Onaimansuaanntuiasuginaas Nsofi Cu

Total Page:16

File Type:pdf, Size:1020Kb

Onaimansuaanntuiasuginaas Nsofi Cu onum TH9900001 msUsftuotnms NST7 onaimansuaannTuIaSuGinaas nsofi cu cfiunaiuuiauuiuUsuioiiida^un %M ns:ns3U3n8imans ISBN 974 7400-22-7 30-36 Please be aware that all of the Missing Pages in this document were originally blank pages ii wsssivirnuui&isivniswaiSQU Thimsflhsiv uasjJssvirfunnmi favwv irilmjssamwdiiswfiioa'o uazuoinenJssT&vuetiioiiiiia'tturimi ufimliv uazuriutJufiu 4 i wssmtrvmnsamsTnfni mo wwii wtGfinsiv iJsraiuauwus cfsiflfmumito molnauoinaas ai HaaUstrnjanatsansOina tfo 0 Ruclesw Technology : ff Stimulus Tor Thai Economy The 7 Tluclear Science and Technology Conference 1-2 December 1998 at Kasetsart Golden Jubilee Administration and InTormation Center Kasetsart University Bangkok 10900. Thailand Organized by ©filee of Atomic Energy Tor Peace Ministry ol Science Technology and Environment sn nsbfi i 1 - 2 ffUDlflU 2541 n.s\. 2504 doiasu auuauunisflnuiStfaua^injunSnaifliaiasfJoiflaas u BITU morrmbumBS Dununna'iRfijlunamsriio n idvi lumomsuwns' nismuHS aeiannnssu ua:fiiTnaniMaofio:iiiliJlffiiIuRuriiiufiwaooiuwafins:iialrlflniiaoils:mfiTu6inRpi cfouuso msifs^v5ffims3nmfnaeisua:mnlulamioifiass " iilmJs^inn 2 1) ItiaiSulouritl M.R. 2529 iiluefuui ua^iiRloiJiiIiimssfliJsifliJRlofi 7 IwaiJHOuayianuaomsiJsrni] fia * uannJ^auRDiusua-iJs:aunisnnuonu^nOT3oe3n8imaiasua:inRMa8uoiRaasnnaiin -it ajfhJsmaumsiJs^u msUs-fluiJs:naufl3amsiJigntnwmul6iaHrfa3in[uiToluua:riioiJs:infi msaJiTJsia unssRmsrno Dinms otnmsmo nfiaDnaifliaflsfoniYmarmsinuias 3flDnssuFnaEis'ua:inFiTuIaa s unna' 3flons ua:ioinuifiHilfliJloiu3o8uar>Tfuin s lTo/nRsguiauananuu oiuDuUsantu 300 sni Jufi 1-2 aiiyinij 2541 sauioai 2 Jumms tu iTaoiJs^aijaiRisa'isuinfi 50 0 umSnaiaainufisHiaws S " 1umjDfl3flimsehvn TciBfjosTBanoain ua= uuuWas'uunfleiaaMfi a*iunoiuwaoonmJsinnnwaaiifi msiowons nsomvn 10900 Ins : 579-5230 Tnsaas : 561-3013 Haon:iuaumsouiJs:i)iJ^MsuianaissDusauunRoiijRiii " onaifliansuarinflluTaaiioiflaes " fiti lafl ailsisn omi.i nuiiorroMsoafl luinom^ns nsoinvii 10900 InsfTwri : 562-0102,579-5230 eia 231 Insans : 561-3013 E-mail : [email protected] http ! //www.oaep.go.th/NSTC7 fintnssumsfiiJsnuT fl.un subs aossffln ils:BiiiFinj:aunssiJfnsiHaovnuiJsiJiniliinomsu«nB' uiaonsnquni ysnj:a"uqnB iJsiBniififuraijnssiJfnsMaooiuiJsuiajlufiomsaiaann uiBauliR snlaeiu Os:Biunni:9unssxjfnswaooiuiJsuitijTufiomsinuias sfl. eaffa aflias f\. naoIsBu a'auouns n. tTntn flsmjq 96msuSum3Ti8iaBinuiasniaias UIBOJRJU wt]nu:5u uiBinsBofTnM nnsiflu uiauury asiusiau saoiaBi6msdiiTnonuwaoonuiJsiJitULv'iaauK g unauinia saoiauiemsa^unoiima^Mimlsmtumaaiifl uiaussoo nooivistyso waiuDamsnaomsDcinuiruiamwfoa nssums uioWinaspi Bmt\v HanuDamsnaoBOHmnnuiTuDisoa nssunis U181B13U S9HT190R1 W91U08msn90lRlJ nSSUfliS UIBDSB flsmasn wgiuDamsnaodansaliJflun nssums uonami6 HaiuoamsnaoHaeilaMniJ nssums oaom wanuaamsnao^and nssums uninmaorf wanuoamsnaoonanniaias^mvi nssums uiaiiaau WOU'MDUU wanuaamsnaoau/nw nssums luauuat) wgiuoamsnaoaiJnsniaiannsatind nssums gntivnudana {Jaiuoamsgua'tiinunoiuiJaowMsooiuiioifiaas nssums unolan laBiurnsnsu nssumsuanainums