy (XRD) 4. mfe-Jilgnsanhinfu iJib.i/i

5. lenQU (Oven)

6. DTA ( Differential Thermal Analyser )

2. 8H2O)

2. uoulumuuiaflian'W (NH4OH) 3. fifa

4. miaocinBaaa (CH3OH) v < 5. h 6. () 7. n5fllal«ifin0?n (HCl)

8. UlinfliS'mi'tfolflO'U (ZrSiO4) 9. fl 487

3.

l.

1.1 U1U1l«tffnfl€VITJinfl >60 OlVlil 10 flfw Iffiumiman (mild steel crucible) IW1J 15 nfu vjiiiJim^otwHfjS 300°c vnu 60

55O°C 11114 45 VJTV1 125 SfmHen iJfiJiJiui^iiil'u 150

(zirconyl chloride)

1.2

2. 2.1 •uiN3fiicKoi'1fi'u?ififi0i?^ui?i?3nu3Ji 6 niu a^cno^ywin^'u 20 20% (VA^) a^liJ 30 20% (v/v) 300

200 CaaS^iion 3 f\h uii^wsnevjiitifiiilu 4 ihu noninuli 2 IYTU

2.2 iJi?)s;n0W2 rfauvimaou'Hmjih 30 itaBafl? munJunm y i v y nou^oijinaii fif^as 100 flaSHsni 3 nh 2.3 lhnsine'ulu 2.1 m l fti-u uasnsnQ'ulu 2.2 unon l 2 111 Ui1l)0U^qtUMflS 9O°C \l~Hl 40 ^liu-3 2.4 i3i(ns;n0ulij 2.1 fmmmm) naswsnQulu 2.2 2 111 Wi1lJ0U'M9tUMflfl 95°C UMi 40 K'

2.5 snn 2.1 -2.4 488

i: l 2.6 wi?is;ne^1afiim woiIfimfj^ lpiS1i]piiii)tTQiJ9'U}j£iiJO-3'un1^pi'itjmf0^ FTIR (DTA)

3.

3.1 ui waning?

2.1 IpmijJaWiiJ-aasnetULlu 2 tnu

3.2 •thasna'uflTUYH'Haasnn 3.1 iniainaviTuaa 30 Caaaa? nmilunai 10 V V MIY\ v4iuiniO4ua'ini4?is;noypiiDL€vnu9fifif-3fis loo CaHBeii 3 nh

3.3 i1nfis;n9w1wiii9 3.1 ims 3.2 jjiau^oiu'HfjS 70°c UTU 40 IJU.

FTIR LmsPin^ffaufjQimviffQtJ DTA

4.

4.1

3.1 4.2 ijiasnauefauvimaaflin 4.1 uiiajJiuynuQa 30 Sanaa? nTmltanai 10

cuiunn?o^uaQfli^?is;naupiQtjmvnu9afi?^as; loo Sanaa? 3

4.3 'uia^neiji^'ua 4.1 ua 4.2 insimgcuvmS 55 uas; 60°c "uiu 40 '

FTIR uasfl?To?Taijf]«inTHPnti DTA

4.

(XRD) V l Zroci2. 8H2o

2.

2 IB fm 489

ffnnilvifY9wa«inflnnsn9u1aflim^8ilflmMi#i •uisnsnotjuifn'ul'uih 10 vnvi 90°c VITU 40 m i^unu mi

VUJTI < • i ' FTIR wiJ9VJvlii?Pi?niifigi?aj'U0-3'Hy o-H ^fis\4 3381 "vis. (DTA) uu vmii ws 19.6% v 73°c B2.2°c

53O°c 2,3 XRD VIUQI (amorphous)

3. 2 it 70°c WTU 40

v • FTIR UU l«(pl11fl1T0U

DTA XRD vrnii

4. 2 im^unu 53°c, 60°c U114 5 itti. ims 40 KU. 55°c uas 60°c

c-H f vnu0ciinfi iYTUHnmi?inr)it0iin9jnTwl(pit)K DTA ilu 6 rnuwami XRD "VNU^I 490

5.

wim fmisnicjueisng'ui'umirmaofiflg lovnuommsujviTugamj

V V i 3 n^tuiJiJ •wu'wn^ ~3800 - 3000 iftj."1 ^imfi^o^nuo-j o-H (stretching) u?mnflsnymnn

)> > , ,i OH iT\jfl^UTHcnnviai(j ffiuon 2 wfmnri-nThjfrufie ^n^^-anau 1556 -1620 uasf

1

U Vii 1160 - 1070 ^U."1 ^imw^O^ C-0 (stretching) till

^ 1350 ^w."

(dehydration) DTA im viu-ii ^s;n9V!'9sSfnimtj'unvi\Tnlw'Ki^9,cu'HfiS1iiinu 550°c

XRD

cubic polymorphous "B^flSllJsfJUtllu tetragonal symmetry i9uinw 55O°c

(hydroxyl group) fllti fldjJt9V19n^fl (ethoxyi group) M19

(methoxyi group) ^

11(14 Zaitsev 491

CH,H,C CH,CH3 V Zr.

CH,H,OCL H/ O OH \ tfCLO H\ P-CH2CH,

CH,H2C-O HO / O-CH2CH,

HC 0\ ./.

OH CH,H2C-0X

Jones Uflj: Norman (2)VIU Ifll

Zr-OH + HO-Zr Zr-O-Zr + H2O

Kaliszewski \\f\% Heuer (4) Lee

Readey

ioo°c fi 492

\

mo i0Yi0fi§(ethoxy groups) nuto-a •U0niain5 truthTd

OIVIQI (diethyl ether) TJU (ethylene) 493

H H I I H - C - C- OH I I H H

Zr(OH),(OCH2CHA

H H \ \ H - 0 - C - C - OH I • H H

H H I (

V2

J! ,,

Zr-O-Zr "r..

X r

Fig. 1 XRD spectra of ZrOClz. 8H2O from Thai Zircon Sand compared to standard zirconyl

chloride 495

4OOO 3BOO SOOO 2BQD 2OOO

BB/O9/OB n: =o BSA Fig. 2 FTIR Spectra for water-washed hydrous zirconia z: -4 icins. 4-Ocm— i. flat, •moatft. Ml

4000 asoo aooa

ae/os/OB 10: 21 BSA Fig* 4 FTIR Spectra for ethanol-washed zirconia X: 4 •cmi. 4.oc»-l. rial. El

•«aoo 4000 asoo aooo ssoo 2000

11:49 asA Fig. 6 FTIR Spectra for methanol-washed zirconia Y: 4 scans. 4.OCIB-1. flat:. «noatn, 496

TIM IS : » 23 PROJEC1 I O KAMJONA TEST I O H« __ CUTTY 9a HCATTNQ RATE 4O TENT RANGE 2Q/DOO ATNOSPMEKC RATE NETZ1CM lift

2 a

0 8 -z a

-4 « -6 8

B a

-i a B -IZ B -I -1

2B9 JBS TEHt«BIUflE , "C

Fig. 3 DTA data for water-washed zirconia

f» 29-1OO0C (iOc.' a. 74 «g ctrc Altmln DTQ (i/ nln) Fig. 5 DTA data for ethanol-washed zirconia i.B

1 -O

O.B _ fj-O.l O \\ O.O

—O .B

-1 .0

f K "•" -i.B

/j.ec -ao.o i —B .0 TEHPERA TURE (o > 7so aao

DATE : 21 B«n 1999 DEaCRIPTIDH CEFEHENCE TIHC : t2;BI:4B •*»*• PROJECT I 0 TEST ID. : ne 9AHPL.C : S-. 1 TEMPERftTXJRt : cum HCATINS RATE! : 10 TCMP RflNCC ATNOSPHERC : Ar- r\JOU RflTE 100 IMSTRUWENT 1 MET23CH

5 a I 9

15 a a • e

-a. 5

-1 8

-I 5

-7 a

-2 5

-3.8

-25 a -3 S ?RB 39a sea E, 'C

Fig. 7 DTA data for raethanoi-washed zirconia 497

XRD fJCUllTUmym QUVIiiW

FTIR flOUJflTaiiOl ibuififm

«TU DTA

jpi fjfu«uvin

1. L.M. Zaitsev, "Zirconium Hydroxides" Russ. J./norg. Chem. (Engl. Transt.), II 900-904 (1968).

2. S.L. Jones and C.J. Norman, "Dehydration of hydrous Zirconia with methanol" J. Am. Ceram. Soc, 71 [4] C-1900-CL/91 (1988). 3^ M.J. Readey, R.R. Lee, J.W. Halloran and A.H. Heuer "Processing and Sintering of Ultrafine

MgO-ZrO2 and (MgO, Y2O3)-ZrO2 Powders" J. Am. Ceram. Soc. 73[6] 1499-503 (1990). fL M.S. Kaliszewski, A.H. Heuer "Alcohol Interaction With Zirconia Powders" J. Am. Ceram. Soc, 73[6] 1504-509(1990). 5. E.S. Pilkington, W. Wilson "The Influence of Polynuclear Zirconium Species on Direct Titration of Zirconium with EDTA" Anal. Chem. Acta, 33 577-585 (1965). 6. mfyoin ^loilmjfi uifapfi iimj^pm nffa Pfiuu ne^mS fC

villa l-160 •w.ff. 2534 TH9900045 498 TH9900045

fiiumuma«"miliin&uY!am4?i Tmrnw 5795230 Inuni 5614081

hydroxyquinoline-5-sulfonic acid

50W-X8

0.25

1.0 tie^uun 95 % 99 % 1.0 uns; 2.0

Separation of Zirconium from Hafnium by Means of Ion-exchanger

Nitaya Suparit and Chastbongkoch Srinyawach

Chemistry Division, Office of Atomic Energy for Peace, Tel. 5795230, Fax 5614081

ABSTRACT

A separation of zirconium from hafnium on ion-exchanger was studied by using of

8-hydroxyquinoline-5-sulfonic acid as chelating agent and Dowex 50W-X8 as resin. The

separation is based on the difference in the stability of the sulfoxinate- and sulfate-complex.

Varied concentrations of sulfuric acid were studied as eluent. Purity of 95 % zirconium was

achieved with 0.25 N followed by 1.0 N H2SO4 , whereas purity of 99 % hafnium was obtained

with 1.0Nand2.0NH2SO4. 499

l. urmi

Zr(Hf)SiO4 Siliuifuraoflfimetfj oon Wf ims wnibsuiai 67.2 %

32.8 % 0.5 P^ 2.0 % n^raoi lfimouuns;ii8'wmt)3JUfjiutnjU9ivn-3Lfiufifnofii^nujjin

( cladding material )

( control rod ) lu

i(5'

tTYlS flltnfn"mmfllllA{J'ui099U ( ion-exchange process ) Iflfjt'V cation exchange resin

Dowex 50W-X8 cmnJ

'V11llgnitJ1l5-3clf9V!n'U51^'n-3?T0-3n9V4(iUV!P10'UmiPj^cKlJ ( adsorption ) mlS

(affinity) flW^uemnu(" lfioSfn?iJfiJfiifniuifl'Ufiifi-iiiffiJ?s;uiiu 4.6

2. ailnimi

2.1 q

'I l un .ing ua. iniauqimifoflfiitafiiioW ( Zroci2.8H2o )

SuavJm01ll

0.25 0-3 4.0 UOIlUJii li5tJ Dowex 50W-X8 ( 100-200 lUTJ) i.5utis2 'KU. fininoi Imini nisuon^i^ iliiJpi 500

Inductively Coupled Plasma - Atomic Emission

Spectrometry (ICP-AES ) (JKO Perkin - Elmer 1U Plasma 1000 2.2 f

2.2.1 #\?i^1.5

i V . Dowex 50W-X8 hum 20 niuvipmihnmjiieh wlirlai iww l IN mi mcnMylBi (pH4.6) iJfuQfinmiiMfiDg^tniasinmilu l nu.^u.

2.2.2 i

) iias navlunfiaeiifi mj'ii'u l un. fio

3 un.

l.-i i^jjjn5jisinfjii95i?iwijvlivl05 l lutni ^TUIIJ 45 6

3fO-3fni3Ji R0 0.25 fUJ 1.0 W85UJJfl, 0.25 nil 2.0 Umuilfl, 0.5 nil 1.5 U85UJja,

0.5 nu 2.0 uofiujei, 1.0 nu 3.0 •uginun, uns 1.5 nu 4.0 14911ms 1 us. ?i9 invi inuiniasaitJ^HiufianjjiIinpf'jvjas 20 u?i.

tiuiiasuaylmejjj ^IIJJIIIB^ ( ICP-AES )

2.2.3 ll

nil

tins narlfin fiaelifl VVUVM 1 un. pie em^as; 3 un. i^ufniasintj'vavlen^ui'ujjiiiu 0.2 % 24 3jn. fiutniasnifj^nfii ?-3iwiJtnins;mtJii8^ifi«i ilvldai •Sivnu 45 ut\. fiuenfif^ WTU 6 fiaauu

2.2.2

2.2.4

uas;lcBi«uij'l9?ii8n1wliJ8Pi5i?T'3u 1.-6 Ifimj'mijn aslufimnei 300°c iSunen 1 w. ufiivifiaufiafiafuTifiu 700°c an

v » 1 cake ^it)\Jii9i4 memfcifhwinnin'U'wa ua^i^eju <5mnfi aaniil all cake 80-95°c 501

Zroci2 . 8 H2o U 85 °C

1:

ZrOCi2.8H2o tmsii8'Hmt)uiili4 5.076 un.^g ua.ims 0.1271 nn. Zr/Hf iS\4 39.94 f^d 2 ffivcqas; 5 2.- f) 99fi?n1ai?)??i 0.5 nfu asaiopi'ioijinau unQiwjjjniasniojjiPissnuuavJmoui'Ujj'ii'^a^liJ 25 un. i4 50 u lJiJJ1flllcK05'lfimo'l U 2122.125 JJfl. 910 JJHJH . imSJlJiUIQiliavJmUJmlJiUIQavJm J 0530.539 Ufl. 910 Del. 3.94 iliilwtnsasinfjiiijwu^nfinjji 2 ffTuns- 2 im fi l imt 2 0.2 % fiumifii im

0.25 nas9ii}J9iiQt) l.o \j0i

10 w 2.2.5 flnvinsivInisvzaiJVdmBfhiuaiiimziidyJtuvunivnjmavliwiij'ii'vi! l.o uc\z 2.0 f

B. Bonefeld, HflS F. Umland cK^Sll?JJ1CUll8vlmfJull4inic1^fnyi13J9ll4fi9T4tlin^a[-3 i91fJl9l1fJUini as;inowit)jliiSiiiif0i1fimt)iJims:ii8vlmtJui'U3J

2 IJU.^SI?^ Dowex 50W-X8 viiln 40 nfu 502

l lias 2 uaiuua shmij 200 uas 100 ua. enuaimj mil effluent rfauas 15 ua.

343.823 lias 277.336

FlAUTVltl ( RF Power ) 1000 lW gemmiTHama^ Nebulizer lias Auxiliary argon [\\\l

1 ua. ^1Q 141Y1 lias Viewing Height 15 JJU.

3. wamiflnimsm

if 3JWTJ (influent) Sflilllli 1 : 1

0.25 nu l.o, 0.25 nu 2.0, 0.5 nu 1.5,0.5 nu 2.0, 1.0 nu 3.0, 1.5 nu 4.0 vmiuua utTPi^lTl^jiJ^ 1,2,3,4, Sims: 6 pnuaif r\ 1 maHnifi'S'avlifni'fi'u'ii'ii 0.25 uas 1.0 ugfuua %zm$\um*iv\zmm'Q%[

1 vi 5 uas 6

2.0 vi9iima

0.25 nu 1.0

mi 503

3,2 vvlivlm utts

^cj9firwfi1m!iwgi']fimf)jj^iJ?^vi?1npii^(j-3nuno 99.7

5.02 %

is DPI 14 itavJiUEJjjfintKs;pii^00fi1ilviiQjj

95

3.3 Hani5ffnVin71Ylm7VXiiWWB7lfllUOWldZtl8MUlJllPllOf)7Plc]fi)YI'J7niVlJVU 1.0 nv 2.0 u€7ima

Hf/ZriSu 1.8 ! 10 l.o ^1

•uu 2.0 uoinua ii9iHmtjjjB-300n}Jifi0t4'iii-3iJifl[vi5 99.1 %

5.6 %

4.

u 4.6 batch test iTi4 it»0llfii'StjjjininirpjficKUDtii5i5i4 Dowex 504

1.0 wsimnu

0.25 nu l.o uaiima 94-98 % uasmi^a^?hijmpie»aYb?nmj|{m l.o nu 2.0 ueiuua 99.1 % imsifiHawHamfj^ 5.6 %

106 ims 24 luIfiinfu^BSaaSin? fnuaiau Ipifj^^i^ffiunipi^avliffii^u'iiu 0.25 nu l.o

99.7 % imsifiHHflWfimtj-j 5.02 % m0Y)fiti03i^3jiiJi}Jituna^muuiM?r^

uin

5.

1. B. Bonefeld and F. Umland , Fresenius Z Anal Chem, 322 ( 1985 ) 495-498.

2. D. Royston and P.G. Alfredson, " Review of Processes for the Production of Hafnium-Free

Zirconium " AAEC/TM 570, October, 1970.

3. F. Hudswell and J.M. Hutcheon, " Methods of Separating Zirconium from Hafnium and

Their Technological Implications " Proceedings of the International Conference on the

Peaceful Uses of Atomic Energy, volume 8, New York, United Nations, 1956, p. 564-566.

4. ijflin fmqvi?, srygu-an^ flftyojiistfuasmTu lepma^fh, wiltM-176, inmfiu 2535. 5. ufifji fw^jiaff, " fni^n'yinis'UTumiwadii;B0Tlfit'UfJiJiiit|vi5

, n.ft. 2528, nxii 1-2 ims 58-59. 505

Hf

Zr

100 200 300 400 500 600

volume of eluate ( ml )

o Hf N "S Zr Q. Q.

100 200 300 400 500 600

volume of eluate ( ml)

Fig. 1 Elution curve of Zr and Hf ( 0.25 & 1.0 N H2SO4 as

eluant) 506

Hf

0

0 200 400 600

volume of eluate ( ml)

Hf

Zr

0

0 100 200 300 400 500 600

volume of eluate ( ml)

Fig. 2 Elution curve of Zr and Hf ( 0.25 & 2.0 N H2SO4

as eluant) 507

u - 1 without sulfoxin

1 X 4- o •Hf

Zr M G O pp m o f Z r 1 - LAA 0 -

0 100 200 300 400 500

volume of eluate ( ml)

•Hf

Zr

100 200 300 400 500

volume of eluate ( ml)

Fig. 3 Elution curve of Zr and Hf ( 0.5 & 1.5 N H2SO4 as eluant) 508

4 - without sulfoxin

3.5 - \

I 3 - A ° 2.5- N Hf

"5 2 - Zr I 1-5- 1 - 1 0.5 -

0 -

200 400 600

volume of eluate (ml)

u - 1 | with sulfoxin 4 - i X o 3 1 Hf Zr 2

pp m o f Z r \ 1 -

0 Rimini i ^^^>

200 400 600

volume of eluate ( ml)

Fig. 4 Elution curve of Zr and Hf ( 0.5 & 2.0 N H2SO4 as eluant) 509

\ without sulfoxin | 2.5 -

V4— 2 - - O Hf 1.5 - - Zr 1 - pp m c A 0.5 -

0 - 1 k**±*

200 400 600

volume of eluate (ml)

t with sulfoxin i 2 -

X O 1.5 - N Hf •s E 1 " Zr Q. Q. 0.5 - K ****** \ / 0 - I ,~ 200 400 600

volume of eluate ( ml)

Fig. 5 Elution curve of Zr and Hf ( 1.0 & 3.0 N H2SO4

as eluant) 510

1 3 - without sulfoxin

„_ 2.5 -

o 2 N Hf

Zr Q.

0.5 -

0 -

200 400 600

volume of eluate (ml)

Hf

Zr

200 400 600

volume of eluate ( ml )

Fig. 6 Elution curve of Zr and Hf ( 1.5 & 4.0 N H2SO4 as eluant) 511

12 mg sulfoxin added

Hf

Zr

24 mg sulfoxin added 6 -,[ o 4 - Hf N l ft O E 2 Zr OL Q. 0 - Vk••te^^^X •- -

36 mg sulfoxin added

I <- 4 Hf N

E 2 -^ Zr Q. a. 0 —

100 200 300 400 500 600

volume of eluate ( ml)

Fig.7 Effect of sulfoxin added on elution curve of Zr and Hf (feed : 3 mg Zr & 3 mg Hf, 1 M acetate buffer 30 ml;

0.25 & 1.0 N H2SO4 as eluant) 512

35

30 no sulfoxin

^ 25 ] added in feed

o 20 Hf N o 15 Zr E Q. °- 10

5

0

100 200 300 400 500 600

volume of eluate ( ml )

30

25 50 mg sulfoxin added in feed 20

orH f Hf 15 Zr 10 pp m o f Z r

5

0

100 200 300 400 500 600

volume of eluate ( ml )

Fig.8 Elution curve of Zr and Hf from Zircon ( 0.635 mg Hf and

25.38 mg Zr in feed, 0.25 & 1.0 N H2SO4 as eluant) 513

no sulfoxin added

-u- Zr

100 200 300 400 500 600

volume of eluate (ml )

16 -, 14 - 20 mg sulfoxin added i 4— 12 4 \ I \ o 10 - N 1 "S 8 - - 1 -*-Hf 1 i Q. 6 - \ Q. -»- Zr 4 \

2 - j>* 1 •- 0 - ii 11 m t Hiirc

100 200 300 400 500 600

volume of eluate ( ml )

Fig. 9 Elution curve of Zr and Hf from zircon with Hf added (feed: 4.25 mg Zr & 1.078 mg Hf, 1 M actate buffer

10 ml; 0.25 & 1.0 N H2S04as eluant) 514

300 - | without sulfoxin

*- 250 -

° 200 - Hf N o 150 - Zr

°- 100 - 50 - / k*** A 0 -

100 200 300 400

volume of eluate ( ml )

Hf

Zr

100 200 300 400

volume of eluate ( ml)

Fig. 10 Elution curve of Zr and Hf from standard

solution ( 1.0 & 2.0 N H2SO4 as eluant) TH9900046 TH9900046 515

1uiliT)JUl1

nIrmtinn^^iyTJiuitKiTioiniw Inswrni 5795230 Immi 5614081

• ilnflnninifiimifiS muzTnuifntw: jjvnTitnmjffivimuvnTbw iJjt

11 B1«3 IGS 36 imsnfjimefn 6 n«j '\\i^^iiim%i\mi'ui^

nuwami

Accuracy Study for the petermination of Some Rare-Earth Elements

in Monazite and Bastnasite by Sequential ICP-AES

*Nitaya Suparit, **Chanchay Punelapdacha and ** Dusadee Ratanapra

•Chemistry Division, Office of Atomic Energy for Peace. Tel 5795230, Fax 5614081

*• Undergraduate Students, Department of Chemistry, Faculty of Science, SWU, Prasanmit

ABSTRACT

Experimental data for eleven rare-earth elements (REEs) in reference monazite IGS 36 and six REEs in reference bastnasite IGS 41 were obtained by sequential inductively coupled plasma spectrometry (ICP). Due to the complex spectrum of the rare earth matrix, then it is necessary to choose suitable lines for some rare earth elements. The method used for the sequential ICP determination was based on digestion of the sample in perchloric acid. Analytical data obtained by the cation-exchange and without any chemical separation are presented and compared with "accepted values". Good agreement is generally achieved and the overall accuracy and precision are resonably good. 516

1. U1TW1

( Monazite ) Smwao-a a uen vrf a than a fbuuWruiTO ( Bastnazite ) 51 Snmaa^ vifoihenauen iii'^ffo^wfiiQuui^SiliunQiBi^uitaivi^viufi (total rare earth ) ihsUICU 60-64 % ifluSlliUitUBiq Ce, La, Nd UfiS Pr g Lanthanide iiut^ Y nas Sc Ifltjucjfiaamilij 2 ndjj^a ndu

i V mi vftsntjunjo^ Ce (fiisnviSmijassneijeiNusn 57 m 63 ) imsnfmvmn vifondu'ua^ Y

Y uas Sc aanlw H

( Neutron Activation Analysis )

Na-24 moa?i background ( X-Ray Fluorescence Spectrometry ) cB38milfl1eJU^10mWfnQ'U'U'13tktnfl liai;5 matrix inn ^(nowfmifliujj^iatj'u nasiYiiuisiijiiilMS matrix Ina Ynlwummfli-amofmiluwfn-uivnv! !)-3vnmuDfisnnfi ( detection limit ) UQ^millfliiSI'HVio'U'irUfn uaninn'UmiQlfin^vfmmiYl^ltJl? Atomic Absorption Spectrophotometry irufie it

Inductively Coupled Plasma Atomic Emission Spectrometry ( ICP-AES ) i SfirmmtnflHuasujJtJthfN @°8 517

( IGS 36 ) imsuiu'mpH'uiw ( IGS 41 )

AUTO background correction nil OFF background correction*?'

cation-exchange «fomi<5l4 Dowex 50W-X8 mmtCJfl matrix U0-3 Al , Ca, Fe un

00fl1ll UflS'H1fh5fll01ffa ( detection limit) flllfli Background Equivalent Concentration BEC )

2.

2.1 ^iln-scw uvtz triitfifi

1JUP1 Analytical Reagent Grade

(Eu2o3) tviQimouaeniw (Tb4o7)

(Ho2o3) i00imejuo0nW^ (Er2o3)

(Dy2o3)

(Pr6ou) imuymTuoeniw (La,o3)

(Nd2o3) ^umiifjuoeniw (Sm2o3)

(Tm2o3) S?im0imyjj00n1w (Yb2o3)

- Stock solution ^tieJU^airl^ Ce(SO4)2. 4H2O Y\ll f\l-\lH,VliV\lVf)^ Ce 1.4 %

Ui'u"lfl1i|Tu1uU'|Vlctf(n ( Monazite IGS 36 ) UflSlliUi^li^TUin^inmi1^^ ( Bastnasitc

IGS 41 ) snnu?£vi British Geological Survey

l v nifii'uemi n?«l€fl«5fifif)?n niPiiilaififigin 1afliT5mmj Wia0 bw ( N2H4.2HC1 ) fi

?) Inductively Coupled Plasma - Atomic Emission Spectrometry

(ICP-AES) i\i Plasma 1000 ua-SUIiyVl Perkin Elmer °B-3llll4UlllJ sequential

2.2 is

2.2.1 518

5 uJeiWuw iTuJfmjjmi'uuifiu 1000 (stock solution ) tf J ( calibration curve ) fl0llJ 2.2.2 h 2.2.2.1 n IGS 36 tmsusinflmuiw IGS 41 0.5 nil) cn1iusin?iiiJFiiimjvnA 50 Saaafl? imjmmiJ9ifi?ie?nimj4V6Nhin'u 10 rioamjiflii'dflnfiowMmhksinai 200 - 250 o^fniifm^otr iiluninuiu 2

IIJTJ iw3jnifii8lpi?fifl0ini90fln-3 (1+4) flnuiu loSaaaw? iwuiafin^m

( N, H4 .2HC1 )MTJf1 1 fliU l«Um HflTUi'llJ^lJ'Utfnivlvli^Qfll'HfjS 150 O-JftHIJniStJtt 111 14 ntn l ihiu-a wimo'u mo^wiumspnuniQ^moi 41 uaiitfaq-i-wiufnflialflifinoin

25 iilofrauw 1HSI)?3JI(51? 50 SaaSfii \\ifimT\wvuv\i'\mmnztiiimziifmz'H w lfitjl4fn5Pi1viw?fii90fln 5 2.2.2.2 Hli IGS 36 imsui'inflwm'W IGS 41 0.5 niu f1-3l^Jnnfl1lln1^t)

Dowex sow - X8 v\ii9i 100-200 IU«K 1.75 luaii 1-2 fii-3 g 20 1 SnnawiploiJi^ wniinifi1aI?iififi0ini^jjDW 1.75 lucni" 25 S lhn 100 5nHS?)? ( if-jfls'KsMQn AI, Ca.Fe oonui )

8 luaii ?I\JQU 100 2naS?n inu effluent 519

Imjiliuieniil'u 50 ru.tmn 5

2.2.3 ICP - AES

2.1 2.2 ICP- AES

ICP-AES Instrumentation and operating conditions RF power 1000 watts Plasma argon flow 15 1 / min Nebulizer argon flow 1.0 1/min Auxiliary argon flow 1.0 1/min Pump rate 1.0 ml / min Viewing height 15.0 mm. above load coil Nebulizer cone spray nebulizer

3.

3.1

Sm , Tb, Dy, Er UflSJ Yb ^9 442.434, 350.917, 353.602,

337.271 nar 369.419 m?ii;1

3.2 Background Correction UUU AUTO OFF

2 nas 3 pnjjaiRu sm'H'uiflm mTQifinsiiBia Ce, Eu, Gd, Tb, Dy, Ho ufis Er luiiiljj^iiifw iT^imiiniiimiisvflwtjpii^iiasNnuiBfniiianiiJaDu loQeUVm molliH Background Correction ( OFF ) li1Ha$flW94fnimilJt\j Background Correction tllllJ AUTO l

MB La, Pr, Nd ims Sm liaSJllUU OFF tTTHIUimnS'HBI^ Ce, Eu, Gd, Tb, Dy, Ho uas Er

3.3 ll^ IGS 36

Al, Ca, Fe iias;ouei^1jJl'WBiwu5i8iyi iia'Pi-j1w«nn-j^ 4 ^inw La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho lias Er ( relative error yiuih^ 0.1-10 % fjniftjwafmwmSM Eu

vf (precision) (% RSD ) YiipisnnfniYiAag^ 3 fif^ •wuQilpitJiwatJHamii

Jvl BiPj Al, Ca, Fe

3.4 6 wuiimiQifinsiiBi^mtj-j 6 fiisnfm La, Ce, Pr, Nd, Eu Tb gulmsAimnFis^viQf'fiJfni uaslmhw?iwaiP»a\mYiB'Ui'n3 0.3-8.0 % j Sm, Gd uas Dy iTifiiw^HaifiinnfTii 20 % uassnnmivifia!)4 3 luib

nuwavn 521

3.5 meni"HYl 7 ifltTillwamnifinsVIBKn La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho llflS Er Tuui'luin'lTO IGS 36 liasfiifl La, Ce, Pr, Nd, Eu HflS Tb llJUIin^miTO IGS 41 Yl liifiiQfiPio-j ujjujh uasflfmwu'U'ug'UflYiga'ijfm PflUflTii-avi 8 UflffUfhiJfmnAflifYfi ( detection limit) UfiSfh Background Equivalent Concentration ( BEC ) De^fmilfli'IS'Hfi'immafn 11 B1fl ^0 La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho itas Er vil^'flin^ofJi^uiIwvni'Kfi 0.5 fifu ufhc^aimiJ'u 50 ua. (

net intensity llliJ 3 misUO^fhm^lUUU-l?n;!P'U'lJ0<3fh blank intensity ^IVlfufil BEC 141 99flinminilfn plasma background intensity

BEC = Ib- I x Cone

I = intensity of sample

I = dark current ( plasma off)

Ib = intensity of blank

Cone = fniut'uufo

4.

innatm^ llJ ina9 Ce <0S;?in91s;fl©%4ilJl4 cerium hydroxyphosphate Ce"4

jfTumsimnBiinuiiafneafisnn Al, Fe ( oxaiate ) 522 B=S

emission intensity 1J©-30flfi"l

background correction

La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho UflS Er

( accuracy ) imsfmJJimUQU ( precision ) fJ-

Tm ims Yb 1^finfianpiififl9\4iannfin^n^0^ijnrim!)-3?iri'Wfi^0-35n^t

10-3 ^Q\jniiQmii^miiiJitT^m1(iB^lfitJ(?i?-3l'HNa1nmflt)-3niifii0n^0-3my-3 6 Ensnfio La, Ce,

Pr, Nd, Eu llflS Tb «SlMTj1^l'31O^imUI11^tTO^SffQlJ

5.

l. niiwm

nu mi

2. G.F. Wallance and P. Barrett, " Analytical Methods Development for Inductively Coupled

Plasma Spectrometry " , Norwalk; CT , Perkin-Elmer Corporation, 1981.

3. I. Roelandts and G. Michel, Geostandards Newsletter, 10 ( 1986 ) 135-154.

4 . I. Roelandts, Chemical Geology, 67 ( 1988 ) 171-180.

5. I. Roelandts, Spectrochimica Acta, 46 ( 1991 ) 79-84.

6. J. Dolezal, P. Povondra and Z. Sulcek, "Decomposition Techniques in Inorganic Analysis",

London, Iliffe Books Ltd; 1968 , p. 68-70.

7. User Manual Plasma 1000/2000 Emission Spectrometer, Norwalk; Connecticut, U.S.A. 523

Table 1 Comparison of some analytical lines used for the analysis of some rare earth elements

rare earth wavelength concentration of rare earth oxide in IGS 36 ( % or ppm) elements (nm) this study analysed/accepted value

Ce 413.765 18.01 % 0.7227 418.660 18.37% 0.7377

Sm 428.079 1.03% 0.6688 442.434 1.39% 0.9026

Gd 336.223 0.700 % 0.9091 342.247 0.702 % 0.9117

Tb 350.917 0.106% 0.9636 367.635 0.347 % 3.1545

Dy 353.170 0.189% 0.6096 353.602 0.221 % 0.7129

Er 337.271 632 ppm 1.0327 369.265 428 ppm 0.6993

Yb 328.937 142 ppm 0.4813 369.419 169 ppm 0.5728

Note: working conditions 1. Automated Background Correction 2. Direct Analysis 524

Table 2 Comparison data of background correction conditions in monazite (IGS 36 ) analysis

rare earth X direct analysis anal, with ion-exchange accepted value

oxide (nm) Backgr. Correction Backgr. Correction ( % or ppm )

AUTO OFF AUTO OFF

La2O3 408.672 11.88 12.40 12.09 12.65 11.93%

CeO2 418.660 18.37 24.55 17.68 25.08 24.92 %

Pr6Ou 422.535 2.90 3.03 2.64 3.24 2.795 %

Nd2O, 406.109 10.40 9.91 10.59 10.20 10.505 %

Sm2O3 442.434 1.52 1.56 1.53 1.61 1.54 %

Eu2O3 381.967 233 391 260 397 349 ppm 336.223 0.700 0.762 0.835 0.829 0.77 % Gd2O3

Tb4O7 350.917 0.141 0.107 0.163 0.113 0.11 %

Dy2O3 353.602 0.221 0.288 0.285 0.292 0.31 %

Ho203 345.600 438 401 414 386 397 ppm

Er2O3 337.271 552 619 526 636 612 ppm

Tm2O3 313.126 618 970 756 1185 65 ppm

Yb2O3 369.419 169 218 209 232 295 ppm Q-© 525

Table 3 Comparison data of background correction conditions in bastnasite (IGS 41) analysis

rare earth X direct analysis anal, with ion-exchange accepted value oxide (nm) Backgr. Correction Backgr. Correction ( % or ppm )

AUTO OFF AUTO OFF

La2O, 408.672 21.86 25.10 23.77 24.37 20.90 %

CeO2 418.660 23.80 30.59 22.76 30.40 32.24 % 422.535 2.93 3.00 3.08 3.09 2.74 %

Nd2O3 406.109 7.87 7.73 7.89 7.56 7.61 %

Sm2O3 442.434 0.47 0.71 0.46 0.69 0.52 %

Eu2O3 381.967 0.047 0.067 0.065 0.076 0.075 %

Gd2O3 336.223 0.096 0.114 0.110 0.126 0.151 %

Tb4O7 350.917 0.187 0.069 0.219 0.080 0.068 % D>A 353.602 173 203 196 261 157 ppm

Ho203 345.600 221 129 260 142 34 ppm

Er2O3 337.271 75 150 43 118 49 ppm

Yb2O3 369.419 36 52 25 60 800 ppm 526

Table 4 Results for rare earth elements determination with direct analysis in monazite IGS 36

rare cone, of rare earth oxide in monazite % % accepted earth 1 2 3 X RSD relative value ( % oxide error or ppm)

LaA 11.88 12.18 11.79 11.95 1.71 +0.17 11.93%

CeO2 24.55 23.07 23.36 23.66 3.31 -5.06 24.92 %

PrtOn 2.900 3.012 2.652 2.855 6.45 +2.15 2.795 %

Nd2O3 10.402 10.581 10.607 10.530 1.06 +0.24 10.505 %

Sm2O3 1.518 1.553 1.563 1.545 1.53 +0.33 1.540 %

Eu2O3 366 315 312 331 9.17 -5.16 349 ppm

Gd2O3 0.762 0.720 0.787 0.756 4.48 -1.85 0.77 %

Tb4O7 0.107 0.109 0.106 0.107 1.42 -2.73 0.11 %

0.288 0.283 0.291 0.287 1.41 -7.42 0.31 % Dy2o3

Ho2O3 401 389 398 396 1.58 -0.25 397 ppm

Er2O3 619 581 632 611 4.34 -0.16 612 ppm 527

Table 5 Results for rare earth elements determination with ion-exchange separation in monazite IGS 36

rare earth cone, of rare earth oxide in monazite % % accepted

oxide 1 2 3 X RSD relative value ( % error or ppm)

La2O3 12.09 11.92 11.96 11.99 0.74 +0.50 11.93%

CeO2 25.08 24.94 24.87 24.96 0.43 +0.16 24.92 %

3.185 2.995 2.337 2.839 15.67 + 1.57 2.795 %

Nd2O3 10.588 10.494 10.110 10.397 2.44 -1.03 10.505 %

Sm2O3 1.536 1.524 1.514 1.525 0.72 -0.97 1.540 %

Eu2O3 397 449 459 435 7.65 +24.64* 349 ppm

Gd2O3 0.768 0.752 0.755 0.758 1.12 -1.56 0.77 %

Tb4O7 0.113 0.115 0.119 0.116 2.64 +5.45 0.11 %

0.292 0.319 0.286 0.299 5.88 -3.55 0.31 % Dy2o3

Ho203 386 379 407 391 3.73 -1.51 397 ppm

Er2O3 636 523 489 549 14.01 -10.29 612 ppm

* error > 20% 528

Table 6 Results for rare earth elements determination with direct analysis in bastnazite IGS 41

rare earth cone, of rare earth oxide in bastnazite % % accepted

r nviHp rpliitiY p VQIIIA UAIUv RSD 1 vldll T C T (tlUC

1 2 3 X error ( % or

ppm)

La2O3 21.86 22.18 22.95 22.33 2.51 +6.84 20.90 %

CeO2 30.59 30.37 30.40 30.45 0.39 -5.55 32.24 %

2.93 2.97 2.97 2.96 0.78 +8.03 2.74 % *V>U

Nd2O3 7.87 7.89 7.14 7.63 5.60 +0.26 7.61 %

Sm2O3 0.64 0.64 0.63 0.64 0.91 +23.08* 0.52 %

EU O 0.067 0.076 0.065 0.069 8.45 -8.00 0.075 % 2 3

Gd2O3 0.114 0.126 0.109 0.116 7.51 -23.18* 0.151 %

Tb4O7 0.069 0.072 0.071 0.071 2.61 +4.41 0.068 %

203 3.45 +29.30* Dy2o3 196 203 210 157 ppm

* error > 20 % 529

Table 7 Resonable data for rare earth elements determination in reference

monazite IGS 36 and bastnasite IGS 41

rare X backgr cone, of RE oxide (%or ppm) accepted value earth (nm) correc. monazite IGS 36 bastnasite oxide direct with Ion- IGS41 IGS 36 IGS41

analysis exchange direct ana.

La2O3 408.672 AUTO 11.95 ±0.20 11.99+0.09 22.33±0.56 11.93% 20.90 %

CeO2 418.660 OFF 23.66±0.78 24.96±0.11 30.45±0.12 24.92 % 32.24 %

422.535 AUTO 2.855± 2.839± 2.96±0.02 2.795 % 2.74 % 0.184 0.445

Nd2O3 406.109 AUTO 1O.53O± 10.397+ 7.63+0.43 10.505 % 7.61 % 0.112 0.253 ** Sm2O3 442.434 AUTO 1.545± 1.525± 1.540% 0.52 % 0.024 0.011

Eu2O3 381.967 OFF 331±3O 435±33** 0.069+0.006 349 ppm 0.075 %

** Gd2O3 336.223 OFF 0.756± 0.758± 0.77 % 0.151 % 0.034 0.009

Tb4O7 350.917 OFF 0.107± 0.116± 0.071 ±0.001 0.11 % 0.068 % 0.001 0.003 DyA 353.602 OFF 0.287± 0.299± ** 0.31 % 157 ppm 0.004 0.018

345.600 OFF 396±6 391 + 15 *** 397 ppm 34 ppm H02O3

337.271 OFF 611±26 549±77* *** 612 ppm Er2O3 49 ppm

error ~ 10% ** error > 20% *** error > 200% 530

Table 8 Limits of detection ( LOD ) and background equivalent concentration

( BEC ) for rare earth elements in monazite obtained by sequential

ICP-AES

elements wavelength (nm) LOD ( yg/ml) BEC ( yg/ml)

La 408.672 0.0333 0.0502

Ce 418.660 0.4699 3.9879

Pr 422.535 0.0723 4.7114

Nd 406.109 0.0696 0.0723

Sm 442.434 0.2809 1.9246

Eu 381.967 0.0032 0.1522

Gd 336.223 0.0398 1.2710

Tb 350.917 0.0326 1.6257

Dy 353.602 0.0078 0.3084

Ho 345.600 0.0301 0.6739

Er 337.271 0.0445 0.4799 Ill ||ll !•«• '•*" " TH9900047 TH9900047 531

RNAA

PON. ffmi 5795230 fl0 521 imtiTi 5614081

RNAA Tfiam5Hu0ui099i4liiT9i5fli?€iu AG 2X8 0.4

xio11

0.1 wm®u mi

The Development of RNAA Technique for Cadmium at PPM by Ion Exchange Alice Sirinuntavid and Chouvana Rodthongkom

Chemistry Division. Office of Atomic Energy for Peace. Chatuchak. Bangkok 10900.

ABSTRACT

The purpose of this study is to develop RNAA technique for cadmium analysis at ppm level. The developed technique is simpler and faster. Anion Bio-rad resin AG2x8 which was in the solution of saturated NaCl and 0.4 M. HBr, was used to trap cadmium as cadmium bromide 24 complex from irradiated sample solutions. The resin could trap a very small amount of Na and 82 115 Br as interference from the samples, then gamma ray of Cd on resin was measured. The thermal neutron flux of 1.8x10 n.cm .s was used to irradiate the samples. The accuracy and precision of the method were tested by various kinds of standard reference materials. The detection limit is 0.1 ppm. Increasing the irradiate time, thermal neutron flux and measurement time can increase the sensitivity of the technique. 532

1.

mv. (iti-iti)

iw (NAA)imfj 2

1)0 (Instrumental Neutron Activation

Analysis, INAA) (n-y reaction)

TEU minim

n0l1in'UflH^lomS(Radiochemical Neutron Activation

Analysis,RNAA)

Aft %>^> d1 RNAA mo mimsn^vi ifinfn Morrison mt Potter (1,2) SfnsUTUmiHEJnYmmjJ

HNCX Cd carrier HUO, mBr uEJfUS'K'U 1 " I I 1. tiiu 1)1 fill Hap DCWEX

(H,o,) (Br) mi

(Hap, hydrated antimony pentoxide)

(Dowex) J.R.Woittiez, Uf\Z M.Dela Craz Tangonan(3) 533

HNO, Cd carrier H2O2, Br2, Na 1 snwjaiti Y T > 1 ,

C Bio-rad L5^u

(Bio-rad

Br-82 Uel£ Na-24

527 kev U3^ 336 kev

1 14 115 I I'in Cd + n Cd In 336 kev vrio 527 kev

(Bio-rad AG2x8)

im 3.

2.

titrisol 9960 i nfueiaafliuooo ppm)

Sf^ (Suprapure ) 65 %

grade)

( Anion exchange Bio-rad resin AG 2x8 chloride form 100-200 mesh) 534

TORT-l (Lobster Hepatopancreas Marine Reference Material for Trace Metals and other Elements) ilifl National Research Council 0fi~mO4TU(lflfli2EJJJ 26.3 + 2.1 rimau

Oyster Tissue (IAEA 1566 a) International Atomic Energy Agency (IAEA) SfmitWUUflPuSfJU 4.15 + 0.38 Sediment (IAEA SD-N-1/2) i)1flB

Rice Flour-Unpolished i)1fl The National Institute for Environmental Studies (NIES) S 3 fhodiWll No 10-a flflTnt^YUUflfufjUU O.O23+O.OO3 fifi No 10-b " 0.32+0.02 No.lO-c " 1.82+0.06

30%

i 0.2 0.3

0.05 l

0.3

0.05 Tucni 2.7

20 illfl titrisol 9960 (Merck)

Uitt'VIB(Suprapuret( ) 18

20 LAZY

SUSAN cu9^mfa^ilgnimi?ifj-i(iJili-i/i)i:K^f;iiijjil'jjm9l'3Jci'ui?ii9u l.Hxio1

32 535

asaifnn 100 "kilmaeii la^fimnoivifjtnsasaiEJwmjfim^od 30 flaaaeii ua

500 IOOO 1500 iias 2000 lulmaeii fmlwuifvu f ibsinai 20 Ciaaasns uf)fii0ii5wlir1'ufntB'ws^irfi'iJ0ii)K^ uaiiVis^uniJiJiimif'S'u 10

336 kev UfiS 527 kev

"U"iis

100 500 1000 1500 uas 2000 n

Tort-l ilTfl National Research Council Cannada

Oyster Tissue ( IAEA 1566a ) inflOWmS IAEA

Rice Flour-Unpolished i)in The National Institute for Environmental Studies

(NIES) NolO-a, NolO-b, NolO-c

Sediment ( IAEA SD-N-1/2 ) !)in0-3fnTI1 IAEA

#3?niuifl5pm

19 LAZY SUSAN niO}jnil1t113J1?11flTU 20 fivll03jl1UMc10f1fn05^

-a ^ mu Tort-l lias Sediment 011IV!TU 32 ihlin Oyster tissue

Rice Flour Unpolished No.lO-a No.lO-b lias No.lO-c 01imTU 64

2-3

Sediment SD-N-I/2 l^l

m9laliJ5}JT4lw?n0fjn^9gnlill'HjjinyifTfi

30 uaaasii naiui lilwiwfioajji4iicifV4^i?iifjjj liofji^ifi 'H'u^ ii'Ufsaj'utTi' as 30 Saaaen iS9tn?asai£Jwiw!i\4viJjpi 536

-115 527 kev UV\Z 336 kev l

50 laf1iufif)in05^fifjfn5tiscnEjfi'H'u-3OEjfi^ffnf 1 30

TORT

mil \4 NaMo U3S; NH4Br S

1368 kev. U^^S;^lJ5fJ^4- 82 fivmWU 776.5, 554.3, 619.1 kev. \nfll414

• v

82 mlimfJliniJfniJJIflJJTn U NaMo tms NH4Br

3. 5 0.4 Ijjaiiimsau?i'ipiiE)li:Kifiou innemnvi 1 l-l 15 ^Vt^^TU 336 kev lias 527 kev i

3 fiiJJ 2000 Iifil'

2000 537

a-' q c* ci 10 fif-3 infiwcifni'viFmo^mem^'n 3

0.1 virllOW ctlW Rice Flour-Unpolished No.lO-a

2-3

10 mi n ^i luiomnsoi-athfi 3 Woittiez natTangonan 1.4x10

0.008

(NAA) 99.95 nlmmumviz 99.76

Morrison na£Potter 538 &=£>

4.