ailsisn nssunisua:wit38ia!nums unafio nssumsua^Hdoaiamums 3TTU 7 unaiJgu imaumia ils:6iunssums inaitnou U1080QS1 ifuia35fljinijuri 1/1801181 uiaasiTa inoutum uiovwowssw aiJsisn U1099QS1 uaO9S83iJO "US=( U1831181 SBRIGUfi US:B1Uf)OI:m01U inanStfhtf rTufl33pmnuuri yriiouj U18U131 31S3QB yriioiu U109QUUOnO HSOJOJ130U Htiiom uiaaosu osrJaiuviofi mtioiu uiaanaa ftsfisua HTliOill uiaasffnM vuffwliB^aa yriioiu uionnsi aimno ytiiom uiaauns Inuafins' yriioiu uioaioflSsnu fisuumS HliiOlU uiafi3(]^ aunsina tJriioiu U1O3U0IU1 UUUIfl tfmoiu uialwijaa nauinus yriioiu uioaisanojoji ounsuona yriioiu nntTiiJTURTUHsmsua^ioTufi uiaanSMniu vluui uriioiu nufiairtiioiii uiaaa flsauu Hiiiom RtUrTiiJTURTllIaHTliffUlJnsni uioBofiwd uonainaa HTIIOITI uiaasffa wou'ioSajau TJS=BlUflOlMiiOlU uiaiHBojaa uuuunfi HTTIOIU uiaaulo ifi8sfi(TnM5HJui wriuiu uianqum riurfuiJfi [Iiiioiu uioaisaufls nsoiJsrTiij HT11O1U uiaffsriou' riaoWso Htiioiu uiaiJnsni f\nt\r\e miioiu U1Ja13vUnS1 l9n3SSaiUUTl yriiouj uiaBfiffs Hbasau wriioiu inaautinB soffniflfl Htiiom uiasffiffa wauuno yriioiu uiauojoi loSojuin wriioiu nawhjTumuROusijiiariton: uia^owiiB inpinai yriioiu uioBQu'iJooa fiSfyojiSou ils^f uioWifiasK auinu inoouensua' 03iaSfuiiu6 HT11OHJ uiouoim ilnioiffaa: xJsr 61Ufiftl:riiO1U uiomojfiyia' nnnsnu yriioiu inaflnu iJ&iasginasoioj wriioiu UIOUOJOJI aaififi uriioiu uioai3RflHuq 01 aouai wriioiu uiaaswou fiuWouns uriioiu uiamsseiu ngueooum HTIIOIU nQtmnuHTUfriswu uiasiBas souauiu yriioiti U10H30HSSO1 ^U1 OS:(51UfiOJ:Tii01U uiaanffa HSfisiJa' UTium uioavd ffSmasfi utiioiu uio/Tnsi aim no umoiu uioauaeiiii fiuafieia uriioiu uioiai3«orf wsoj wrlioiu UIOUJSUORS 3SW\)U wriioiu maMmixi mougyiou yriioiu uiomnjoui auiiaaqa yriioiu U1OOUHU1 tJUUIfl ytiioiu uioai33iaui fisojspiu ytiioiu uioai3^Ssciii fisuueiS yriioiu uiouunsssm ounsOsou wriioiu nfttmnumuiainums U1OlU13Seill 3SSBU:lfU6 wriuiu U1OlJS:lV(flfI ailSIS/1 lJS:l uioai33is ana wriioiu uuina3sofi unaoa yriioiu inaflnu lisnasginasainj yriioiu uioai33la3ssoi ifuoaa yriioiu uioai3ftnvTu6 01 aoaai wriioiu iiijTufi'Hruoi uaoil&iasg yriioiu uuai3a3ua SBIURU wriioiu uioaiouiQuau mans yriioiu uiaiJinaii ws3Uiaulns wriioiu uioai39isi?n ifisuauiJsraofi' tlrhoiu nsoii i 1-2 SlmflU 2541 ni ifojiJsraija'imsmsiiinfl so iJ inranmaaifrunsmans nsjirmimrims l mnfiu 2541 08:00 - 09:00 aaruiutru aisna 09:00 - 09:30 - iaun6msaiunoiuwa^mJsina}maa\iia (uimnsvjfinfi /Tnswu; na'iosiaoiu uausiooa " unQDiRSBsMiflu " ua= uausiooa " i 09:30 - 10:00 wauJflunssflms uarmsiauawajTU/nnWaines m^uviei - murl 10:00 - 12:00 msamJsmseo " yanilsna: n. uwnanfyovoonao Inswyaa fi. tis. asuu aiuns3uns : sn. KS. ffaocuil «iJs=0ina 12:00 - 13:30 tiuvnssfims / uamurwliJaiaos ua~suiJs~mvdimsna^3ij oisna : IJS:BIU : sfl. iJsrBiusou : uisntnPi naosaa 13:30-14:20 inseoxJflnsnhlsintipBaneolTialuauinfi ( The 10 MW Multipurpose TRIGA Reactor at Ongkharak Nuclear Research Center, THAILAND ) WUSSBia : Mr. Brian Thurgood and Mr. Steve Worcester eqaDTia': ussaiBmHu 2 iJs^eiu : sfl. Pis.6Btr8 ils:eiusou : 13:30-14:20 ( Exploration of Petroleum by Nuclear Technology ) HUSS81B : matins lTofto gisna : ussmawm» 3 \Js:enu : sn. oannsei TJS:