1) P.S. Tjioc, J.Radioanal. Chem., v.37 (1977) 511-522.

2) G.H. Morrison and N.M. Potter, Analytical Chemistry, v.44 (1972) No.4, 839-842.

3) J.R.W. Woittiez, M. Delu Cruz Tangonan, J. Radioanal. Chem, v.158 (1992), 313-321.

4) A.K.M. Sharif etal., J. Radioanal. Chem., v.170. No.2 (1993) 299-307.

5) M. Petra etal., Nucl. Instrum. Methods Phys. 299,85 (1990)

6) Sheldon Landsberger etal., Transaction-of-the American-Nuclear-Society v. 65 (1992)

176-178. 539

(count)iio^Cd-ii5 2jUg.

lliinfUUflfllStlJJ count ( 336 kev. ) count ( 527 kev. )

ehvn 1000 ppm. column no column column no column

500 JJ.I. 5110 5238 2189 2204

1000 JJ.1. 5270 5369 2028 1917

1500 JLX1. 5345 5174 1987 1973

2000 \1\. 5224 5273 2098 2083

2 u?TA-awamiitmis:mifim8onTu?niJj"ifl5§Tuei

TfUe)'U93flniJJ"l?11$TU 336 kev. ( ppm.) 527 kev. (ppm.) fhiifmu (ppm.)

TORT 26.75 ± 1.66 26.62 ± 2.06 26 ± 2.1

OYSTER (IAEA 1566a) 5.16 ±0.67 3.86 ± 0.43 4.15 ± 0.38

Rice Flour-Unpolished No.lO-a nd. nd. 0.023 ± 0.003

Rice Flour-Unpolished No.lO-b 0.22 ± 0.025 0.26 ± 0.024 0.32 ± 0.02 Rice Flour-Unpolished No.lO-c 1.67 ±0.21 1.59 ± 0.10 1.82 ±0.06 Sediment (IAEA SD-N-1/2) 9.96 ± 1.03 10.83 ±0.32 10 - 12

Na, Br \M TORT Na, Br

sisn n'auutjn "H^llEJfl

Na 21700 ± 1400 ppm. 8.72 ± 0.05 ppm.

Br 4700 ± 170 ppm. 11.28 ± 0.14 ppm. 540

jiJvi 1 un3Jwi?iLiJfsi[nnjsin?n?ijnp:iJ5TUL'Ll1!iJiJLyltJiJ Tort

p]y\ 2 Tort Cd 336 kev. t 527 kev. 541

AG 2X8 542 TH9900048 TH9900048

ei#mw •ymufia ims imir mimar

n^imvi 10900 ivn. 5795230 ?ie 321

jjnmtJjj-232 uas:n?«lalpiivlgo0?niiuu

99.02

s IAEA-300 nas SRM-4350 4.05 Jf

Development of an Analytical Technique for the Determination of Uranium-238 Uranium-235 and Uranium-234 by Alphaspectrometer

Arporn Busamongkol and Ratirot Phareepart Chemistry Division, Office of Atomic Energy for Peace, Viphavadeerangsit road, Chatuchat, Bangkok 10900 Tel. 5795230 Ext. 321

ABSTRACT

The uranium isotope, i.e., uranium-238, uranium-235 and uranium-234 in sediments have been analysed using Uranium-232 as tracer. The samples were digested in cone, nitric acid, cone, hydrochloric acid and cone, hydrofluoric acid, respectively. Uranium were then extracted into

TBP in CC14 back extracting by dilute HC1. Then uranium was separated by electrodeposition and subsequent a-radiation of each isotopes were measured by a-spectrometry. Chemical yield of the electrodeposition was found to be 99.02%. The accuracy and precision were checked by using Standard reference material IAEA-300 and SRM-4350. The average diviation coefficient is about 4.05% 543

urmi

V

V

J 3 !9

234«o^jiimtJU-238 Sfiiminfiiuu l fffQTjgmfi«jj-235?i05jiimou-23f 8 Sfiniviinii 0.046 235 i9vjle1(!B

^fl^nmtJ3J-235ll\JUsU3J(enriched uranium) Vif9fjn'nniMlfl91in-3(depleted uranium) fls1pll

9TDHlfif0-3 UJJPfmilfil^liniivldVlass Spectrograph) lfltllYlfl{jfl{hpi10

Bl^U direct evaporation, electrodeposition, vacuum evaporation, direct precipitation electrospraying 5ji5iw ou-235 $j (electrodeposition)<4) l^limWll-232 tSVim711(91(tracer)

miiHfiu-235 544

1#DC Power Supply, Model 35-3A SNO2

(active area 450-mm2) Mm ORTEC, Model No. Bu -020-450-AS tlUf\ 8 vhl?\ ^imtiJJ-232 (I'UU'UU 9.9989424 dpm/ml) llluiVlilifQI HitiiUISIIJIV! IAEA-300 (Baltic Sea Sediment) Uf)Sflfmnfl?3TU SRM-4353 (Rocky Flats Soil No.l) analytical grade

100 lulfliaen(0.99989424 dpm)

(count per minute = cpm)

efficiency = ( cpm / dpm ) x 100 2. ^il^ i3itnias;ait)ivi?ii!B0i5|t?mfj)j-232 hum 250 luIfii^ilffluuninBi ssmmnfo iwu ?n pH=2 a-jliJ 5 aHiw\ntf^v\timoT\

i V Ivlvli 1.2 iiouuili iilijnai 2 ^ilu-3 'Hn^snniTwi^ujnifisfntJ uewlwmt) (i:i) l

moiui1iJ^ni4iflivniliJjiftj(dpm)'uo-3^iimtJjj-232 Yunnvi

dpm = ( cpm / efficiency ) x 100 545

3.

3.1

IAEA-300 iJisjjiai 3 nfw imjnifliuennmj&j 30 {jaaaai

24 iflunifllsieiifiaoinHjiij'ii'u 20 Saaaeis qu 12 20 Saaapii ssmmm-ari'm 2 fift wunifiitjpiifii'iiiu'U'u 20 :11) 10

3.2 np5jimt

15 10 ijaaaeii V 10 Saaa^i? 3 fif-3 3 fifwrnunu 20 Caaapii a1nfiiiejn^^'Ufnias;ai(j V V V i (1:11) 10 Saaaen V V V V 3 f H?n pH=2 5 flaaati? tjultfasmu «Jvji«cnniJ lfe 2

4.196, 4.401 4.774 keV

IAEA-300 uas SRM-4353 "SI 3

4. 546

Efficiency Uf\Z Chemical yield

Efficiency (%) Chemical yield (%)

l 25.92 99.44

2 19.62 98.94

3 23.48 98.54

4 20.94 99.20

5 22.54 98.72

6 26.14 99.29 Average 99.02 +.0.35

y • mvt\ U-238 (Bq/g) U-234 (Bq/g) U-235 (Bq/g) IAEA300 SRM4353 IAEA300 SRM4353 IAEA300 SRM4353

l 0.06333 0.03927 0.06615 0.04277 0.00244 0.00221

2 0.06231 0.03587 0.07184 0.03751 0.00281 0.00185

3 0.06024 0.03734 0.06650 0.04055 0.00259 0.00204 Average 0.06196 0.03749 0.06816 0.04011 0.00261 0.00203 ±0.0016 ±0.0017 ±0.0013 ±0.0024 ±0.00019 ±0.00018 RSD(%) 2.58 4.54 4.55 5.98 7.28 8.87 Reported 0.0647 0.0386 0.0690 0.0391 0.00275 0.0019 Error(%) 4.23 2.88 1.22 2.58 6.55 6.84

RSD = Relative Standard Diviation 547

U-238 (Bq/g) U-234 (Bq/g) U-235 (Bq/g)

l 0.0251436 0.0261007 0.0011202 0.0270079 0.0274051 0.0012059 0.0248020 0.0250821 0.0009953 average 0.02565±0.0012 0.02620±0.0012 0.00111 ±0.0001 2 0.0304905 0.0314205 0.0012733 0.0326578 0.0341638 0.0017730 0.0312872 0.0336970 0.0018056 average 0.03148±0.0011 0.03309±0.0015 0.00172±0.0001 3 0.0235757 0.0245461 0.0008976 0.0216211 0.0222148 0.0009039 0.0208645 0.0232848 0.0009105 average 0.02202+0.0014 0.02335±0.0012 0.00090±0.00001

m mitaenuviSfn resolution

19.62-26.14

99.02 1.22-6.84 tnmimnnltJU-235 fifh relative standard diviation 0t)1'U5lil-3 2.58-8.87 548

ua

1. A.E. Lally, K.M.Glover, "Source Preparation in Alpha Spectrometry" Nuclear Instrument

and Methods in Physics Research. North-Holland, Amsterdam, 1984, p.259-265.

2. Cloude W.Sill, "Determination of Thorium and Uranium Isotope in Ores and Mill Tailings

by Alpha Spectrometry"Analytical Chemistry , Vol. 49, No.4, 1977, p.618-621.

3. F. Vera Tome and A. Martin Sanchez, "A Simple Method of Analysing Alpha Spectra of

Environmental Natural Uranium Samples" Nuclear Instrument and Methods in Physics

Research. North Holland, Amsterdam, 1989, p.289-296.

4. N.A. Talvitie, " Electrodiposition of Actinides for Alpha Spectrometric Determination"

Analytical Chemistry. Vol. 44, No.2, 1972, p.280-283. frflfl 549

uasmafil fauintn nn

n 579-5230 Ivntnt 561-3013

CA- 3 •uo-aififB^ilgniQiiJijjnmiBtJ - l iJfinJ^filw l (ilili. -l/i) Utltl Triga Mark 3 "K-aiMrlnPf^UifliQW^SfiivJan^minii 2.5 x lO" S'i iiaTnimi?i5T0TiPii-3aun3JjJTMa-3-3TU 511 kev 13N ^mpiinfiilgmoiwiifiatJi 14N (n, 2n) I3N (HPGe)

(NH4NO3)

27

7.02 moii'W'u?! CB-3IU0IIVIEJIIII1V!

43.88 5 50 TH9900049 TH9900049

Analysis of Protein in Soybean by Neutron Activation Technique

Chutima Kranrod and Nualchavee Roongtanakiat

Sciences Faculty, Kasetsart University

Varavuth Kajornrith and Areeratt Kornduangkaeo

Physics Division, Office of Atomic Energy for Peace

Tel. 579-5230 Fax 561-3013

ABSTRACT

Nitrogen content in soybean was studied by using Neutron Activation Analysis technique

through fast neutron at the flux of 2.5 x 10 n/cm .sec in the CA-3 out-core irradiation tube of the

Thai Research Reactor-1/Modification 1 (TRR-1/M1, Triga Mark 3 type). By measuring gamma

ray of 511 keV from N of the nuclear reaction, N(n, 2n) N caused by the annihilation of

positron disintegrated, the semi-conductor detector (HPGe) was connected with the multi-channel

analyzer (MCA) and monitor to display the spectrum range. NH,NO3 was used as the standard for

the analysis. The inaccuracy of the analysis caused by other radioisotopes, i.e. potassium,

phosphorus and reaction from recoiled proton scattering in soybean was corrected.

The data of 27 samples analyzed by neutron activation showed no significant difference

in the nitrogen content. The average nitrogen content of all the soybean samples is 7.02 %

equivalent to protein content of 43.88 %. 551

fiTMl

Glysin max (L) Mcwiii soybean

mfi

I4N imSvi 13N

l4N(n, 2n)'3N DiniT'UT'pii^minujjTw^^Tu 511 keV

l. mfa-aiJgmwibu'lcin'ou-i iJfuiJi^fiiw l (iliJi-i/i) iiuu Triga Mark 3 011J CA-3(1lJ^ 1) 2. mnfichmmu 27 wQeoi

< c 3. pfiimB I^iiiri NH4NO3 (imjjljjmojjliJiPiivi.) i wQKi3 utn«jifi?sivi K2SO4

T (C6H]0O5)X 6H]0O5)X

4. 1Q0H (vial) vrfeinfilwamvilatj uuifi 2 fninftn 552

5. muCn (Rabbit) vtfeinflTwrneyniau uinfu^'UH'iffuonin-a 3

tf-3 101

6.

7.

9. OlIfliflTTflJ^^ llisnOUaiOMTlflf-jmmjJJJI 'V11^1tJti)0I3J1t'U£/}JlJ?JT?T1HB0f-3 1(0-3

Canberra TnillWUfl reverse-electrodrse-electrode closed-end coaxial germaniugerma m 1U GR2020

2816A MCA (multichannel analyzer)

series 20

l.

H' nfo NH4NO3

K2SO4 lTIlnJi ^ ilfJ l nfw

2.

ll^^J^lfl U1VllJ0TU1-3^vlitTfyT''U'3«i110U^vi0 CA-3 110-3

l (ilib-i/i) 2.5xio" uiffi^ovj^owin^i^uwiw^iwoiun^ WM 10

3.

5 UTM

QiP^mnuun 'MiJinoDPifj'Mii^aiumtJiJiJ^viipf^^^eri MCA vii 553

4. 2 anuais n 4.1

4.1.1 m'\i\

uninn Gamma-ray catalogue

4.1.2 511 keV

511 keV 10

4.1.3 l) miiinfii P vnnasnnilgfiiEJi P(n,2n) P viufnfii-j^Qin 2.5 4-5 ivin 119^1^0 30P ^9 iJisuifu 10 uivi

2) 38 K ^tn«snnilgnim 3939K(n, 2n))3838K 7.7 vn^ 511 keV ims 2170 keV

• V 10 ui^ ildgfjlMfTfnfJMiiilijnai 10 invi O ^infi'ut 5 un^ ii^QMi9?inffi\4^f) (peak ratio) im^mmuij-ma^ui 511 keV im^ 2170 keV mgfl^ 511 keV vn 3)

10 invi 10 511 keV

511 keV iffluu 554

4) 10 UTM ildaubimnuph 10 TJT^ imiuiiniVi^mj'm 5 W\Y\ S^ 511 keV wfi ma-3snnfninis;w9unnu iMiinliilww fliuifu'wij^lwi^fi^via^^iTj 511 keV

4.2

4.2.1 ih?h0{h-3thivm94 nas NH4NO3 moTui^^uiu 10 mvi 10

4.2.2 j

s NH4NO3 innilJllUWU^IflWfTWa^-JIU 511 keV WIUQBDO'J 1f)inn°B (Covell's formular of total peak area)

4.2.3 9i'UQfufiiiJiiJurii'U9-3innfn?iUfni4DO-3l9li!KiYii)niJ3Ji4Pii-3^ ^S V

511 keV

511 keV

4.2.4

511 keV 1u

511 keV

511 keV

511 keV i 555

(protein factor)

6.25

l.

l.l CA-3 10 HPGe fol r\ 3

Gamma-ray Catalogue

CA-3 556

GAMMA SPECTROMETER

Multichannel Analyzer HPGe 'Detector Preamplifier Amplifier

Power Supply High Voltage Micro Computer

20000 -

15000 - »Mg- 2

10000 - •- c i 2 1 I cuu r i i 5 sr > _ 84 7 k 51 1 k I | s § ^ 5000 5 J 1 i 1 " 3 oo I 0 J i .. i r. ' 1 CHANNEL 0 500 1000 1500 2000

2L uflPi-jflnJnnfjjwSliinnwiiiB-ifniwaB-i M^JBUJJ uvnu 10 unvi Siiinu 10 unvl iifl^Hn UTU 5 unvi 557

lefatriiJnijtfMfmlT wa^-mue^fninmn (keV)

N- 13 511

Cl-38 620 HAS 1642

Al-28 760, 1268 UBS 1779

Mg-27 847 HflS 1010

Mn-56 847, 18101ms 2117

Ar-41 1293

K-42 1528

K-38 2167

1.2 511 keV

(vn^)

9.4 558

10000

1000

o o 1 00

10

20 40 60 80 100 120 140 Time(min)

10 MIY\

1.3

l) p 31P(n, 2n)30P

SJUIIU 4-5 P fioiJ^suifu 10 tnn v la/ 2.5% 2)

Knso4

511 keV im^-vN^^iij 2no kev 8K

0.5023

3)

511 keV nui4ivcun^j0-3tcKfi3lcitT^1'l(

630.02 559

4)

511 keV

750.375

40000

30000 ke V (K-42 ) o 20000 o > ro > in co

10000 - > Si > >

0 CHANNEL 500 1000 1500 2000

?IJYL5 ii KoSO 10 6 10 unvi un\4 5 unvi

3 O o

CHANNEL 500 1000 1500 2000

?iJvi6 10 10 •unri aar unu 5 unvi 560 frflfl

500

Z) o o

CHANNEL 500 1000 1500 2000

vial vwsnnmyfliijfjelu'me'U'U'lu 10 invi 10 unvi Hnsnlurnrfaw?! inn 5 mvi

2.

27 hum n

iJiuiaii'uTpi'iiQ'u (%) ifiuiaiTitTfmfnj (%)

l 6.93 15 6.00

2 7.05 16 6.28 3 7.73 17 7.02

4 6.78 18 6.91

5 7.17 19 6.91

6 7.71 20 7.73 7 6.62 21 6.50

8 6.96 22 6.62

9 7.14 23 6.97

10 7.18 24 7.72

11 7.36 25 6.65 12 7.01 26 7.17

13 6.95 27 7.28

14 7.46 561

hum 27 fiivtm 6.00-7.73 %uw0maui5uiliymTiJi^'u'lAtjl

nail na luTemflV! nw-3mu?T imnui5tiu

• v

s 6.00-7.73 iimfK 37.5-48.31 3.

wiii1jjlfiinfu1« i iJIS;in01 2 4. miimns;'HiliJJioivluI«iiflu ifiuii'uiPiiouuefi^n^'uS'uamtj fia

1. IM%IS tru5?i. 2527 j iJisjIovuluiJismflflvitj. ui«vi tTmueavli^vi «in«, n^ivrw ; 150 2. Amiel, S. 1963. Activation Analysis with Nuclear Reactor not Based on (n, 2n) Reaction, in Chemistry Research and Chemical Techniques Based on Research Reactors, Technical Report Series No. 17, IAEA, Vienna, p. 115-135. 3. Kasta, I., Ravnil, V. and Dumanovic, J. 1969. Determination of Nitrogen in Plant Seeds by Fast Neutron Activation Analysis. In New Approached to Breeding for Improved Plant Protein, IAEA, Vienna. P. 161-168. 562

4. Ridwan, M. and Smith, G.W. 1975. Determination of Total Nitrogen in Rice by 14 MeV

Neutron Activation Analysis, Atom Indonesia, Vol. No. 1-2. IAEA, Vienna. P. 6-17.

Nieman, E.G. 1980. Nuclear Techniques for the Determination of Protein Content in Plant

Material. Atomic Energy Review Vol. 18 No. 1. IAEA, Vienna. P. 125-128.

5. S. Szegeddi, D.S. Mosbah, M. Varadi, I. Szaioki. 1988. Protein Determination on Soya Bean

by Fast Neutron Activation Analysis, J. Radioanal. Nucl. Chem., Letters 127- p. 121-132. TH9900050 563 TH9900050

E I'UVEJ newlmuf t

5614080 Tn^JTII 5620118 email : [email protected]

suru 7 m 22 ti

AI, V, Ca, I, Cl, Mn ims Na im

3 mu na ndu^ l Iwun Al, Ca, Na ims: Cl

ii 10 nq'u^ 2 Imtfi v iias I cK-38i0yas;'uo^fmuitiJi<)Ji'3\4is'H'in^ 10-50

Mn S'uoufi'oin 2 wQ0t)i-3 ^SiJ?jjifu^n'ii(ni0m-30'uiJis;}jifu 12 ivh

Instrumental Neutron Activation Analysis for Human Hair

Wichian Ratanatongchai Wanchai Dharmvanij and Somporn Chongkum

Physics Division, Office of Atomic Energy for Peace »

Tel. 5614080 Fax: 56201 18 email : [email protected]

ABSTRACT

Hair samples from students aged between 7 to 22 years old were analysed by neutron activation analysis at nuclear research reactor TRR-1/Ml. From qualitative analysis of short-lived isotopes, Al, V, Ca, I, Cl, Mn, and Na were found. The quantity of those elements can be classified into three groups. The first group is Al, Ca, Na and Cl with variance less than 10%. The second group is V and I with variance between 10% to 50% and the third group, Mn, two samples have concentration about 12 times higher than the others. 564

NJJ ltasneufou ifi'uwu no fbuvkgnagivimminfTiiJs: immnwu s i$umjiilvuett?imhiJYipnmmi ik mjiJU l ui fnulu 6 mJfl"m ivjas; 40-90 #

l^UHUlJiSfiOlJWllOBiqViintJ^'Ufl Iflllfi Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Br, Rb, Sr, Mo, Ag, Cd, Sn, I, Ba lias Pb(0

2. •HTTlfl1^^unUUn'K'Ufltnin-3^TUnillJll HPGe ^U GCW1552 Ue-3U?^IV) CANBERRA

3. IKUUllfinsM^tjjiQmUU'HfnwVO^ (Multichannel Analyser) 114 S100 U9^1J?£YI CANBERRA 4. tniUifliJ'm Ref. Mat. 8435 Whole Milk Powder 1)9-3 National Institute of Standards and Technology, USA Ut\Z Ref. Mat. Soil-7 «U9^ IAEA 5. i#uwy{nmuifl1uu

mfimu9 onej 7-221) «IVJI\4 20 wiatli^ iilumffwiy^ 18 2 J

l. 2 f\h 2. 565

3.

4.

whole Milk Powder lias Soil-7 Ai ne-aifife-JiJgfntui « 9.5xio10 fo iflvinai 5

5.

6.

lOOOO -

1000 -

o u 566

.5.™,™,

27 , .28 Aluminium Al(n,y) Al 2.24 m* 1779 keV 51,,, .52,, Vanadium V(n,y) V 3.75 m 1434 keV Calcium 48Ca(n,y)49Ca 8.72 m 3084 keV

Iodine 127Kn,y)128i 24.99 m 443 keV

Chlorine 37Cl(n,y)38Cl 37.24 m 1642 keV

55. , .56. Manganese Mn(n,y) Mn 2.58 h** 1810 keV Sodium Na(n,y) Na 14.96 h 1368 keV

* m = U1Y1 h =

3 tmuaimj 2-1 ^ 2-7

Bifj Al (ppm) V (ppm) Ca (%) I (ppm) Cl (%) Mn (ppm) Na (%)

lliUifli 0.91 0.32 0.32 1.86 0.070 3.91 0.039

SD ±0.03 ±0.13 ±0.02 ±0.28 ±0.004 ±0.83 ±0.004

(n-JBth-3 Al (ppm) V (ppm) Ca (%) I (ppm) Cl (%) Mn (ppm) Na (%)

1 1.44 0.08 0.06 1.67 0.078 4.35 0.031

2 0.96 nd 0.07 0.71 0.152 12.49 0.037

3 1.58 nd 0.09 1.01 0.198 4.36 0.040

4 0.68 nd 0.09 0.65 0.127 1.93 0.056

5 0.81 0.11 0.15 2.38 0.026 9.49 0.018 567

Al (ppm) V (ppm) Ca (%) I (ppm) Cl (%) Mn (ppm) Na (%)

6 0.78 nd 0.19 1.47 0.041 77.31 0.026

7 1.01 nd 0.08 1.33 0.156 3.44 0.013

8 0.77 nd 0.19 0.92 0.025 4.62 0.008

9 0.75 0.28 0.09 2.33 0.078 7.92 0.018

10 0.88 nd 0.19 nd 0.060 10.76 0.053

11 0.95 0.18 0.14 2.32 0.065 8.30 0.026

12 0.88 nd 0.12 1.23 0.158 2.98 0.020

13 1.11 nd 0.09 2.13 0.175 5.80 0.019

14 0.89 031 0.15 1.56 0.030 3.07 0.020

15 0.79 0.22 0.06 1.69 0.154 7.44 0.022

16 0.67 nd nd 1.19 0.406 2.47 0.056

17 1.22 0.43 0.18 1.25 0.046 4.94 0.019

18 1.40 nd 0.06 2.96 0.112 3.61 0.012

19 1.08 0.34 0.09 1.15 0.074 4.32 0.020

20 1.18 nd 0.17 nd 0.036 53.29 0.017

* nd = non detected

1.6 Al(ppm) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 iiJvi 2-1 oo ooooooo opoppopopop o — — o ooooo — — — — — to o OtOUOOOONJUOOOO ••-4- ^™ RIIIMIIItttltlttttttttl

to

c; Si a

•Jit

) •o e •o 3 o-S a O a if E! __ to

C3 C2- —

If 2 5 ^

O 569

0.450 0.400 0.350 0.300 0.250 - 0.200 - 0.150 - 0.100 - 0.050 - 0.000 -1111. i U-1 •hi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

^llvi 2-6

80.00 Mn(ppm) 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IIJYI 2-6

Na(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2-7 570

20

3

1. phflTI 10 iflUfl Al, Ca, Na ims Cl 2. Bi 10-50 1mm v uas 1 3. Bntjlufiqufiimiri Mn 2 fiimiA ^SiJiwifuug^ Mn itasinoi 12 m'n

tK^im9i-3wamiQifinsTiBiqv1S'iJ?inaj^i?lui0tjn£ I^fiifi Ca, ci uns Na n Ifluri Al,v, I uns Mn

imfi'uu iiu

1. Valkovic V. Trace Elements in Human Hair Garland STPM Press, New York, 1977. 2. International Atomic Energy Agency, IAEA-TECDOC-564 Practical Aspects of Operating a Neutron Activation Analysis. IAEA, Vienna, 1990. TH9900051 TH99000S1 571

Am/Be

1/ o^

5614080 Ivntm 5620118

241Am/Be ui4iA 50 gi mnifins'Hvnpnonu 2 1-6 fie n) •HiibinoisnmJgnim

i 28Si(n, p)28Al nil 27Al(n,p)27Mg uns; u) vnI?iyHiB^nvnnj!nnfinn3J5Jupifnvi!'4^iD9-3 28AI

28Si(n, p)28Al nu 27Ai(n,y)28Ai

5%

10%

Determination of Silicon and Aluminum by Am/Be Neutron Source

Wanchai Dharmavanij, Chanchai Asvavijnijkulchai and Somporn Chongkum

Physics Division, Office of Atomic Energy for Peace

Tel. 5614080 Fax. 5620118

ABSTRACT

241 Neutron activation analysis by 50 Ci Am/Be neutron source was applied to determine the silicon and aluminum content in sample. The analysis was performed by a) determination from

' Si(n, p) Al and Al(n,p) Mg reactions and b) determination by calculation from the activity of" Al ^o ^o 'j'j 'yQ produced by Si(n, p) Al and Al(n,y) Al. The results show that the first method is better than the second method for aluminum analysis with an accuracy of 5% but for silicon, the latter method is preferable with an accuracy of 10%. 572

itasnou 5 nlm fmiunTUfru

27Si(n, p)28Al 27Al(n, y)28Ai

vu lumntnlu

Spyrou ims; Kerr Surrey, (I)

"9Ca (8.72

37S (5.1 MIYi), 2°7Pb (0.8 llJ-m), 2°F (11.2 mSe (17.5 llilYl)

(2) Borsaru tins; Eisier 0-anmiiS'tJi'viEJifntTwiims^wtn'Hniiu (CSIRO) 00rnw?mw 24'Am/Be nujjufif-a^ 20 gi moimnsii

<5Hn9tJ (Sio2) (AI2O3) (Bauxite) iliinfliifhgth-a 3.5 nianfu 10 (ia) ti-a 0.28% nas 0.9%

Celenk iiss; Ozek , (n?n<3) 8Pu/Be f^ 5 fji

10 Alfassi lias Lavi flTflUVniVltJi^t) Negev 0fmi0a('

•Mfftmn SiO2 fiwa"wmja"iias;a"ia NajCO,, Mg(NO3)2, AI2(NO3)3 uas; (NH4)3PO4 meifmiii

Na, Mg, Al, Si, P iflumioiuCiflioijTumf 0-3ilgnifu IRR-I Na, Mg uas Al

Si Uf\Z P V.

Penev, Kuleff lins Djingova flnfltTnUUTflfJVia-3-3TUtnifl?1tJl, ni , uunui^wu

0.05 o^ 0.15 nfu nuii flnjQ-j Al, Mg 573

Si 1«r^ 0.03, 0.8 ims 30 mg/g 2, 8 ims 7%

(Cyclic Activation Analysis)

(T)

T=t,+tt,+tww+t+te+te+tr r (D mo

iwi (D,)

D| =

N

8 X 574

n iau (D ) ss

A = D, (3) \_{\-e") -AT\2

Dc (t, = nT)

(3) on tw = tr = o fin Dc t, = tc =

(Comparative Method)

w , D a = -^ (4) Dd W sld me a

Dsld, Dc W

vifainnififg^ilgnifuiliiJifu 2 imii m (n, p)

(n,

3/ 3/ i> o rf o' ilgnit)TuiifiafJii)9-3 si ims; Al

Abundance Cross-ection Half-life Ey(keV)

Si(n, y) Si 3.10 0.107 b 2.62 h 1266.2

28Si(n, p)28Al 92.23 2.0 mb 2.25 m 1779.0

27Al(n, yfAl 100 0.233 b 2.25 m 1779.0

"Al(n, p)"Mg 100 20.0 b 9.45 m 843.8, 1014.4 575

l. 9"iu?men9m-3Pii{j'tbeii9'um

28SSi(ni , p)28Ai ims; 27Ai(n, p)27Mg

2. 8AI 2 fii-3

8Al

28si(n, p)28Al ims; 27Al(n, y)28Al

8Al (5) ims (6)

(5) m

(6) m

8 D Al m

Kx 28 AI

(5) uas (6)

_

= _a,KA-a1K\ 576

/

A — K. ,,K... — K. .,K... Al Si Al SI

Sio2 ims AI2O3 (AR grade)

mnom AIA<%) SiO2(%) 1 10 90

2 20 80

3 30 70

4 40 60

5 50 50

6 60 40

7 70 30

i SiO2 uns; AI2O3 UTHiTniJisuifu 2 niw

241Am/Be •uuiw 50 fji i(6)

Nal(Tl) "UUIfl 3" x 3" ^f

s-io nio^ Canberra

l. t = 5 "un^, tw = l U~\Y\, tc = 5 tr= l

2. 2 ^PI ^0 577

fia

843.8 keV 1)9-3 2?Mg llt\Z 1779.0 keV 1)8-3 28A1 imsfh'U'KU'H'llHjJ'Ifli (4)

if M 2 1779.0 keV Ue-3 28A1 ue-a Al nas; si (7) ims (8)

1-3 3 iins 4

104 A

103 -I

1 t) —i—

123 295 3&1 512

Channel Number gilvh 578

10" -q

10" -

I 103 o o

102 -

10 —I— —i

128 256 384 512

Channel Number

2 3

5 10 q

10- -

£ § 103 o u

10 —i— 1 —i— 128 256 384 512

Channel Number

JTJVI 3 30 % 579

w a m i Q tfi n i; w il?u i fu o s; a 2 VJ u

% A12O3

fhfiiflimiwi ism 15T12

11.47 9.19 4.62 flijjneth) 20 19.77 20.23 16.01 in^wjatn-j 30 29.76 29.27 25.51 ff11*T39fJ1v1 40 39.61 38.82 31.37

ET13?haEJ"N 50 49.58 48.03 37.45 eraehath-a 60 60.11 62.67 52.27 mtphafh-a 70 70.45 73.35 57.78

iwar % AljOj

iSfii 1BTI2 m?«iBdn 10 88.53 88.93 89.70

Pf1T«Q9tJ1v1 20 80.23 92.04 68.13 rrTsehath-3 30 70.24 73.28 63.60 fniwiafii-j 40 60.39 70.92 57.54 pfi^wQadivi 50 50.42 62.15 47.57 jniWQQfJl-3 60 39.89 50.63 39.03 rniwQBtiiNi 70 29.55 46.19 34.95

snnilgnftn 27Ai(n, p)27Mg

3

10

28Al

28 AI 2 n^a K 580

•SSneu uni qhutifl us

1. N.M. Spyrou and S.A. Kerr, "Cyclic Activation : The Measurement of Short-Lived Isotopes

in the Analysis of Biological and Environment Samples", J. Radioanal. Chem. Vol. 48 (1979)

pp. 169-183.

2. M. Borsaru and P.C. Eisler, "Simultaneous Determination of Silicon and Alumina in Bulk Bauxite

Samples by Fast Neutron Activation", Anal. Chem. Vol. 53 (1981) pp. 1751-1754.

3. I. Celenk and F. Ozek, "Simultaneous Neutron Activation Determination of Alumina and Silica

in Geological Samples Using a 5 Ci Pu-Be Source", J. Radioanal. Nucl. Chem., Letters 85/2/ (1984)

pp. 83-90.

4. Z.B. Alfassi and N. Lavi, "Simultaneous Determination of Sodium, Magnesium, Aluminium,

Silicon and Phosphrous by Instrumental Neutron Activation Analysis Using Reactor and Epithermal

Neutrons", Analyst, Vol. 109 (1984) pp. 959-962.

5. I. Penev, I. Kuleff and R. Djingova, "Simultaneous Activation Determination of Aluminium,

Magnesium and Silicon in Rocks, Glasses and Pottery", J. Radioanal. Nucl. Chem., Letters.

96131(1985)pp. 219-232.

6. IUVU siiimCu uasfifus, "miHpi'unimfi'Uifiio'ut ll f^ 5 Owqfrflmeru 2537) TH9900052 TH9900052 | 581

su mmai ^wala arunemfliva giYnw mmsmm mcytm e

I 579-5230 fia 542 Trntni 562-0118 e-mail : [email protected]

9\iv

i(i TJIJT.-I/I

5 ivin

Elemental Analysis of Shells by Nuclear Technique

Sasiphan Na Songkhla, Usanee Santatiwongchai, Surapong Pimjun,

Chanchai Asvavijnijkulchai and Somporn Chongkum

Physics Division, Office of Atomic Energy for Peace

Tel. 579-5230 W9 542 Fax. 562-0118 e-mail : [email protected]

ABSTRACT

Quantitative analysis of strontium(Sr) and calcium(Ca) in fresh water shell and sea shell was studied by X-ray Fluorescence(XRF) technique with Emission-Transmission(E-T) method, using isotope X-ray sources of plutonium-238(Pu-238) and americium-241(Am-241), and comparing with Neutron Activation Analysis technique in TRR-1/M1 reactor. The results show that the calcium content in both types of shells are almost the same, but strontium in sea shell is 3-4 times higher than that in fresh water shell. Moreover, the results can verify the region that used to be the river or ocean. The high ratio of strontium to calcium in many types of the shells from Wat Jaedeehoi, Patumthanee province show the specific character of sea shell. So it can be concluded that this region used to be the ocean in the past. 582

l. umn

in 4.5 •vtuphuil

v i . uvnmjvn v\zm imsiuJih 3 wurrmiJYiuai

V

I Ul Oi 4 « 4 i r a/

4 Ivi 10 ;ifi

10

Fluorescence Spectrometry; XRF) lia Emission- Transmission method(E-T method) llJi WUnUfnillfins'H BTW^lfJli eutron Activation Analysis)

1. llJmJfTHBmhj'UBfl periostracum «K-3lJisnBU«lt)

2. iitin prismatic layer V 3. llJaon'HBfJwl'U tifJD nacreous layer(mother-of-pearl)

" Umbo 2 583

2. nieu

2.1 wetiliu VIOOUJJ neomu womifi™ weinn-Jiu imsnorjvmvi nJaofmeulimfu woumu a Motunatnmn

TWBP^ (

Figurel. Some ancient shells from Wat Jaedeehoi, Ladlumkaew, Patumtanee province. (a) 1 of the 50,000s, large oyster, theirs size are more than 1 ft. (b) from left to right, conch shell, small conch-liked shell, cockle shell, sea cram, scallop shell, etc. (c) murex shell

2.2 TTTTI«

(Si(Li) semiconductor dectector) UflS QXAS

2.3 2.4 ^fl^liflitUTlPlf^^linuuiCgamma-ray spectrometer) 2.5 mjnimflf-mnisp|u Am-24i

2.6 tni3J1?l5S1\4ims; target Iflllfl CaCO3 UftZ SrCO3 material) Iflllfl llll-IJJU 2.7 mfo-j^ivlvlifmjjasiQOfi 5 ehimvN, fiinlvJvlnanin*!

Invertebrate Zoology VOI Robert W. Hegner and Joseph G. Engelmann 584

3. iB

18 info i^wiSmnnf^rnQn^imu E-T method uas 7 iruAl?itn5n"iio"minsn70V! u on fh S'wi

3.1 millfl'31S'HTg1EJlfimiS'311^mani!!» »UU E-T method

238Pu 24lAm 3.1.1 iJitiJnBfivietjliJpii-j'un ?nnii«fi

iviinii 1:9 mol'Hiniom^SfniJJi^iu'iiuiJiiiiJifu io% 2 ^PI u^iiiiiiJeifi^ofnijjfiiu 20,000 iJoi4« Ht nfu 2.8 i^unmn?

3.1.3 l«1tJJJtn?JJ1W?S1TJ'lJ?£n0U?il'3« CaCOjims SrCO3 HtTJjnUUll-SlJU 1?ltJ

CaCO3:SrCO3: ltll-3 iviinil 3:1:16

20,000

2.8 lifUWilJWl

3.1.4 IPlitllJ target QBlfitJinUinilJIWIJIU HpilMSlliintUTJO-J CaCO3:SrCO3 5:1:4 3.1.5 t4i^0tii-3 itiijjn^ijiu ims target 238 A Pu nmYm^Tunisquimnu 13.44-21.75 keV meilfinSMMIlliinW Ca llftzntzviufiiu 241Am

q 59.54 keV m9imns;vfTniliiJiQiiu0^ Sr 3.1.6 imns'HHamiYiPitie^ l«ncj Ca ims Sr

X-ray 3.691 ims 14.164 keV 585

3.2 nTJimn^MlP1!/lfinTSm«m0n

241Am 3.2.1

3.2.2 •niniTTlfiHSTIQPliiff 1141J9-3ITVl?9Vll§t)lJ?i9llfiai§tJU

3.3 m?llfl'51S'HtflOlfifm011jibpi"5014(Neiitron Activation Analysis method : NAA) tilufniiif)iis;mvi9'HTiJ?uifuiififii5t)jJimspfvii9utlt)u viSeyTu V iiJti0fm9{j 12 3.3.1 is 0.1 nijj Iff vial 2 vial IlUllluw 1901-3^^ 24 vial 3.3.2iflitiumiinflisTuiflcjwflu ufim^fJUfniugmeKo.osnTU) tins tryiT9i4i5ojjfniuompi(o.oo5 niu) Itfithmmfiuimj ii^iim'^iSu 2 vial 3.3.3141^1901-3 vi f 9u?nijjiPi?siu1iJoTU'u

1 IITJQ.-1/I fiyio AI itlunfii 1 fui iitantn 5 3083 keV

ig CAI iilunai 2 I4iv1

388 keV 586

4.

4.1 E-T method 4.2 NAA method HHm?llfl512;T1im«^luTable 2 4.3 Comparison method wamillfmsMUfYfulu Figure 2 4.4 Comparing XRF and NAA method UfTfUHalu Figure 3

Table 1 Quantitative Analysis of strontium carbonate and calcium carbonate in present shells by XRF method with E-T Method

nJaODHOEJ %CaCO3(G) %SrCO3(Q) SrCOj/CaCOj V lliilfl : 'HOtJUlJ 84.5K1.9E-3) 0.084(3E-5) 0.00099 92.82(2.38E-3) 0.118(2E-5) 0.00127

YlSlfl : VTQEJfnCJ 97.32(1.39E-3) 0.337(8E-5) 0.00346 95.75(2.O3E-3) 0.354(1.5E-4) 0.00370

Table 2 Quantitative Analysis of strontium carbonate and calcium carbonate in shells by NAA method

%CaCO3(a) %SrCO3(Q) SrCO3/CaCO3 woo™ 91.92(1.06) 0.106(0.003) 0.00115 90.45 (3.75) 0.048 (0) 0.00053

VOEJflill 77.60 (4.36) 0.070 (0.002) 0.00090

VIOOWJOS 88.25 (3.66) 0.104(0.012) 0.00159 88.33 (3.66) 0.257 (0.016) 0.00291 89.33 (3.71) 0.184(0.003) 0.00206 91.77(3.63) 0.189(0.027) 0.00206 womn«u 86.68 (3.60) 0.191 (0.013) 0.00220 95.90(1.95) 0.375(0.011) 0.00391 65.06 (2.70) 0.136(0.012) 0.00208 587

3.5--

Figure2. Strontium/calcium ratio in present and ancient shells by XRF with comparison method

A

3.5 0.00350

3 - ••XRF A 0.00300 a. / JAA ) 2.5 - -•—NAAl 0.00250

2 0.00200 I Sr/C a ( > 1 Sr/C a ( h •-* 1.5 - 1 - 0.00150 / • • I 1 1 I • 1 0.00100 0.5 I I • 0.00050 0 JLJ •___•_i • . • • 0.00000 a c* 3

•7 C"

Figure3. Strontium/calcium ratio in present and ancient shells by XRF with comparison method compare with NAA method 588

5.

5.1 niiimiismnqlfmniiynfam©^ imu E-T method

^ 3-4 mi V 5.2 iSnJitJUm iJ^d uetim'i l uinm'i l 5.3 5.3.1

5.3.2

uinni'i iilf ©nviotjiiintu 5.4 flnniiJv) 2 m0iiiTt)ijmtJiJ0Pin?n\jnj0-3iTyi?oui^tJ3j^0ufimcKE)iJ iPirnmns «iPj«'3oi5iT3f^m0n(iK nu i 5.4.1 S' i40onii l

5.4.2

1000 ivii

lTd^ill Ka x-ray cfi iiliJ

-31 u?noiifitB«o'H0o 589

6.

l. qivuil' mi'vmmi imsiuim se^fh. 2538.

2. Bayard H. McConnaughey. 1974. Introduction to marine biology. The C.V. Mosby Co.. USA. 3. Glenn F. Knoll. 1989. Radiation detection and mesurement. John Wiley&SonsJnc. Singapore.

4. Mahlon G. Kelley and John C. Me Grath. 1975. Biology: Evolution and adaptation to the environment. Houghton Miffin Co.. USA 5. Robert W. Hegner and Joseph G. Engelmann. 1968. Invertebrate Zoology. Macmillan Publishing Co.,Inc. New York. 590 TH9900053 j= TH9900053

flfllTUIj HflS M "NWIWUIIS

nnjj.10900 562-0119 TnSTDS: 562-0118 e-mail: [email protected]

fomv, 6aiaon l&ri n

«-3i4ii

Investigation of Pink Tourmalines by X-ray Fluorescent Technique

Archara Sangariyavanich, Sasiphan Na Songkhla and Surapong Pimjun

Physics Division, Office of Atomic Energy for Peace, Chatuchak , Bangkok 10900

Tel. 562-0119 Fax. 562-0118 e-mail: [email protected]

ABSTRACT

X-ray fluorescent technique has been employed in the study of trace elements in six samples of gamma irradiated pink tourmalines, namely, red-pink (rubellite), light-pink, orange- pink, brownish orange-pink, purple red and purple orange-pink. The analysis of their characteristic X-ray indicated the existence of manganese in all samples. Trace amounts of iron, zinc, lead, bismuth or gallium were also investigated in certain samples. Since these elements were not present in red-pink tourmaline, therefore, we believed that manganese is the major cause of pink color in tourmaline while other elements produce various types of pink color. 591

nun

Rainbow Set vn)JinUVl\4OUJJ1flVl?J« f19 VUflVIU?T'KUlJjll«

< (rubellite) t'ue^^nnSSfimtj'niJ'nu wan^?nfj-3iJj^ ulwi1'U'MintJuvid-3 IIJTJ

jJDi] mofmuJatrmil'UflflfiJ

V i imsvnjjiflutTuiwcusnnui4ima^0ifliiliitJuiil

Minas Gerlas uas; mnj1^ mittio'n'JuiaiJ^iiJSfffliniivia^upiiiti^^iinjjui nuii 150 - 200 lUflSJUIPI

m\4

s; 2-3 m ng Pu-238

DPifj1HTif) Si(Li) 592

'B^moUi

Biqwa^'w

Bi Fe Ga Mn Pb Zn

wwa'8ij(9ifiihs:mmieittniju) • / • / • • TmyjBiiihwiaay&j • • • • • • u'-KBaUBU'BUVjBJJ&J • •

300 - 400

^9 l»i

ims;tnuiioimnsvi'5H3'viaiw

20 593

» s « $ i i * I

(n) 9*HIJIM« cjiuointf)

3 I Suanutixi

ylfii S = Source (Pu-238) 594

Nassau if 011<3)

• fiaiOfia^niJPruu^1lJ1I9-3Manning Ylfnpm(4> flWWOT0infiTnn charge transfer

Mn2* nil Mn3+ Vlf0 Mn2+nu Fe3+ Berchovuasflflimoil

(color center)

(6>

(<. 0.04%)

Mn3 Nassau

Fe3

w mia <5) i tuvhinau

?+ 33+ 1)0-3 Fe "H-allJJJflf m Fe -^ Fe +e m9HfTJJf11J?T

1)0PfJJU%TU1J0^ Nassau

Mn3 595

1. wastm "vrnna'u fwaina qiymQuwmj" 'Hasp «TJU^ 8 vi.fr. 2534 vmi 32-37 2. Kurt Nassau. Gemstone Enhancement. Butterworths, London (1984) p. 168

3. Kurt Nassau. Am. Mineral. 60,(1973)710-713.

4. P.G.Manning. Can.Mineral. 9 (1969) 678-690. 5. Kurt Nassau. The Physics and Chemistry of Color . Butterworths, London (1983) p. 101. 6. A. Sangariyavanich, C. Asvavijnijkulchai, S. Pongkasem and P. Tungpittayakul. Prodeedings 5 Asian Conference on Research Reactors, May 29-31, 1996. Taejon, Korea, pp. 396-399. J> 596 TI >900054 TH9900054

' was faviwu iH

fiaisivHnfnrrwi

50 ehfjch-3

Si(Li)

q Cr, Fe, Hf ims Ga l

V, Ti, As , Se Lias Br lflt)VllJ'3TlJ?JJ1tU51WlManlvi1'WaTJ

0.02% - 1.62 % lias; 0.14 - 2.26%

PIXE

X-ray Fluorescence Analysis of Natural Corundum

Chowunchun Prapunsri and Thiraphat Vilaithong

Institute for Science and Technology Research and Development, Chiang Mai University

Fast Neutron Research Facility, Department of Physics, Faculty of Science, Chiang Mai University

ABSTRACT

X-ray fluorescence method was employed to analyze 50 samples of natural corundum from

Myanmar.The x-ray tube was used to provide primary x-ray from Mo Target. Zr was used as the

secondary target. X-ray spectrums were detected using Si(Li) detector. The analysis show that the

corundum are mainly composed of Cr, Fe, Hf and Ga with traces of V, Ti, As, Se and Br. The

quantities of Fe in blue sapphire and Cr in ruby were determined to be in the ranges of 0.02% - 1.62%

and 0.14% - 2.26 % respectively . Results of other work by PIXE will be compared and discussed. 597

umh

I?»0lJfl^imi«SVIU'iilu0?yiJWlJii;f191J«ieJB1^f114cl WV! V, Ti, Cr, Fe lias Ga

lill PIXE(4> UC\Z Nuclear Microscopy"

e

- Kp n SfniniSIWimil incoherent V matrix effect 5ll

- Kp

2.1

(Fe2o3) I^IWIOJJIIU

i (A12O3) flQIUuifJYlB 98% f]«im WifiViflJ^1l4Qlfl51S'H lbs3J"lfU 25 flfjJ

1 e Mettler AE163 1flt)Wa JJnUtn5UnPI5STUlMan00fll K« (Fe2O3) ^ 598

rmfie 0.0%, 0.4%, 0.8%, i.o%, 1.5%, 2.0% uas 2.5% mowitwmnu pellet 2.5

d CV Vl a* manoon wft 25 nfu imsvhn'l'u pellet

2.2

Si(Li) Model 7200

V

^HJfl1fU Ortec 459 High voltage supply fj Canberra Research Amplifier Model

2025 Canberra S100 Multichanneannel Analyzer me llfl11Sllfl11SMVin^-31M U Canberra 8075 Analog to Digital Converter.UfiS

Microcomputer 7 m

10 5ami03JiiiJi 30 nlaliari 10 invi

7 miJfififjj QXAS

Ka-Kp V i i (136) Qfiri'uyi lwv»fi

lilmniu Sigma plot «

7 fin

V QXAS Sigma plot 599

S

50 ehotin

incoherent

nnw incoherent im IJe-slflilStliJ WQfninismtmu incoherent (la )ims; (lb)

I^(la) incoherent

% Fe = -0.0202 +(8.9163 X) +(2.0970XA2) 600 Boil®

2 -

O

1 -

0.00 .02 .04 .06 .1 0

Cr/INC . RATIO

(lb) incoherent

%Cr=-0.0401 +(32.9030 X) +(4.3375XA2)

(2a )uf\z (2b)

250 SAPPHIRE No. STA-1

Fe 200

< 150 [

a.

100 - o o

50 -

H< G:

0 4 • 0 100 200 300 400 500 CHANNEL NUMBER

(2a) 601

160

100 200 300 400 500 CHANNEL NUMBER

(2b)

(3a) ims (3b)

-.5 602

.35 RUBY .30 MYANMAR VIETNAM .25 AFRICA OTHERS .20

.15

.10

.05

0.00

-.05

%Cr

l ua

Corundum %Cr %Fe

Group 1 -0.02 - -0.06 0.02 -1.62

Group 2 0.03 -0.45 0.43 -0.82

Ruby %Cr %Fe

Group 1 0.14-1.10 -0.00--0.01

Group 2 0.19-2.26 0.01-0.30 603

fie Cr, Fe. Hf UBS Ga 1flmfo^mJllsill4e$hjh-Mtlhl V, Ti, As, Se ims Br

l, »miffl 2 uasmnmTv^iJfi (3a) ims (3b) SiJiinaimnmnfifrh 0.20% imsJilfuifulfiimtiuo^lw^Qtinii 0.20%

0.20% iiasSiJiJJitumflfiQ^iu'K^^'uotjnii 0.20% manaylu n

c PIXE(4) K^iNU'iil'U'nii^ufliJ?jjii]fi?mojj9^1t4if'3-3 0.05% - 1.36% l-J 0.01% - 0.06% 'U9n<0in5STnfJ-31\4miimns;'H'Mll'nu1f)tJl? Nuclear Microscopy"' W1J 0.16% - 0.79% imsiJiuiflimnnuownQi 0.01%

^ Dr. Joze Dolnicar (IAEA) ^1?in7!uilMfliiliniJiuus;

1. R. Tertian and F. Claisse. Principles of Qualitative X-ray Fluorescence Analysis. London : Heyden, 1982, ]] 258-277. 2. K. Nassau. Gems tone Enhancement. Oxford : BH, 1994. 3. R. Jenkins, R.W. Gonld and D. Gedeke. Qualitative X-ray spectrometry. New York : Marcel, 1981, pp 445-497. 4. J.L. Sanchez, T. Osipowicz, S.M. Tang, T.. Tay, T.T. Win, Nucl. Instr. And Meth. B 130(1977)682. 5. T. Osipwicz, T.S. Tay, I.Orlic, S.M. Tang, F. Watt, Nucl.Instr. and Meth.B 140 (1995)590. 6. D. Ertel. Excercises on X-ray Fluorescence Analysis. KfK/IHH, 1989. 604

Bmmnu svvu gpj cmnmm

1711.2186781 Iviisn? 2186770

imsman imulii 1mm

90

(waIvii'UE)jj-238 /

now uasman l, 10, 20 uas 0.5 HJOIIIJUW TH9900055 TH9900055 605

Bulk Analysis of Cement using Neutron Techniques

Pantip Ampornrat, Tatchai Sumitra and Nares Chankow Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University

ABSTRACT

Nondestructive analysis of Al, Si, Ca and Fe in bulk cement powder sample was investigated by using neutron techniques i.e. inelastic neutron scattering analysis, prompt captured gamma-ray neutron activation analysis and cyclic neutron activation analysis. Si and Fe were

241 analyzed by the inelastic neutron scattering analysis using 90 mCi Am-Be as a fast neutron source. The cyclic neutron activation analysis .was used to analyze Al while the prompt captured gamma-ray neutron activation analysis was used to analyze Ca and Fe. In the case of cyclic neutron activation analysis and prompt gamma-ray neutron activation analysis, thermal neutrons 238 were produced from water moderated 5 Ci Pu-Be neutron source. All gamma-ray measurements in this research were done by using a 5"x5" Nal(Tl) detector. The detection limits of Al, Si, Ca and Fe were found to be about 1, 10, 20 and 0.5% by weight respectively. Analysis results of cement powder samples from the neutron techniques were in good agreement with those obtained from the XRF method. Further improvement is required before the techniques is actually applied in analyzing of the cement powder samples. 606

4 BI

(Neutron inelastic scattering prompt gamma-ray technique) II. mflCflm?lflf^meummD»ntimJgn7Oim5tUTfoni0lJ (Neutron captured prompt gamma-ray technique) III. mfi5f11U'3W1O141l0f1Wn*'U (Neutron activation technique)

llllll on-line analysis

im'-3i8'uiJi^mvil'Htyci Imiri

n. [Nai(Ti)] •u'ui^ 5uix5wi man

0lJiJnT9nJisnSlJ l«llri V11iaRTligQiamn?l19V4 (photomultiplier tube ; PMT) 1STUVft1BPm8

mfimmafhumin (preamplifier tube base) llVff1-J^1!)lvlvliU1^Pl'\J^-5 (High voltage power

supply) Uf)£iflf O-nmiiSKWa-J-n'UUlJlJ'HJnEJ'HO-J (Multichannel Analyzer) 607

if o *=* 238 emmmf Pu-Be finwim 5 fji mfninman (collimator)

fl 241Am-Be fmwim 3

n. Imiri w^ni (Pb) l«nn

pnBETHanmu

5 WQ801-1 fl9 Wfl A 2 TftJfl B, C ims D W

901-5

2. (limestone) 3. wietii^iJ?smn«u«nu (shale)

4.

5. (Laterite) na

6.

7. W18di4liif!Jll111Qnqflll (raw meal) 8. ni8di-JiJisiinina'iin85 608

n.

lAm-

Be 90 nruifl 5 Cb x 5 \ii

2.

0.847 MeV 1.779 MeV

0.847 MeV

ims 1.779 MeV

v.

238Pu-

i Be 5 m 'M'ij??io1un4\jil'unii0Tui-3ffm0?jjawi9i?0'u v v 5 5i x 5 C

6.420 MeV i)

6.348 MeV

6.857 MeV 609

BCa NCa ~ RCa ~ RPb\ m BPb

1*0 Nr. = Ca 6.420 MeV

Rfb = 6.857 MeV

BCa = 6.420 MeV

BPb = 6.857 MeV fl (1jJSws;ni)

n^-jiuDo^imjjinfiyiijliiimnnjnfl fhnno-ififfumjin (MeV) *

2.223 M59uwunjjyTaififn5ioiJW')?)?9'U'i)o-)1alfmi)u (H) luih

4.43

7.368 n5BJJw»muin«inmi«iJ'uiwioi4

6.857 single escape peak HO-JmauemnuuiinflSCfn

6.348 double escape peak 1)a-3VH8JJ^mflU3J1innf)t;m

7.646 w5BJjwiinxjjJi«inm?«iJ'U'JW5BtJiiB-5man(Fe)

7.135 single escape peak 1jg-3mBUmiDUJJlsnnmfifi

6.624 double escape peak IIB-smouetUflUininfHMan

3.1

2. Imiri

2.1 i^ Imiri

(O) (M) imuin (l)

shield 5,10 UBS 15

2) 610

(frum? 2) (pfum5 l)

f2)

p : 6.420 MeV

B : 6.420 MeV

mams- BiiiiiB- -Imau M*f \

2.2

o, 2 uas 4

2.1

1)

..»$'**:. luiau IQ

<•«« :;

2.3 V V

0 w.) 611

3. 6.420 MeV

2.1, 2.2 uas 2.3

10 i^unmni

25

maun -linau

4. 7.646 MeV

3. n. 1. (thermal neutron) "Vu-Be fmiJUT-3 5 fji ^ \rt\m (unaiaou) uuift 5 m x 5 ui 2. 'nflff0UQfi?4a\mUU1flinm591U?^'U1010mUlJ'iih (cyclic activation)

15-20 50 o f 2 f 612

n.

vi 0.847 MeV maiimismniHinaimaniufhacm raw meal «ni0m-jv1 io, iJimuueiVufl B, M

A, IJUPI C D *ITJI-3M 2 wanmtfnisvi Fe «mmminmnflmouminu insinilgniuifmim tUUllitl« thoiiu lHinumnn Net counts, Fe ±a ltiu ltu m any! Iftinnii (%wt) (2,000 s.) niiniu(% wi)

raw meal 10 1.45 11852 1119 Kilfuifiou lJuB 2.34 18489 1122

VU^4 5.16 38229 1130

«u a. Htiwvn 29.82 71419 1145 WllfuiTlfJU wiofji^n«aeu

VJu A 2.74 17647 1121 2.248 ±0.158 TJVI C 0.5-0.6 6273 1116 0.642 ±0.157 ijvi D 0.5-0.6 8869 1117 1.01 ±0.158 fliimiiiWnnnniWiiiriiou fie Calibration equation : Y = 7083.2X+1725.2 R~ = 0.9998

1.779 MeV

raw meal 10, B, 'HU^ ST.

A, ^\i

raw meal 10 11.66 3379 1014 KiJfutfiuij

lju B 15.68 10714 1018 Wilfumuu

V1UlJt4 4 18.3 11085 1018 HfiJfutfioij • Su a. wwniwi 33.68 40882 1033 WiJfuitimj

IJTI A 22.69 11371 1018 16.832 ±0.593

IJUC 15-25 9013 1017 15.457 ±0.593

TJU D 15-25 4314 1015 12 718 ± 0.592

Calibration equation : Y = 1715.7X-175O7

R2 = 0.987 613 v.

2.1 mni 9^7i?nmsw:mflii)jmjiJ84vn9jjfluniJinviYia4-ni4 6.420 Mev w

M fls

o

integral net count Ca ±a

(ant^illllu shield, cm.) P/B (2000 s.)

l.HM, source B^nni-l vi A , 5 cm. 1.053962 2148 452

iwviofiQunujtwa^ VI B , 10 cm. 1.17789 2975 386

VIC , 15 cm. 1.197388 960 341

2. vi O , source O^jmflSnfl VI A , 5 cm. 0.981135 6976 701

VI B, 10 cm. 1.091527 7492 586

vie, 15 cm. 1.140091 4198 506

3. vi I, source QJjlfin y\ A , 5 cm. 0.959204 6651 634

VI B, 10 cm. 1.084343 5934 535

VI C , 15 cm. 1.146856 2956 459

o 10 B)

2.2 614

net count Ca ±a fammaihwsou (cm)

0 3549 361

2 3487 313

4 4354 330

6 -

Yifl'HivtvN 6 ii

B 41.44% 24 ims 26 wuluuen

eiifnn^Qm-j 3

5, 7im^'HvnJvis?fi9m-3^ 3 fiiJiuiajiifiaiSou 3.66%,

13.69% ims 21.54%

• jhi 3 21.54% IftEJihvmn 25 25 f^ me

2, 6, B nnrliJfumou l na j^^ l

wnnvi 6 wafmuu ifiafveiu ^nnfii^n aae-an 5-1Y1 1

a/ i Net counts, Ca ±a iHinauifiai3tiuY)1# (% wt) (2,000 s.) Tnnmiflivntu(%wt)

MUlJlJ 2 54.72 14202 511

M14TJT4 6 45.55 13873 508 TJWB 4L44 11652 499

•HVITJVI 3 21.54 4539 505

MU1JU1 55.4 14674 510 52.393 ± 1.637 \ju AI 36.028 11266 517 471.453 ± 1.670

Pb yield of background = 1.659466 BumiwWnnnnyliJi'iJmoiJ f\t> Calibration equation : Y= 311 51X-1671.1 R2 = 0.9402 615

2 ma

fiyi 1 1#ufi 2, B uas

2 (A2), c, D

fmuw 7 unrminj iflmwu flinrmn S4Y12

vl?U1QJllf)J1l5f)lJ Net counts, Ca ±CT ilfinamfimSejjjMi^

(% wt) (2,000 s.) snnn"nfl"imoi(% wt) MiofJi-jYiUnufn^iJfijmoiJ

MUTJU2 54.72 13219 452 ivLltumtJij

\JWB 41.44 11273 486 14filfijmf)u

MUTJU3 21.54 6042 470 HiJfumtiu

1JUD- 35-67 15446 491 63.18212.232 \|v» c 35-67 14488 460 58.827 12.091 \JU A2 35-37 14348 494 58.191 +2.246

Pb yield of background == 1.659466

mjfmfl'l&nnfmvWfijmmj fio Calibration equation : Y = 219.97X+1547.8 R2 = 0.9795

^ 8itfr«^wam?vi«ae^T'«5

Net counts, Fe

(% wt) (2,000 s.)

4.53 13307 115

1JVI A 2.74 13254 115 \Jll B 2.34 12873 113 0.324 11576 108

0.17 11494 107

0.06 11430 107

mjnuilWnnn^iJfuiTlBuflo Calibration equation : Y = 478.87X+11511 ; R2 = 0.901 616

2 me

2, B 3 tf-miiJfmflrfun?TvWfijmmj A ehom-jvi 2 (A2), \juqmjviflVuei C, D

fliodi-a iHinoimfin Net counts, Fe il?uifuiTiafiw''l&nfi

(% wt) (2,000 s.) m?flivntu(% wt) wiedi-3^Hlvirn?ilfiJi«tJii fiuijai 3 4.53 12471 112 Hil fii mou TJUB 2.34 11805 109 "Wil fum tiu

MVITJU 2 0.34 10705 103 I'tfilfumtiii wiodiwvi«aBij

TJUD 2.74 11866 109 2.893+0.260

ljuc 0.5-6.0 11842 109 2.836 ±0.260

\JUA2 0.5-6.0 11585 108 2.223±0.257

Calibration equation : Y = 419.63X^10652

= 0.9723

f\.

io 4 u^ Imiri B, •iiuiJuehgtn-JY) 4 3 tfivrfu

AI

10 ih ??ivt5ijfniiifl5is;vi AI

llTJJItU Al NTEGRAL (575 s.) iHuitu AI ^lfi\nn

(% wt) bkg Al Ne.t counts ±a miflTuinj(%wt) ^fldi^wl^liimiiJfiimtiiJ 4.04 11080 13868 2788 158 IKIJ fum aii

MUTJIJ 4 10.27 11130 17131 6001 168 Hilfumtiu

12.03 11759 18730 6971 175 14fil fum till

wiodi^yiwCToiJ

1JV4 Al 5.6 11168 14504 3336 160 5.103 ±0.307

Calibration equation : Y = 521.48X+674.78

R2 = 0.9999 617

V V i 11 U?tfl

6 •ftUA Ifliuri iJimUVIfl'M'Ufl B, 'H'UlJ'Ueh9tJ~Uvi 4 lias raw meal 10 tfTHiilfm AI.IKJAC imsink D

11 siw AI fn-iri2

ll?U1£U Al INTEGRAL (575 s.) lJfintu Al vilpmn

(% wt) bkg Al Net counts ±C fmfhmaj(% wt)

raw meal 10 2.90 7047 8301 1254 124

iju B 4.04 6310 8298 1988 121 llfilfuifioii 10.27 6577 11716 5139 135 Iviliiiiviuu

?noo~NYiYifliTE>ii

lju D 5-12 6001 11901 5900 134 11.719 ± 0.253 5-12 6131 11185 5054 132 10.123 ±0.249 \JUA1 5.60 7252 9852 2600 132 5.491 ±0.249

fnjmTfllw'innn^ivJlJfTJmfJll flf) Calibration equation : Y = 529.86X+309.54

R2 = 0.9998

4.

unaiSouimsmnn

(itatuifii 20 nlaniu)

Nai(Ti)

x 5

60%

CaO

St)jjlwiJw§mi4w wiom^ A, B, C, D ims E

20% Ii 618

2. Ufi fie

1 vhlmnimn 1-2% 1T 3. €S

10%

V 1 1 , 90 uaaflnivnviu m8-5ioinuiU9snn«moiniJ8iJn7aimiJ45-5mms!?TcnuYi uas 4. man

0.5 % (0.5 - 6.0 % Ih 0.847 Mev

5.

m>lg1g)?tsi'u1^oni?'igif-i^vi?8ummnmvia4^m 2,223 MeV snnilgn^en 'H ( n. y ) 2H. QntnCviii«iJ?fyfyi3JMTUQi(Mw ljaniyioia wia^nifuwvnQaej, 2537. 619

2. mjm flO-Jfli Nuclear Activation Analysis.

3. Baron, J.P. , Bamavon, T. J. Alexandra and Debray, L. "On-line bulk analysis of raw material in a cement plant using the neutron irradiation and capture gamma ray technique. Nuclear Techniques in the Exploration and Exploitation of Energy and Mineral Resources Proceeding of a Symposium VIENNA, 5-8 June 1990 (IAEA) : 569- 583.

4. Borsaru, M. "Nuclear techniques for In Situ evaluation of coal and mineral deposits." Nucl. Geophvs. vol.7, No.4 (1993): 555-574. 5. Carvalho , F.G. Leitao, F. , Goncalves, I.F., Oliveira, C., and Salgado, J. " Prompt gamma- ray neutron activation analysis of cement raw materials. Nucl. Geophys. vol.7, No. 3 (1993): 431-443 6. Cheng, C.Y. , Coope, D.F. , Filo, A.J. , and Yates, S.W. Elementary analysis by gamma-ray detection following inelastic neutron scattering* Journal of Radio analytical Chemistry vol.46 (1978) : 343-355. 7. El-Kady, A.A." Review of activativities in the construction and evaluation of prompt gamma ray sondes. Nuclear Techniques in the Exploration and Exploitation of Energy and Mineral Resources Proceeding of a Symposium VIENNA, 5-8 June 1990 (IAEA) : 343-350. 8. McEllistrem, M.T. "Gamma rays from neutron inelastic scattering. 9. Peisach, "M. Prompt Techniques." lO.Sowerby , B.D. , and Watt, J.S. " Development of nuclear techniques for on-line analysis in the coal industry." Nuclear Instruments and Methods in Physics Research A299 (1990) : 642-647. ll.Sowerby, B.D. Elementary analysis by neutron inelastic scatter gamma rays with a radioisotope neutron source. " Nuclear Instruments and Methods 166 (1979) : 571-579. 12.Sowerby, B.D. "Measurement of specific energy, ash and moisture in bulk coal samples by a combined neutron and gamma-ray method. Nuclear Instruments and Methods 160(1979): 173-182. 620 TH9900056 TH9900056

as quum mnmfn

579-5230 561-3013

l-ii ipifjHliliuniJj 2 ims;liJitmiu TRIGAP Iikuniu l ilnng

±20 % nitu ivm-a fniios

Fuel Burnup Calculation of TRR-1/M1 Reactor

Mongkol Junlanan and Sunanta Patrashakorn

Reactor Operation Division Physics Division

Office of Atomic Eneregy for Peace Tel. 579-5230 Fax 561-3013

ABSTRACT

The fuel burnup calculations for core no. 1-11 of TRR-1/M1 Reactor were performed using

Program Package for 2 Dimensional Burnup Calculation and 1 Dimensional Program called TRIGAP.

By comparing the fuel burnup obtained from two programs, results show that for the homogeneous core , fuel burnup calculated from both programs are in good agreement. However, in some cases of mixed core, the burnup calculated from both programs can be differred by ±20 %. It is concluded that in case of a homogeneous core , one can use either 1 dimensional or 2 dimensional program to calculate the burnup. However, in case of a mixed core , one should use Program Package for 2 Dimensional Burnup Calculation. 621

IMY\ 25 emifiu 2504

(UAI2O3) n.n. 2520 imimim (TRIGA) im

«* 11 i iliJi-l/i 8.5 20 ediuiil u-ZrH "Standard" MIQ "8.5/20" "LEU" me "20/20" m 20 n?iSilfunmmim{jjjuinn'iiiJisjjntu 2.5

0.47 "Standard" 5S 38 nfu aa f "LEU" SiJi^intu 100 nfu

c t < < ife TRIGAP"1 K~3vN'?aj uil?iEj^cn u''u Jozef Stefan institute miB^ilgnioiviifnD'uiPi 250 kw WIMSD-4

(Cross Section Library) U TJTJQ-I/I DQ^IvifJ llbumu TRIGAP ill 14 l^ l

peaking) um iiilMSfniJJi9iiilu(na-a\4iianliJ?un?jj 2 ai'Wfin^

l-3ifi'

1. llliUfliil Program Package for 2D Burnup Calculation

(Module) PRESIX, SIXTUS-2 llflS BURN 149D 622

1 laini ims31vJn

PRES.INP

PRESIX.LIB PRESIX * ELEM.DAT

SIXTUS-2 2-D power distribution

Burnup updating

Fig. 1 Flow chart of Program Package

1.1 PRESIX

SIXTUS-2

PRES.INP ELEM.DAT

SIXTUS-2

1.2 luga SIXTUS-2

« pi ay SIXTUS-2 (2 trim urn? fhmouini4lflf0^lJgn?fli1 ^5illin^lll\4|lJ'HnmnOJJ( hexagonal geometry)

Packaged 623

1.3 lug?) BURN

V V J (BU)

= t(NP'J)(P)(dl) /=1

Where t

Pj = Power of j* fuel element

P = Average power NP = Normalized power of j fuel element at time step d,

1.4 PRESIX.LIB

V

1.5 uvtatfajja PRESIX.INP

1.6 uvtatfeim ELEM.DAT

2. Ilhim™ TRIGAP

IlJ?liniiJ TRIGAP Smi'm-numSounfVLlTlhuniy Program Package for 2D Burnup

Calculation ^•J'M^'^n'Ufle ftllJ'Willljlufta SIXTUS-2 flSllIu CEBIS ^H ^y\y\lill 1 flfl l)

l-n 624

4.

fife-silgmfuilib-i/i

Core No. MWD 1 61.23 2 76.3 3 87.01 4 47.45 5 119.88 6 64.11 7 110.14 8 27.72 9 45.48 10 171.67 11 132.24

ibs efauei is A, B, C, D, E, F uns G

15 °K3J.

1) Xe effect flflTUOO

2) (BOO

(EOC)

nv\ l-i l

TRIGAP mil mmmu l u?i a l^1liil1fj'umtJiiiR'VN^wciniimiuifuniiH'um'a0-3

±20 % 15 my vhlMff^iflem nioiYiunmJgfnanjioiYiunmJgfnanjiff 0

fni'osKlibumy 2

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 O.OOO 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.547 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.607 0.619 0.633 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.624 0.669 0.654 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.593 5--719 1.2 52 0.744 0.656 0.000 0.000 0.000 0.000 0.000 0.545 0.715 1.264 1.350 0.751 O.5B2 0.000 0.000

0.000 0.000 0.000 0.692 1.365 1.221 1.394 0^691 0.000 0.000 0.000 i / y \ \ \ 0.000 0.000 ) 0.62 7 1.265 1.639 1.763 1.4J2 0.657 0.000 0.000 0.000 0.000 0.530 | 0.750 1.404 1.204 1.572 1.327 | 0.603 0.000 0.000 1. 369 1.174 O.OOO 1.285 | 0.726 0.000 0.000 0.66* I.369 1.174 0.000 1.285 | 0.726 0.000 0.000 1.007 ^1.468, r. 263 0. 000 0.000 0.558 | 1.274 1.007 ^1.468^ f. 2 63 | 1.431 j 0.634 0.000 0.000 0.000 0.000 0.656 I ' ^ I 327 | 1.278 1.524 1.581 7 0.767 0.000 0.000 0.000 0.000 0.55B I 1.205 0.000 0.000 1.250 1.451 0.639 0.000 0.000

0.000 0.000 ( 0.630 j 1.303 1.297 1.516 1.601 O.T44 | 0.000 0.000 0.000 1.207 0.976 1.46S' 1.222 1. 376 j 0.606

0.000 0.000 0. 594 1- 363 1.166 0.000 1.247 I 0.664 | 0.000 0.000 I 0.000 0.000 0.000 0.67 5 1.354 1.200 1.554 1.243 0.000 0.000 0.000 0.000 0.000 0. 600 1 . 167 1.749 1.357 0.643 | 0.000 0.000

0.000 0.000 0.000 0.661 1.308 1.213 1.37B 0,710 0,000 0.000 0.000 0.000 0.000 0.000 ^&.691 1.261 r 1.362 0,72 9 0.000 0.000 0.000

0.000 0.000 0.000 0.000 D.692 1.271 ' 0.715 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.621 0.662 __ 0.68B 0.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.575 0.635 0.597 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.562 r 0.5^ 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 ST. 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000

o.ooo

Fig. 2 Relative power distribution of core no.l 1 626

Core No. Peaking Peaking

Position

1 B6 1.669

2 C8 2.264

3 C8 2.247

4 C9 2.142

5 Dll 2.041

6 Dll 1.979

7 Dll 1.854

8 Dll 1.899

9 Dll 1.780

10 Dll 1.661

11 Dll 1.763

TRIGAP

1 CS ljJai3jn?tiu/anmuMwnn?Lni?i peaking LUJQnsKIWunRn ring factor uri

SIXTUS-2 627

"Program Package for 2D Burnup Calculation "

M'in^llismffmtjlwiIfii^fnT "Application of Small Computers to Enhance Operation and Management of Research Reactors"

1. I. Mele and M. Ravnik, TRIGAP, A Computer Programme for Research Reactor

Calculations, IJS-DP-4238.

2. S. Pongkasem and S. Patrashakorn, "SIXTUS-2/PC: A Two Dimensional Multigroup

DiffusionTheory Code in Hexagonal Geometry ", August 1993, a report to IAEA as

part of RC No. THA/6704.

3. S. Patrashakorn, Application of Personal Computers to Enhance Operation and

Management of Research Reactor, IAEA-TECDOC-1004, Feb. 1998, p117-132. 628 TH9900057 TH9900057

3® mm* rivmi«u arjjfii spm uas aswam li }JMTTVitnmu5en1vm 50200

1m. (053)943379 (053)222776

uas

iponiam

Double Differential Neutron

^09 Emission Cross Section (* Bi)

A Study of Multiple Scattering and Flux Attenuation of Fast Neutrons Inside a Cylindrical Sample by Using Monte Carlo Simulation Technique

Udomrat Tippawan, Somsorn Singkarat, Suvicha Ratanarin and Thiraphat Vilaithong

Fast Neutron Research Facility, Department of Physics, Faculty of Science,

Chiang Mai University, 50200

ABSTRACT

Monte Carlo Simulation was used to simulate the multiple scattering and the flux attenuation of penetrating fast neutrons in a solid cylindrical sample of single nuclei. The sample- size effect and the source related background effect are the aim of this investigation. The simulation used actual dimension and geometry of a tritium target-sample-detector. Results of simulation will be shown in comparison with the experimental results on a Double Differential

209 Neutron Emission Cross Section of Bismuth (* Bi) at 14 MeV neutron. 629

U11141

Time-of-Flight (TOF)

9TUTDfmshll'Urma«TU (energy resolution) (flight path)

AE (E + mn)(E + 2mn) At

E nas; mn p = — IUB V na

, c

t flOl i!tfmfniifiuvn^viijis;tjs;vn^ x AX uas; At

(AE/E SfiTuotia-j) (inverse square law)

Double Differential Cross Section (DDX) D (interaction)

miJ

(i) Wai)in^J\4nflU9-3T'«ilt1^19tJi-3(Sample-size effect) TBITIUM TAKGFT CO 1TTAMUW LAYW o

MCUCMT KUTEMM KM) DMCCTUN

KC •> 140 hav

i uET«-]anyQi£ua5;nanm5£?iflfiju8'3fnivifia8^Tiflf!ii DDX

Shadow Bar, Collimator lias Shielding D 631

(ii) neutrons effect) 14 MeVUItTyiB 12 MeV ernn

(Simulation) ^QtJmfl'UflJJOUWfniln (Monte Carlo Technique)

f]]i a

^a/ 209 [21 nj0-3?n(?iupfuvi( Bi)

iimi

2.1

reaction)

(Gaussian peak) mo^flinwanisyiiJfin'n^wQlilu131 (gtiJ^ 1) (n) solid target ctf^mi4iilnitijiJvif)TiPiE)Ufjfifjfina'U0tJ m^fuiiQ^

V 1 t vu Invniuou

(1)

(n)

(3) 632

Backing) 9TM [4] 1

NE-213 5.1 iifu^mw? viui 5.1 BC-501 ^S mviwiffuynfn-3 25 'H'ui IO

^ 2 Ipiw^miln(ni3JiD0-3ii'Hfi-3nimpi'U'3?iio'u

3.0 o-a 15.0 MeV 14 MeV

3.0 n-a 12.0 MeV

13 MeV

5

2.2 0

(n)

ni'Uf'ui

1fl(i!)S;KgiUnliajJI1'UllflflfJi(nuclcardata libraries) 'OingiimiJfl ENDF/B-VI lias JENDL-3.1

iJf unSinoluiili OS <« kinematic llflS angular distribution th-a l^tiaiPffJ3J3Jin'u(soiid angle)

path length

mean free path cB^fiuadniJVIPl-3^1UiDa-3U1f1?ai4Uc1J;f;ii total cross section Neutron source spectrum

104 J t • Experiment 05 — 14 MeV neutron peak — Contaminant neutron part w 25

£ 103 ' I 1 •4-* ra 3 II z

102

1

/ , • 1 ...... , I .... I . . i .. 6 8 10 12 14 16 200 300 400 500 600 700 800 900 1000 Neutron Energy (MeV) Channel Number

lyi 3 milflflfu TOF 1)0-3 Bi sample

UMeV uas

\2 MeV CO w 634

nw«0w

total cross section Y

cross section clastic(n,n) M?0 inelastic(n,n')

3.

angular

distribution

kinematic lias O-valuc EJTU discrete energy distribution tYTHflllufJIU continuum

mean free path

3 UUll

fi) I(E,0,E') fin 1tllln?11uminiSl?^8«UflW(Idcal scattering spectrum)

~Nn(E,Q,E') fio n=i,2,3

fi) R(E,G,E') ^0 scattering spectrum)

(Summation)D0-3 Nn(E,0,E') n=l O^ 4 635

(smeared) OOflAlEJ Gaussian resolution function

^ TOH

3)

2.3

1iPiimuij1uS'u?i0u^ l IIQ^'HTUO 22 2.1 hil

2 nitu ^0 (n) nifSiIi?ii0i4iJ^3jfjCiwa'4-3ii414 MeV

3.0 n^ 12.0 MeV

DDX

normalized

m 0 ^ me ^ D S; H11I \4 im TVII ^ m' 1 m!

f!1iiJ^] normalize

14 MeV ni)Wci'5iiJ^0^m'iJn?ifjjrii?fiis;^\)i^\inn'u-3?ii0i4iiJ53jfiCinm^Tu 14 MeV

DDX 636

3.1 ffd5 3.0

4 miJnfiiij^'Dnao^la'ua^fninisw 2 fif-a

l fit^ Swatfiltfimimjilisinsu 19 m 34

3 fi^fiwcinisviu^amifii^ti^ l fif^ Swavhl'Hmjjnj'uiJisij'ifli 2^7 ideii^ij^ uas

m 4

1,3

5 ^zfl^in^lftiiium^uvmuvrivmiuiwmimiwxii® 3 °BUUPII

2 fi^flwcinisYiimofmnisnh 1 fif^ci^ifi^jjnn^olij'VQ^'UT^ifOTJTJ^^TIJ 3

6 McV flwcini^nuafic^ivmam^ib^infli 10 n^ 15

6 MeV

2

3.2 wamiflnna^inilnwijjminiswapiijfii, fTiiln?i?ijm?nis;i^ioi^!nn'uiPii0ij 14

MeV ua

(i) w?ii)nnnjuT?isuo^T'^si^iiodi^iOTni:wTPifaiaiJjjjnCj 14 McV

14 McV

6

(ii)

3 ni 6

MeV \isfiHfinis;viiJpiBmiJn?ifurninisi^9?-3!nn'uisi?aw 14 McV uinfluinBiio^ 100

,1 , %> (Elastic scattcring)n)9^'U1^19l4'M1Jn^^1\4^1 Sf11flf^3J1fia{1S;}J1fin'ii8U91?n?fJiailll8U HIW

2 iisi

OD

O Bi at 30° Bi at 30° 2 2 10 - 10 • _ Sample (j) = 3.0 cm D.\ Sample = 1.3 cm |

D D AA D D D DD A D O A Do D D 10' 10' DOQ • a _ xi o : * °°On D 1 \ Do0DaooaDC|GO ocr*- B * : S D A A D

AA « 10° 10° A ^ * A D ° A # : 15 • * **** A m AAA - • A* ** A * . *A A ** - A 2 2 • A "3 • A

10" .".«*. 10' aA _ c e o o \ % '".^ 1 s

# •-"••. *" ° /'"' : Z z V * • * • 2 10 10 _ V • # V • y D ^ | V • v • ; A V

y v v v V, A. 3 103 o Single scattering 10 - D Single scatteffiigv v A Double scattering - A Double scattering • Triple scattering • Triple scattering v Quadruple scattering v Quadruple scattering

V 10 10" • l i 1 • 1 1 1 • 1 rr . | . 6 8 10 12 14 16 4 6 8 10 12 14 16 Neutron Energy (MeV) Neutron Energy (MeV)

|ilvi 4 l, 2,3 unz 4 fi 30 l, 2,3 uns; 4 fifj 30

•U9-3 Bi sample 3.0 ifJJ Bi sample 1.3 °tf3J CO 3 10 1 10* 1 1 1 ' 1 ' 1 i ' | ' ' : 1 l ' l i ' i • i • CO oo

A* • Bi at 30° Bi at 30"

Sample = 3.0 cm Sample = 1.3 cm a IlL l a ~ r a ~ a A a A S *_— A a B

u = C' 10' T n __ 10' r- a - J \ A. f r _, ^ n titi _ °A n ^nn—nGAA^ u .c A •• £ * 2 • s A

D •

n 10° - £ " A 3 •* • • A D • • A a

10"' - 10 ' _- a - a - D Ideal spectrum A - Ideal spectrum • a Real spectrum Real spectrum • Contaminant spectrum Contaminant spectrum

10 : ,l.l.l , | 1 10 2 l i . I i i i . i . 4 6 8 10 12 14 16 6 8 10 12 14 16 Neutron Kner»y (MeV) Neutron Energy (MeV)

Htm mi i

\ie\ nfiiffnJiinfun nf

^ii^ M) ilJftliltl-l Bi sample VUUrfuH itJIJunfl )i 3.0 TJ1J 30 d JfTlDOJ Bi sample fljiiriUH ifJtitJiTcl N 1.3 TiU 639

1.3 (i) Hciinnuuifln^ieio^iodiwnuifliQU'd^ufm 14 MeV

7 (ii)

3.0

3.3 Hcinio^fniflifio-s^EjIiliafiiu SYNTHIA

DDX mii )13

SYNTHIA pr0^ifif0^ni

6 0-3 10 MeV

<=i Gl t<=4 1 [21 [61 ^ o q V

1,3 ^

9 iipioTuifiifniufini?iifia0\4}JTwiaiifUTiJis;n0ii^Ej 3.0 rau^m^ii vuufumnsfh cross section

Background 10° 1 • 1 " 1 ' 1 1 : ' ' o

- •°

*D - Bi eL =30° Bi 0, = 30°

Sample (j) = 3.0 cm • Sample (p = 1.3 cm D 10 ' IO-1 D n

* " \ D 0 T o i 2 V . • J 10 io

D a D D D ° °aoo °D° 1 X - a 4 it Q a M Q • D

-

D <

D -

Experimental Experimental 0 SVNTHIA SWTHIA 10" •

: , , I.I, l . l D 6 8 10 12 14 16 6 8 10 12 14 16 Neutron Energy (MeV) Neutron Energy (MeV)

SYNTHIA 9 Hntnnmi?iaa^^ftliJiufiiu SYNTHIA iiHtrumciumj i^ 30 awn

Bi sample viSmiiPhfUUncl'H 3.0 "KJJ UB-3 Bi sample ^2in;'UH1P[\4yfl£n^ 1.3 TO 641

4 mi 85

90 90 03 95

DDX mi

6 D4 IO MeV

cross section

Prof.

Dr. Mamoru Baba illf UfiiU SYNTHIA Prof. Dr. Akito

lenini

1. M.Baba, S.Matsuyama, T.Ishikawa, M.Chiba, S.Sakase and N.Hirakawa, Nucl. Instr. And Meth., A366 (1995) 354. 2. U.Tippawan, "Measurement and Analysis of Double Differential Neutron Emission Cross Section for Bi-209 at 14 MeV, M.S. Thesis, Chiang Mai University (1995). 3. A.Pavlik, private communication (1988). 4. T.Vilaithong, S.Singkarat, U.Tippawan, D.Boonyawan, S.Aumkaew and S.Ratanarin. "A Neutron Collimator System for Nuclear Energy Measurement Program," Report submitted to National Research Council (1995). 5. A.Takahashi, E.Ichimura, Y.Sasaki and H.Sugimoto, J. Nuc. Sci Technol.25 (1988) 215. 6. T.Vilaithong, U.Tippawan and S.Singkarat, "A High Resolution of Double Differential Neutron Emission Cross Section for" Bi at 14 MeV Incident Energy ."Italian Physical Society, Conference Proceedings, 59, Part I (1997) 574. 642 TH9900058 TH9900058

10900

562-0095, imtMl: 561-3013, E-mail: [email protected]

UTIffclEIS

1.02 GDA %WQU"imfl?eiflini Gamma-spectrum Deconvolution and V V Analysis 111410 3.5 Ul tTTH1U'Mim?S?l^'B1VnV! 3 UW14

l ifiu GDA 95 ims 4.0 uuifiio^fieu'Hii?i05^14f'HUioiJis;uinwfifi?n-a|u 80486 u 8 mnnsiuw

Gamma-Ray Spectrum Analysis Software GDA

Paitoon Wanabongse

Radiation Measurement Division, Office of Atomic Energy for Peace

Vibhavadi Rangsit Road, Chatuchak, Bangkok 10900, Thailand

Tel: 562-0095, Fax: 561-3013, E-mail: [email protected]

ABSTRACT

The developmental work on computer software for gamma-ray spectrum analysis has been completed as a software package version 1.02 named GDA, which is an acronym for Gamma-spectrum Deconvolution and Analysis. The software package consists of three 3.5-inch diskettes for setup and a user's manual. GDA software can be installed for using on a personal computer with Windows 95 or Windows NT 4.0 operating system. A computer maybe the type of 80486 CPU with 8 megabytes of memory. 643

10900

562-0095 Ivnflii 561-3013 E-mail: [email protected]

1.02 felikufmj GDA tK-w8U"Knn3raifiim Gamma- V spectrum Deconvolution and Analysis WlIlbumiJlbsnOlJAlEJUWljimn VU19\ 3.5 TJ1 ^

3 nwu ufi^fjwQmii^TU l mu liJiiiniu GDA

95 ims Q'ulfntr IOUYI 4.0 f

80486 uaS

Gamma-Ray Spectrum Analysis Software GDA

Paitoon Wanabongse

Radiation Measurement Division, Office of Atomic Energy for Peace

Vibhavadi Rangsit Road, Chatuchak, Bangkok 10900, Thailand

Tel: 562-0095, Fax:561-3013, E-mail: [email protected]

ABSTRACT

The developmental work on computer software for gamma-ray spectrum analysis has been completed as a software package version 1.02 named GDA, which is an acronym for

Gamma-spectrum Deconvolution and Analysis. The software package consists of three 3.5-inch diskettes for setup and a user's manual. GDA software can be installed for using on a personal computer with Windows 95 or Windows NT 4.0 operating system. A computer may be the type of

80486 CPU with 8 megabytes of memory. 644

INTRODUCTION

The Applied Research for Radiation Measurement Section, Radiation Measurement

Division, Office of Atomic Energy for Peace, has one responsibility of developmental work on

gamma-ray spectrometry system for the measurement of radionuclides' activities. The work of

writing new and useful gamma-ray spectroscopy application software GDA, which is an acronym

for Gamma-spectrum Deconvolution and Analysis, has been completed. The program is useful for

performing qualitative and quantitative gamma spectroscopic analysis, particularly with high

resolution, hyper-pure Germanium (HPGe) detectors, for environmental, safety, and research

purposes. GDA is a 32-bit Windows 95 and NT 4.0 application. It was developed under the

integrated Microsoft Developer Studio, in which consisted of the Microsoft Visual C++ version

4.2 and Microsoft FORTRAN PowerStation version 4.0. The program requires a personal

computer with Windows 95 or NT 4.0 operating system. Even though it can be executed on a

personal computer with 80486 CPU and 8 megabytes of memory, but the optimized performance

could be achieved on a PC with Intel Pentium processor.

MATERIALS AND METHODS

The personal computer system used for this work is Micron model Millennia Xru, in which the

central processing unit is Pentium II operated at 200 MHz. It is equipped with one CD-ROM, one

3.5-inch floppy disk, and one 4GB hard disk. The computer was installed with ORTEC's ACE IK

Multichannel Analyzer board. This board has a maximum of 1024 channels for recording of

gamma-ray emission events from the germanium detector. Raw data of gamma-ray spectrum

obtained from the measurement are available immediately for any further data processing. The

computer has been initially configured with the Microsoft Windows NT Workstation 4.0

operating system. Later on it was additionally installed with Microsoft Windows 95 Thai Edition

operating system, so that there are now two operating systems in one computer. User can select

any of the two operating systems when the computer is turned on.

Microsoft Visual C~+ version 4.0 has been initially purchased in term of subscriber, so

that later on it was updated to version 4.2. This software-development platform resides on the 645 computer as Microsoft Developer Studio. This platform was then additionally installed with Microsoft FORTRAN PowerStation version 4.0, so that the two computer programming languages are now being in a single development platform. Therefore, the development of GDA software is divided into two parts. One part is the programming of FORTRAN language for all gamma-ray spectrum analysis routines. Another part is the programming of Visual C++ language for all Windows-operation routines. The analysis portion of GDA program is the complementary combination of many high-performance gamma-ray spectrum analysis routines ' ' . These routines are all in FORTRAN language. They were processed into the form of dynamic link library (.DLL) sub-programs.

fflGamma-spectrum Deconvolution and Analysis - G2.txt mmm £fe £pectfum Tools Time gaferatbn Updating fieconvoMion Hdp

IBM S3 IPG2.txt GDA Application Version 1.02 , I Radiation Measurement Divisior

Analysis for C:\gda\ Analysis date 29/05/? Analysis time 01/04/] A

GUASSIAN W1.083 fWIIM :"4.660 |NUM |

Figure 1 Multiple Document Interface of GDA program. 646

Designing Basis

An important basis for scientific data processing software deals with input and output

data files. These data files are usually in the form of ASCII text file, which can be edited by a text

editor. The original versions of gamma-ray spectrum analysis softwares ' had been designed as a

kind of single document interface - Windows application, but the GDA software has been

designed as a multiple document interface application. Many text files can be opened and edited at

the same time with the graphical display and manipulating of spectrum data. Figure 1 shows the

appearance of two text editing windows and two spectrum analysis windows. The outstanding

feature of GDA program's text editor is that it uses a non-proportional character font. This kind of

font enables the exact character spacing of text so that the correct input data format can be easily

maintained.

RESULTS

The completed GDA program consists of menus, sub-menus, and the help system as the

following:

File menu with sub-menus:

New, Open, Close, Save, Save As, Print, Print Preview, Print Setup, Exit.

Edit menu with sub-menus:

Undo, Cut, Copy, Paste, Delete, Find, Find Next, Replace, Select All,

Word Wrap.

View menu with sub-menus:

Toolbar, Set Tab Stops, Set Font, Set Printer Font, Mirror Display Font.

Window menu with sub-menus:

Cascade, Tile, Window 1,2,...

Spectrum menu with sub-menus:

Read Spectrum Data, Display Spectrum, Complete Analysis,

Show Nuclides, Quantitative Results.

Tools menu with sub-menus:

Peak Information, Convert Spectrum, Isotopes Library, Standard Sources. 647

Time menu with sub-menus:

Enter Data, Open File, Update Input.

Calibration menu with sub-menus:

Shape Calibration, Energy Calibration, Efficiency Calibration.

Updating menu with sub-menus:

Shape Data, Energy Data, Efficiency Data.

Deconvolution menu with sub-menus:

Deconvolute Peak, Change FWHM.

Help menu with sub-menus:

Help Topics, About.

Help System of GDA Program

Help system of GDA program consists of two main parts. The first part is the Help Topics

(on-line document) as shown in Figure 2. The second part is the help system for each window operation as shown in Figure 3.

Help Topics: GDA Application Help

Content* j Index | Find j

Cick a book, and then click Open. Or click another tab, such as Index.

Overview 13 GDA Application 0 verview Instruction [2 T o E xecute the G DA Application How to... [?] Construct Shape Calibration Data File [?} Construct Energy Calibration Data File (?) Construct Efficiency Calibration Data File 03 Construct Counting Date and Time Data File [?J Construct Standard Sources Data File [2J Construct Isotopes Library File

flpen £rint.. j Cancel

Figure 2. Help Topics of GDA Application Help 648

v> GDA Application Help HlslEa Re Edit Bookfljaik Options Help Contents| Index Print GDA Program's Help on Deconvolute Peaks

The user uses the menu command Deconvolution - Deconvolute Peaks to open this window for unfolding of the overlapped peaks. The overlapped peaks that user want to resolve can be selected by clicking at them with the left mouse button. The overlapped peaks will be fitted and the necessary information of each resolved peak will be provided. When finished with the browsing of the results of peak deconvolution the user clicks the left mouse button again to go back to the initial Deconvolute Peaks window.

Program GDA fits peak in a spectrum for both a singly lying peak and the overlapped peaks (deconvolution). In both fitting procedures program GDA requires input parameters of the Full Width at Half Maximum (FWHM) for a lower and a higher data channel as the initial guessing values for fitting. These two values of FWHM can be changed by using the menu command Deconvolution - Change FWHM....

Figure 3. Help System for a Specific Window

Results of Analysis

GDA program can be used for automated and complete analysis of gamma-ray spectrum

obtained with semiconductor detector. GDA program can also be used for the unfolding or

deconvolution of group of peaks (multiplet) to resolve for the overlapped peak areas. When the

program reads a spectrum data file, other six input calibration data files will also be read. After

reading all these data files the user can then use the menu command Spectrum-Complete Analysis

to analyze the spectrum. Figure 4 shows the result of this command. The quantitative results from

the analysis can be opened as a text file for examination, like a portion shown in Figure 5. At this

time, the graphical results of isotope identification can also be viewed via the sub-menu Spectrum-

Show Nuclides. By this command user can examine each identified nuclide, one at a time, which

will be displayed together with all its gamma-ray peaks.

GDA program is equipped with the complete and user-friendly calibration routines. They

are peak-shape calibration, energy calibration, efficiency calibration, and counting date and time

calibration. 649

c o + u * N * 1 + T 1 J 1 +

>^ */

1 I 1 1024 2048 3072 4096 CHANNEL NUMBER

Figure 4. Result of a complete analysis

DISCUSSION

The GDA program has been installed in the computer network of the Office of Atomic Energy for Peace (OAEP) since February 23, 1998 as a pre-release version BETA-1 for testing. It was planned to freely distribute the GDA software via the Internet network, but this thinking has, later on, been canceled off. Instead, the completed software package version 1.02, which is consisted of three 3.5-inch diskettes for setup and one user's manual has been distributed to a few universities. It is hoped that with the utilization of GDA software by the faculty's members and students many useful comments will be reflected back. A person who wishes to obtain a copy of the evaluation version of GDA software package should make a request directly to the author. 650

IJJjJGamma-speclrum Deconvolution and Analysis - [G2.txl] m

TABLE OF IDENTIFIED ISOTOPES

nnnonnnonnnOnn * •* || *• >> || n *> II n *i II n •• NUMBER NUCLIDE CONF. VALUE SAMPLE ACT. % ERROR (picoCi)

1 BE-7 .9247 2.0787E+03 4.01 2 NA-2 2 .9674 5.3879E+03 4.25 3 MN-54 .9754 1.7748E+06 10.54 4 CO-57 .9995 1.3218E+06 4.16 5 CO-60 .9604 1.5169E+03 3.01 6 ZN-65 .9933 2.6326E+O6 5.28 7 RB-86 .9623 9.6745E+03 4.03 8 SN-113* .8945 2.4118E-01 4.00 J 9 TE-123M .7917 1.7063E+04 4.22 10 BA-133 .8304 2.0035E+06 2.51 11 EU-155 . 1287 2.1549E+03 3.29 12 RA-22 6U .9999 1.42 66E+04 4.01 J Pte»«prMtF1 key (w Help . ,

Figure 5. Output file contains result of quantitative analysis.

REFERENCES

1. Blok, H. P., Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands. Private Communications. 1992 2. Routti, J. T., Arnio, P. A., Department of Technical Physics, Helsinki University of Technology, Espoo, Finland, Private Communications. 1990

3. Wanabongse, P., Automated Gamma-Ray Spectrum Analysis with Microcomputer. Master's Thesis, The University of Texas, Health Science Center at Houston, School of Public Health, September, 1983. 4. Wanabongse, P., Gamma-Rays Spectrum Analysis Software forWindows. Proceeding of the 5 Conference on Nuclear Science and Technology, Office of Atomic Energy for Peace, 21-23 November 1994. 5. Wanabongse, P., Gamma Spectrum Analysis Software for Windows 95and Windows NT. Proceeding of the 6 Conference on Nuclear Scienceand Technology, Office of Atomic Energy for Peace, 2-4 December 1996. TH9900059 TH9900059 651

4 V I

nn.10900 In?. 579-5230 P10 155 Imam 561-3013

3DSTUDIO RELEASE

4.0

o 100 s viuiE)fmjj? iHan64MB 4.2 GB monitor card UUU 33JG1 f 4 MB

Application of Computer Graphics

Phulsiri Ingtrakul

Electronic Instrumentation Division, Office of Atomic Energy For Peace, Wiphawadee Rangsit Road

Chatujak, Bangkok 10900

ABSTRACT

This research is computer modeling and used 3DSTUDIO RELEASE 4.0 as computer graphics

Software and data of Ongkharak Nuclear Research Center Project which many building and facilities.

The research works used pentium 100S microprocessor with 64 MB RAM, 4.2 GB Hard disk and 3D-

Monitor card with 4 MB RAM. The final result helps us built 3D-modeling from the finished drawings

Of Ongkharak Nuclear Reseach Center, which utilized us to build another building models in the future.

And it is very useful to make sure of the drawing before the construction is beyond. 652

1JY1W1

8I'M Next Step, Beyond 2000, etc. vn'UQIfliA'tfUnCJfmYiwafliflO France's National Audio

Visual institute.

the realistic movements generated

Renault's special simulation programs.

(virtual car) KTM^1llWl4nfl0U^Qt9101finrl^ntTiU0^1ji'yyiti]'U?1 VJItJllillJ

(Bruno Simon) fiami f1TW1MPjtVifi0'Ui)?-3mfni1wS?l?l4]flfjlcUWcB0<^lH1'U0^1ji'y'n Wave- front.

MlJ^iflO^Yll^JTCniT^OniiUuiwYl Espace and Strategic company mitfn-aiilviujj'ivn'Ufm 7 fl nTwlfii^irn^iiJvii^vn-jftcn'iJ^afm 100

5 UIY\ ^

Dominique If , V V de Manheule N^lfmilitrn Espace and Strategic UT^

• • t Wavefront vnunsmn "t

Wavefront muiO'Hini^l'wl'lJmf 8^ Silicon Graphics Workstation truimfniuehfm 2 f\~\\i

iunijfn'vavlini) liJilismfrlvifjnau'wiifiainfnfinuEisl'wnuuv^'Hfntjna'w^ (PC i^u

Personal Computer) ^TUflOW'Hl^OinnvJ^nnCjiifi'UISlllllPlf B-J'W^IIUlPll'Hftj 1SUU

(CPU) luiiaumi Pcntium-s fniuui 100 MHz.

128 MB.

(Hard Disk) luUBfJfm 6 GB.

SVGA u-uifiiuifinrm 17 ui a/ llJimil High Resolution, 3D Acceleration

1024 X 768 pixels. S'H'UlEJfmU'OiilJUafjrm 8 MB. 653

Wavefront llli-39OfHllu 9 modules. f)9 :-

- Data Translation I

- Modeling

( NURBS ) fmfifmil 2 2flfl'nffl IW erfl-aifiTuIfN (Digitize curves) mi41l91J (pro- file) lftUUli-3 ( sections) uasmilhilJuiJlieh3(niinfl'H9-3?t}J?l1']J ( Access primitive shapes library ) g^ffllisngUYl'KUinnflCUe) ( geometric primitives) l

( Patches) Ivi mief1"N1ll 3 Sfl IW fmilJaiJlJUlJflWmWTllO^illviH (Extrusion) mmfl

]pl£Jfni'MJJl419'Ll ( rotational sweeps) rnilllafJ'U|llviT-39fii-3ijJ5ngtfl{WcM ( non-linear deformations)

?3Jwvjfii9iJfnvil?it)9wI'U3JwlufniiTl'i>3iiJvii^ifin0uiTn (magnets)

(Boolcans) "n'o-atnj^^lJyig^pii^n ( primitive shapes library) f

( multi-rail and multi-profile sweeping tool) NURBS — fm^iUflTW (Import)

( display ) tms;milY11^nTWftn3j2wpnUJJJJiJ9-3l0infn'WfT9^2w( render ) i

( geometry subdivision ) mifffl-JilJviUVitnil'n ( simplification ) Ufi

( picking tool) fiTMUfll'B'tf'UPlT'fTfl ( material assignment) fiTHVJflWlQtYW (texture mapping ) rmtAOrmUJJO^gmg^ (interactive test rendering )

- Animation l#1

Curve ) nTHl4flfm3jln'3i^'rl?nE)0EJ1'a'W10JJnu ( compound motion curves which incorporate multiple interpolation methods ) n?iyhfia0lj1vnUc1£tr-W0]'dufTfl'3'Mi)0fl"m ( Motion graph and path -of-action editing and display ) impl-3Vn^l«l4

(inherited and local) flTMfm9u1vniDinmEIU9n (Imported motion ) —

i (including real time data ) nJJfl1^fni'HlJ'Ug?9Un?n3JfTfni«lilJ"U

(Integrated toroscoping for matching computer animation to live action back- grounds) m^wVmimmi'U'lilb'l-3 ( cut and paste operations for editing scene composition ) VIPitt011

1llvi1-3iflVi0l'U9-a (interactive test rendering ).

- nAttgumsni'HllflUtt^UflSlttwipTeigiifo^ (Interactive Lighting and Materials Editing ) fnifnilfiJJUtn ( Light controls over) : VI ( color ) vlffvn-3 ( direction ) fmutTli^ ( attenuation ) mi Wit) ( spread ) U^fman'yO^'^fJTruut'N ( spectral characteristics ) 654

( Material property controls over): UflUlflfJIQU ( ambient) fniUflfa'3 ( diffuse ) UflNflSliBU ( specu-

lar ) ftl1JJ111ill ft (transparency ) UfiN'Hnm ( refractive ) Hafnium (spectral characteristics )

flTUfjJJ Wllfffl ( Texture controls over ): ehlMlJ-3 ( position ) nJUIA ( scale ) Uliivm ( projection )

repetition ) fmilllb'^ (transparency ) imstnaTUritJU (turbulence )

( Rendering ) miQifmTwlfluSutNl-naimAI'n'n ( Fast hybrid scan

-line/ray trace algorithm ) miliflmwlAfjl'HUflNmati'MasiBOfl ( Accurate spectral curve-based ren-

dering ) fl1?'31flf11'w1flWfll'UnjJf)'311JnnuaSfl11lJf'll^1t11f(1'Hifilfnvi?njJigfl3J-3'HlJno ( Z depth repder-

ing with color bit precision control and specifiable post filtering ) millillfni}Jftl'131J0-3UfT-3 ( Extensi-

ble lighting models ) fli'lWlTmlj'UflniJlJfl ( Cube reflection maps and area lights ) fmnUFf'UEJfm'n

Ifiumi ( Server implementation available )

- fmTntniUWii W1V< ( Composition ) miUlJ-3niyidlJ#U'U8imwiJ'lJAflfl8fl (Interactive digi-

tal image layering ) mi^BlJiTlJUHUnimmsiflf B^MinuaU'UlJi'lfUfl ( High-quality superirnposition

of labels and logos ) fmmJJlflJJfnflWfl^Bti'Hlh'lQlsi ( Efficient scene background addition ) fmi?U

( New point-and-click interface )

n( Input and Output Formats) UUU Alias III) I) Explore Ulll)

IFF/ILBM U1J1I Kodak Cineon itTJTJ PICT2 U1JD Pixar Ullll PostScript Ulll) Quantel llllTJ Sili-

con Graphics UDD Softimage Him Targa U1IU TIFF IIUU Vista HUU Wavefront .rla 111JTJ Wave-

front .rib UH£liy|jJtnfl?ntJUUHQ (texture files )

-mJUm4UaiJnifUl^]e( Supported Video Equipment) Abekas A60 ( Ethernet), A65, A66

( RS232 ), Accom WSD Digital Disk Recorder, Chyron Centaur, Diaquest ImageNode, Lyon-Lamb

MiniVAS, Sony Hi-8, Sony LVR ( RS-232 ), Vidcomedia VLAN, Recorder capable of insert editing

in 1-inch, Dl, D2, Betacam, S-VHS, U-Matic, Frame buffers from Chyron and SGI ( Galileo, Indy

2 Video, Serius, Indigo Video ) W ( Supported Printers ) Iflf B^'WuW^H drivers UUU EPS, TIFF,

lias; Targa lfl18-3WJ'W'n l°tf drivers HUH Wavefront's .rla, Fuji Pictography, IRIS Graphics Ink Jet

ims Seiko Color Point, mlO^WUWVlK drivers UU1I RGB UflS Tektronix Phaser

90 % 11^5 I'ui^uiifni^jjmiiiiiaavJraviiTniJsiil'umfa^ Macintosh

Silicon Graphics

ctfayhmviKl'UmfB-a$Tf BTn 3D Studio Release 4, 3DS-MAX UV\Z 3DS-MAX2

Autodesk Inc., Crystal 3D Design ua^UTHYl CrystalGraphics Inc., Truspacc Release 2, Release 3

l Caligali Inc., Softimage mQ^UiyTl Microsoft Inc.,lllumJ

2 W aTn Photoshop version 3, version 4 . Illustrator version 6, version 7 655

( Material property controls over): UfT^IflEJIQll ( ambient) fWWififil ( diffuse ) Uft^tfSJ'MQlJ ( specu- lar ) fniullb'-3ifl'( transparency ) UfT-WfllVi (refractive ) liasfliUJm ( spectral characteristics ) fnilfJU HllftA ( Texture controls over ) : phimm ( position ) UUlf) ( scale ) Uinvm ( projection ) mti A^^ repetition ) fillJJI'd 1-3 (transparency ) imsmEnunCJVI (turbulence )

- mitYI'UI'dYIHtniJlJfl ( Rendering ) mniAniwlflfJiJUflUmafh-apmTl ( Fast hybrid scan -line/ray trace algorithm ) milifmi'wiflai'HUfT-amotn-aasiBfJPI ( Accurate spectral curve-based ren- dering ) nilli^fli'wi^tJfiQlJniJflliwanuasnii'di'U^ttiinl'H'lfillii'WfflilJ^jJ-J'HJJIfJ ( Z depth render- ing with color bit precision control and specifiable post filtering ) flTJlliilfniiJeni^O-nieM ( Extensi- ble lighting models ) flfni-niiitlluflnySfl ( Cube reflection maps and area lights ) millumjfjVmH m14fl"l1 ( Server implementation available )

- mniWiimWfi™ ( Composition ) miUlNflim'dlJW'UBiJmill'LliiflBfi (Interactive digi- tal image layering ) mi$9'U'tUIUR'Ummm^flf0^'MinO8th-3lli"l£Uei ( High-quality superimposition of labels and logos ) mim JJliufntTH^em^'dnmPl ( Efficient scene background addition ) mi 111)

( New point-and-click interface ) n( Input and Output Formats) Ullll Alias Ullll Explore HUH IFF/ILBM I mil Kodak Cineon UUII PICT2 Ullll Pixar Ullll PostScript Itllll Quantel Ullll Sili- con Graphics Ullll Softimage tillU Targa UTJll TIFF Ullll Vista Hill) Wavefront .rla HUH Wave- front .rib Uc\ZUy\'Uc\l

2 Video, Serius, Indigo Video ) ( Supported Printers ) imB^JJVWllI drivers Ullll EPS, TIFF, Targa ififa^'WJJ'W^l'W drivers ttUl) Wavefront's .rla, Fuji Pictography, IRIS Graphics Ink Jet lias Seiko Color Point. Iflf ffN'WWymH drivers Ullll RGB UV\Z Tektronix Phaser luibsiYiffintJfm 90 % 1w€ I'uisuumi'MJj'HHDijae'HnyyiJjnflsiiluififa^ Macintosh

U9fllJ'uKlf)?9-3 Silicon Graphics ^Q^ini^Hiuiflf B^'MS BTM 3D Studio Release 4, 3DS-MAX lias 3DS-MAX2 Autodesk Inc., Crystal 3D Design 1!S3ll?y'Vl CrystalGraphics Inc., Truspace Release 2, Release 3 Caligali Inc., Softimage UB-31J1lJvi Microsoft Inc.,lllu(ilU 2 C^ BTM Photoshop version 3, version 4 , Illustrator version 6, version 7 656

Adobe Systems Inc., Fractal Design Painter, Fractal Design Painter X2 U0

poration, Kai's Power Tools nif^ui'y'Vl HSC Software, CorelDraw version 5, version 6, ims version 8

Corel Corporation lilt! in U

fl-jvn em finnan ( non-turnkey projects )

®\i ibsinoi 20 Ifium? BifnioTuiomi imsoifniwnoiffo vfa'mjflihsinoi n Ifi«mi snnH^iJisiiiuifi^umi (floor plan) lflSniiflflim^nqiJ0ifii5lMSniiJjfliJWiJiiniil'30ai«wwu nau^ l i^vjnq nqu^ 2 i^nau0ifn?0TuifJfni miln^u mm? uasnqjj^ 3 i^unau fnfniwnoiflfa 657

, it 'ljjm3J0Ufm3jn1tu\)i^'vi0™i)ini!,Hi4m (drawings)

Autocad inn .dwg .dxf mo-ainn .dxf ( Drawing Exchange File)

DXF vloiuueiuijwenmii 3 enu

The entity section SilJuiJllsU0ljaii1'U

0

SECTION

ENTITIES

Entities word illl4<\J0}J?l 3 Entit>'

ifJrm 3DFACE ^ #1 5 coordinates xl,vl,zl m0l?OVItflV! 3DFACE

3DFACE 658

10

xl

20

yi 30

zl

#2 n

x2

21

y2

31

z2

0

ENDSEC

0

EOF

flfl #1: < 0.494781, 0.265136, 0 >

W#2:< 0.31524, 0.524008, 0 >

W#3:< 1.93023e"", 0.524008, -0.31524 >

%

DXF "

0

SECTION

2

ENTITIES

0

3DFACE

10

0.494781 6 59

20 0.265136 30 0 11 0.31524 21 0.524008 31 0 12 1.93023e-17 22 0.524008 32 -0.31524 13 3.02956e-17 23 0.265136 33 -0.494781 0 ENDSEC 0 EOF DXF Tifmiim DXF V (DXF is TRUE) OTUSJJamfhlJQna!^ %®M if (DXF) fprintf (DXFfptr, "0\nSECTION\n2\nENTITIES\n" ); // add entities section the function SweepALINEQ is executed here! if (DXF) fprintf (DXFfptr, "0\nENDSEC\n0\nEOF\n " ); // add end of the file section 1i4 Y^Wn SweepALINE () 'OSlbingilknsmTilUQI'Vp'lJfN 3DFACE ?\$\i :- if (DXF) { fprintf (DXFfptr, "0\n3DFACE\nl0\n%g\n20\n%g\n30\n%g\n" , pl.x, pl.y, pl.z); fprintf (DXFfptr, "1 I\n%g\n21\n%g\n31\n%g\n" , p2.x, p2.y, p2.z): fprintf (DXFfptr, " 12\n%g\n22\n%g\n32\n%g\n", p4.x, p4.y, p4.z): fprintf (DXFfptr, "13\n%g\n23\n%g\n33\n%g\n", p3.x, p3.y, p3.z); .DXFISR

object { polygon n, , < x2, y2, z2 > , < xn, yn, zn >

me n iijtaflflaefluo-nLlwaiamafJiJ (n ^o^Sfinilw 3 Hlguinfiii) tias 660

< xl. vl. zl >, < xn, vn. zn > - -

triangle »1: -' x 1. y 1. zl >. < x2. y2. z2 >. - x3, y3. z3 ^

triangle #2: < x4. v4, z4 >, < x5. v5. z5 >, < x6, y6. z6 >

xl yl zl x2 y2 z2 x3 y3 z3

A i h \4 v4 z4 x5 v5 z5 x6 v6 z6 pl-l.2-.-p3

nie.DXF Truspacc o

3.

J

D 'jj

3DSTUDIO OIU file.DXF filc.3DS Utnl'V Autocad

j (Merge file ) lumiJis;

3DSCALI-: ^^oolu^fini^ Modify

lino 3DSTUDIO

71 Jvi 4 i

r\ 5

Primitive shapes (cone) (sphere) ilJ 661

(box) i (ellipsoid) i (torus)

5lli)TU (disk) (cylinder) 6 imiJvi

> Object > Boolean > Subtract

torus disk cylinder

Iliti 6 Tffiniffj primitive shapes 1l4 3DS4 Uf\Z truspace r = aa + tl a (1)

I'UF) a ,- nlTJ unit vector radius m n — a n = coso a - siiTy sin6 a. -r cos-y a.. •(2) \ > 7 662

mu polar angle Hf)£ 8 niiJ a/imuthal

ant>le ( flilJvi 10 ) Avail J coordinate n n

n' = sin6 a - cos0' a (3) 0 \ 0 7 V ' n — sinO a + cosO a. (4) I) Z

IJJO B'o ~~ V

v = k,(n -n ) = 2k cos9 a = V V 0 0 •(5) = -y~ = a •(6) idn 7 rT u primitive shapes Gaussian random rough surface Ufinw ,2 Ff characteristic function K lf\

X(vJ = exp(-v."/2). (v_ = vn) •(7)

Az

iiln 8•nTinhriiEJUfnfj C()RI-:I,DRAWvmz TRUSPACE Pf 2 ?Q 4ir(r1)-

A, .(8) 7 HQi

superscript pniiffDvi llJ <5 > ^ '^'^ hwVWVTW

\\t)Z superscript ^TWaf) P fl

n xa.

1 Merge OfjilJISiniUAfJinU fitl n'XIxn" ' 663

full wave

me < 6 >] iftu p < d o >R ril

DUQEJIIUHTUO^V tionaryphase fl^l'5'lJ ^ O ->]

11IT1 10 Scattering geometry for a rough con <5P0>,= X(v) R .(10) ducting sphere.

RP mtJ Fresnel reflection coefficient (P = V) mmZMWUQU (P=H) U83 polarized waves imz §PQ flB Kronecker delta. ^

10 n = v = a s z

2 2 if J'Q. -4k()cos 9 <8 >,= e luflumi 10 |X|

5 (ax,ay, fnh (a_, a_,ajY\Wy

ms derived rd = r - r . V V 1 V f ( vnn flu Is us In "We men fliien-39-3ifiu'M 21 v • Uas homogeneous coordinates and projective geometry 991^9^iau^ 27 lias 29 eigenvector approach

loo-s 64 MB. mm 4.2 GB. monitor card 3-D ( S3-Virge ) S'HUlEJfll'lU'ih 4 MB. 664

1. B.T. Phong, " Illumination for Computer Generated Pictures, " Comm. ACM, June 1975, pp. 311-

317.

2. J.F. Blinn,li Models of Light Reflection for Computer Synthesized Pictures, " Computer Graphics

(Proc. SIGGRAPH 77), July 1977. pp. 192 - 198.

3. J.F. Blinn. Computer Display of Curved Surfaces, doctoral dessertation, Univ.of Utah, Salt Lake City,

1978.

4. Torrance and H.M. Sparrow, " Theory for Off-Specular Reflection from Roughened Surfaces, " J. Op-

tical Soc. of America, September 1967, pp. 1105 - 1114.

5. T. Whitted, " An Improved Illumination Model for Shaded Display, " Comm. ACM. June 1980. pp.

342 - 349.

6. R.L. Cook. A Reflection Model for Realistic Image Synthesis, master's thesis, Cornell Univ., Ithaca,

N.Y. 1981.

7. R.L. Cook and K.F. Torrancc. " A Reflectance Model for Computer Graphics," ACM Trans. Graph-

ics. Jan 1982, pp. 7 - 24.

8. J.T. Kajiya, " Anisotropic Reflection Models. "Computer Graphics. (Proc. SIGGRAPH 85), July 1985

pp. 15-21.

9. D.G. Hakala. R.C. Hillyard. P.J. Malraison, and B.F. Noore. " Natural Quadrics in Mechanical Design

. " Solid Modeling, tutorial notes, SIGGRAPH 81. Aug. 1981.

10. F.. Bahar. S Chakrabati. and M.A. Fitzwater. "Extinction Cross Sections and Albedos for Partclcs

with Very Rough Surfaces," Applied Optics, Aug. 1986. pp. 2530-2536.

1 1. A. Ishimaru. Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978,

Chaps. 2,21.

12. S. Chakrabatri. Scattering Cross-Sections and Incoherent Specific Intensities for Particles of Irregular

Shape and Finite Conductivity, Full Wave Approach, doctoral dissertation, Univ. of Nebraska-

Lincoln. 1986.

13. F. Bahar and S. Chakrabati, '" Scattering and Depolarization by Large Conducting Spheres with

Rough Surfaces. " Applied Optics. June 1985. pp. 1820 - 1825.

14. D.F. Barrick. " Rough Surfaces. " in Radar Cross Section Handbook, G.T. Ruck. ed.. Plenum, New

York. 1973.

15. H. Bahar and M.A. Fitzwatcr, " Multiple Scattering by Conducting Particles with Random Rough 665

Surfaces at Infrared and Optical Frequencies. " Radio Science, July-Aug., 1986, pp. 689 - 706.

16. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces,

Macmillan, New York, 1963.

17. M. Born and E. Wolf, Principle of Optics, Pergamon Press, Oxford, U.K., 1965.

18. R.M. Boole and D.B. Cooper, "Bayesain Recognition of Local 3-D Shape by Approximating Image

Intensity Functions with Quadratic Polynomials, " IEEE Trans. Pattern Analysis and Machine Intel-

ligence, July 1984, pp. 418-429.

19. B. Cernuschi-Frias and D.B. Cooper, " 3-D Space Location and Orientation Parameter Estimation of

Lambertian Spheres and Cylinders from a single 2-D Image by Fitting Lines and Ellipses to Thre-

sholded Data, " IEEE Trans. Pattern Analysis and Machine Intelligence. July 1984, pp. 430 - 441.

20. E. Bahar, " Scattering and Depolariztion by Random Rough Surfaces, Unified Full Wave Approach

An Overview, " Proc. Int'l Symp. Multiple Scattering of Waves in Random Media and Ran-

dom Rough Surfaces, V.V. Varadan and V.K. Varadan, eds., Pennsylvania State Univ. Press, Uni-

versity Park, pa.. 1987, pp. 715-733.

21. E. Bahar and S Chakrabati, "Full-Wave Theory Applied to Computer-Aid Graphics for 3-D Objects

, IEEE Computer Graphics and Applications. July 1987, pp. 46-60.

22. Robert Braham, Math & Visualization: New Tools. New Frontiers, IEEE Spectrum, volume 32,

number II, November 1995, pp. 19-21.

23. Michael Lounsbery, Stephen Mann and Tony DeRose, " Parametric Surface Interpolation ", Univ.,

of Washington, IEEE Computer Graphics and Applications, September 1992, pp. 45 - 52.

24. Javier Sanchez-Reyes, " A Simple Technique for NURBS Shape Modification," IEEE Computer

Graphics and Applications, Jan. - Feb. 1997, pp. 52 - 59.

25. Brian A. Barsky, " Rational Beta-Splines for Representing Curves and Surfaces, "Univ. of Califor-

nia at Berkeley, IEEE Computer Graphics and Applications, November 1993, pp. 24 - 32.

26. Carole Blanc and Christophe Schlick, " Accurate Parametrization of Conies by NURBS," Univ. of

Bordeaux, IEEE Computer Graphics and Applications, November 1996, pp. 64-71.

27. James F. Blinn, "How To Draw A Sphere, "Part 2:Coordinate Systems, California Institute of Tech

-nology, IEEE Computer Graphics and Applications, March 1995, pp. 70-76.

28. Donald M. Monro and Frank Dudbridge, "Rendering Algorithms for Deterministic Fractals," Univ.

of Bath, IEEE Computer Graphics and Applications, January 1995, pp. 32-41.

29. J. F. Blinn, " How To Draw a Sphere Part 1," California Institute of Technology, IEEE Com-

puter Graphics and Applications, January 1995, pp. 78 - 83. 666

30. Henry J. Lamousin and Warren N. Waggenspack, Jr., "NURBS-Based Free-Form Deformations,"

Louissiana State Univ., IEEE Computer Graphics and Applications, November 1994, pp. 59 - 65.

31. Bradley A. Payne and Arthur W. Toga, " Distance Field Manipulation of Surface Models," UCLA

School of Medicine, IEEE Computer Graphics and Applications, January 1992, pp. 65 -71.

32. Richard H. Bartcls and David R. Warn, " Experiments with Curverturc-Continuous Patch-Boundary

Fitting," IEEE Computer Graphics and Applications, Srptember 1994, pp. 64-73.

33. Sandcep Kochhar, " CCAD: A Paradigm For Human-Computer Cooperation in Design." Harvard

Univ. and Computervision R&D, IEEE Computer Graphics and Applications, May 1994, pp. 54-65.

34. Michael F. Cohen, Donald P. Greenberg, David S. Immel, and Phillip J. Brock, " Efficient Radiosity

Approach for Realistic Image Synthesis," IEEE Computer Graphics and Applications, March 1986,

pp. 26-35.

35. Hiroaki Chiyokura and Fumihiko Kimura, " A Method of Representing the Solid Design Process,"

IEEE Computer Graphics and Applications, April 1985, pp. 32-41.

36. Jack Goldfcather and Steven Molnar," Solid Modeling: Near Real-Time CSG Rendering Using Tree

Normalization and Geometric Pruning," IEEE Computer Graphics and Applications, May 1989,

pp. 20-27.

37. Xiaolin Wu and G. Roknc, Univ. of Calgary, " Curve Algorithms: Double-Step Generation of El -

lipscs "', IEEE Computer Graphics and Applications. May 1989, pp. 56 - 69.

38. Robert Ross, " Transformations: The Map Geometric Transformation," Univ. of British Columbia,

IEEE Computer Graphics and Applications." May 1989, pp. 70 -75.

39. James F. Blinn. " How Many Different Cubic Curves Arc There?, Caltcch. IEEE Computer Graphics

and Applications. May 1989, pp. 78 - 83.

40. Alan H. Barr," Superquadrics and Angle-Preserving Transformations," Rcnssclacr Polytechnic Ins-

titute, IEEE Computer Graphics and Applications. January 1981. pp. 11 - 23.

41. R. F. Ricscnfcld." Homogeneous Coordinates and Projectivc Planes in Computer Graphics," Univ.

of Utah, IEEE Computer Graphics and Applications, January 1981, pp. 50-55.

42. James F. Blinn, " How Many Ways Can You Draw a Circle?, " Jet Propulsion Lab., Caltcch., IEEE

Computer Graphics and Applications, August 1987, pp. 39 - 44.

43. L. Picgl, " Less Data for Shapes," Technical University Braunschweig, IEEE Computer Graphics

and Applications, August 1087, pp. 48 - 50.

44. Andrew S. Glassner," A Shape Synthesizer," Microsoft Research. IEEE Computer Graphics and Ap-

plications." May - June 1997, pp. 40-51. .-..-—i n n natttfti swinna E-1 mma main S-3 iflR flSflVTUQ E-3 mam lrunaannnuuri D-5 •» <• insa' •yianlflD S-6 fmthruri oiinJs^iaia D-5 Irona' umJsnia A-3 inas'aa ia. D-4 a jocySu rfsuhsa: A-l sunns esEUflS B-5 R sSo aeiflsmis C-2 Riaan fiflin C-11.C-12 C-8,E-17 fliiflan mln C-9 ssDcuii ujnaeflDSRii B-1 gtu anafls C-13 isasaa eisaions A-4 Inflim alflln C-9 U umws fonum D-3 vnuuo idSmnasirworf A-7 msfls aumimo C-8.E-17 0 uqua Dises gnS)a' C-3.C-4 anwa uaodsffu D-5 uoaao sasuinasn E-11 aes'a luisalu B-2 uan ti. D-4 UTl aff3QCISlS9U mmsaia wuanmatfi E-8 C-13 TOffuona risojtyiSou E-5,E-6,E-7 uiirosstu aunsiJs^iJ C-1,C-1O,C-11,C-12 i. i. aistua' naoNictn D-l fins IMFM S-2 C-1 mm aninmuuri A-4 osai \lsrmaunSa7rrw A-4 untn nnqns E-6,E-7,E-8 D-6 i9. taa. msam S-4 fhnnn Ssaiani uvnis n5a"a A-7 u u/nasstu tJsinana D-5 aaasstu mruans D-3 •uauig tu s^uw B-7 IQJJ naoinaau B-4 uas i]fis~uistu D-3 iinDStni asssurmis E-4 aaainaaa a. D-4 u E-16 Ci imsnm S-l D n B-3 Tjfusssu ansnafirastu D-3 B-3 tfaaaai iniwsty B-2 W C-6 ?fini7rH IH71"!SS1ISJB' B-4 ilgu unauinn IJQII Mauona B-4 mtua"8 efioDuonaa'B E-13,E-14 flrain nsTusaa E-11 Tj^nlaiihaaa ieu. D-4 BUTR najaaa D-5 ilsromi mnwuaa'tia C-13 E-9 i]s:lvmf{ ffaseniutuns C-3 lJs:l3T18' UnMJoj A-6.A-9 QJ tfsm winiwas C-5 ornitiTis •miasnusTfliai1 A-5 Thufiwa' auwssiaii E-17 in ihrKni wsmimilus E-6 E-8 iilasmnna la. D-4 ifila najesiu B-6 n woffUs^rud aaaQsmm A-l ftoii amlaa B-1 Mswua a1y3sstum]ci A-4 lasnw liaoapsstu C-2 wsscu wnno C-5 f) visrts wavtou C-7 tros biwas D-3.D-4 via\Twa flviiHS S-5 Qsuuri aauuna E-1 vifirui axjsnuvijffss C-5 aswhru Daanao B-4,E-1,E-16,E-19 mas iJsmijfiwa' B-4 aunsina C-9 new 3 cWIflj-lid E-21 w.e. dan isooamssni D-2 IHQMD smiwsana A-7 auto uadaiiajmuiru E-i iwtvmvra fltinsml C-13 allWS O8OH1 E-2,E-12,E-13,E-14 Iwnsa' 3ssamjH E-20 cfuws mauan C-14 Iwsa rtslom C-4 anus acrasou E-19 auqns osooeis D-6 vjinasli auinu C-1,C-6,C-1O asaan isajdsa C-4 n anaJaw Hsoisna C-2 i 11 JISTB asi/Taas C-8 aaifn tanassjwsa: A-8 /irisi aunna C-1,C-1O mnw mnvv D-6 u auns unawan C-1 uona oaanTumi E-18 auns lam^laa D-5 atfuTn nnsains E-18 ucuni iJnimaaa: C-1.C-6 i B-3 w.n.muo aiiifisi msjwmisna D-2 awjo wianjons D-3 main n. D-4 a awaai aunslam B-2 amns miMilaana D-3 trwi iflaosaa A-1 aswjw wuwmjns E-14,E-15 asm ilt\j£inima'ana C-7 asqns nSasltuna S-8 a E-1 asion' inflfSiaH A-7 S-9 apssan snsua A-1 a^an smjsuns E-19 uis/na E-10 i i B-5,B-6,S-7 sulns aasstun D-3 apua ion:Jnni: A-l.B-7 smn vtyu.au C-14 laan auns^ E-1 snauns lostiruna B-4 lanaworf wstu A-3 D-4 uswlima 3w. 9 q dnsnv lanaana S-6 D-3 aswu ineia^u C-3 a assom lnannsao A-6 aaisuri wa aaaiaas S-1 ossows rnisainiff B-5 aaiDH uajan A-7 assowa UU118U A-2 3 as5a/i aiiaifia A-5 3cQa autdinaiicu A-6,A-8,A-9 asiiff asmirona' E-9 B-7 9Jflmiri ajnsswu D-6 3SiDa Bosqna E-11 aoasi aaoasaaua E-6.E-15 Juaa sssiJ3Tua E-12,E-13 aifitfia' alHaaS B-l o)S£U uialws C-13 ai/istu iimuna E-10 aaaa B-1 9isfn nmoaimftru B-l 5i8as E-2.E-12 eissim/ nauHDjuib E-11 E-1 enusfiii fiwassni E-19 D-3 autua' a\i0R3orftaa E-14 i 5ua nswa'a\iaB B-6 lOcf. 3OSl?JcftflOS S-1 SsMTi xfonar5sa S-7 iau. e. id. ooinad A-2 UOUlflScf OilfliJ OLU0S S-i E-3 loan ifpinvJaR D-3 majuai E-2,E-14,E-15 Hsws D-3 Index of Investigators

A Jaipetch T. D-3;D-4 Ajaya Malakrong A-6 Jarlya Prasartsrisuparb A-4 Alice Sirinuntavid E-9 Jarunee Thongphasuk D-l Andreas Jacobi.Jr. S-l Jatupol Sangsurlyan D-5 Angkanan Aungurarat D-6 R Apiluk Lohachltkul S-6 Kaneakl Sato C-9 Araya KJttivanichawat B-l Kate Grudpan E-3 Archara Sangariyavanlch E-6,E-15 Kazuyukl Mishima C-11,C-12 Areeratt Kornduangkaeo E-11 Keisuke Isogai C-9 Arporn Busamongkol E-1O Kovlt Nouchpramool A-3 Artit Ausavasukhl B-l Kun Suttsiri C-13 Athapol Noomhorm A-2 Kwanyune Sripaoraya A-l Attaporn Pattarasumun B-5 L B Laurent de Haller S-l B. Amorngitticharoen D-3 Leelaowadee Sangsuk A-7 B. Thurgood S-1 M C M.E.A. Ingles A-2 C. Pattanachak D-3 Maina T. D-4 Chaivat Techaklatkul B-3 Malinee Chaisupakltsin B-3 Chaiwat Muncharoen B-2 Mongkol Junlanan E-18 Chanchai Asvavijnijkulchai E-13,E-14 Monta Punnachaiya C-l,C-6 Chanchai Dechthummarong B-4 N Chanchay Punelapdacha E-8 N. Putrasrenl D-3 Chanin Phangarakrachadet A-5 N. Tojinda D-3 Chastbongkoch Srinyawach E-5,E-6,E-7 N.W. Harvey C-3,C-4 Chatwali Thammit B-3 Nanthavan Chantaraprachoom C-1,C-1O,C-11,C-12 Chlotellis E. D-4 Nares Chankow C-8,E-17 Chitima Yathaputanon A-4 Nawarat Wattanapan E-4 Chome Thongleurm B-4 Ngamnit Sermklattipong A-7 Chouvana Rodthongkom E-9 Nigorn Mungkung S-2 Chowunchun Prapunsri E-16 Nikom Prasertchiewchan C-l Chuchat Thongyoi D-5 Ninnart Virawat D-6 Chutima Kranrod E-lt Nipawan Poramatikul D-5 D Niphone Thaveechai A-7 Decho Tong-Aram B-6 Nitaya Suparit E-6,E-7,E-8 Dusadee Ratanapra E-8 Nock B. D-4 F Nualchavee Roongtanakiat E-11 Fookiat Sinakhom C-l,C-6,C-10 Nuchanat Na-Ranong B-7 G Nut Asawachatrode C-13 George Bereznal B-2 0 Gobwutt Rujijanagul E-l 0. Kerdchoechuen C-3 Gray Buetzow S-6 Orawan Suksudej A-5 i P i r Ian Buttfleld D-3 P. Chairattanamanokorn C-3 J P. Sriyotha C-4 J.S. Charlton S-4 Paitoon Wanabongse E-20 Pannee Pakkong C-5 Sumrit Chlngjlt D-6 Palangpon Kongsaeree S-5 Sunanta Patrashakorn E-l 8 Pantip Ampornrat E-17 Ltc.Sunetra Dumrongpisutikul D-2 Papadopoulos M. D-4 Suntaree Kaewpaluek C-l Papot Pruantonsai E-6 Supitcha Chanyotha B-2 Paratee Sarapassorn C-8 Surang Dejslrllert A-7 Patana Anurakpongsatorn C-5 Surapong Pimjun E-14,E-15 Pathom Vichaimongkol B-4 Surarlt Sri-arunotai S-8 Pathom Yamkate C-6 Suvlcha Ratanarin E-19 Pattra Supaoklt C-1,C-1O Suvlt Punnachalya B-5,B-6,S-7 Penkhare Rattanapiriyakul A-7 Suwanna Charunuch A-l Pentip Khunarak C-13 Suwlmol Jetawattana A-l,B-7 Phongpraphan Susanthitapong A-l T Phulslri Ingtrakul E-21 Takashl Sasaki S-3 Pijit Pratumtlp B-4 Tatchal Sumltra C-8.E-17 Pirmettts I. D-4 Tawan Sooknoi B-l Pisit Suntarapal C-9 Taweesak Thantawlwatananon D-5 Pornpimol Chaiwannakupt A-4 Terzis A. D-4 Pornsrl Polphong C-7 Thanakorn Arunsiri B-5 Prajuk Tanapiboonpon C-13 Thawat Chittrakarn C-2 Pravait Kaewchoung A-6,A"9 Theerawat Mongkolaussavarat B-l Preeda Parkpian C-5 Thienchai Arayangul A-4 R Thlranan Sonkaew E-l R. Pleehachlnda D-3 Thiraphat Vilaithong B-4,E-1,E-16,E-19 R. Suwanlk D-3 Tippanan Ngamprayad D-5 Rachain Charoennugul B-4 Tripob Bhongsuwan C-2 Raptopoulou CP. D-4 U Ratlrot Phareepart E-1O Udomrat Tippawan E-19 Rattana Bunsan C-14 Usanee Santatiwongchai E-l 4 S V S. Chongchirasirl D-3 V. Boonnamsiri D-3 S. Pattanachak D-3 Varaporn Kajornchaiyakul B-7 S. Ruangchuay C-4 Varavuth Kajornrith E-ll S. Tantipiyaskul D-3 Vimol Supsongsuk B-6 S. Worcester S-l Vlrul Mangel avlraj S-7 Saovapong Charoen A-3 Vlttaya Thongchuchuay E-l Sasiphan Na Songkhla E-2,E-14,E-15 W Sasipron Kunapongklti E-3 Wanchai Dharmvanij E-12,E-13 Col. Satit Raungdilokrut D-2 Wanltch Llmohpasmanee A-6,A-8,A-9 Saweat Intarasiri E-l Warunee Tueypo C-13 Somchai Sangyunyongpipat E-l Wichlan Ratanatongchai E-2,E-12 Somporn Chalennsuk C-14 Wischalee Setasuntorn B-l Somporn Chongkum E-2,E-12,E-13,E-14 Y Somsorn Singkarat E-19 Yoshlo Murao S-9 Soontree Laohawilal D-5 Yu Iiangdeng E-l Suchada Segsarnvlrlya A-8 Yupa Tlengthavaj A-l Sudkanung Phumkem D-6 Yureeporn Panyatipsakul C-7 Suksawat Sirijarukul C-2 mmrumao

' famffM*$uamnMJaSibtnaBs ' mm at utmnmlssmsnujji iwouifm&lmhi

MfrrnixiuianfosSMiioihLmM do

mstawuatnu uaznlwJsshmifam&il&iofhims^

vairn wvu anutu

The 7 NUCLEAR SCIENCE AND TECHNOLOGY CONFERENCE DECEMBER 1-2, 1998

mmm BY OFFICE OF ATOMIC ENERGY FOR PEACE MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT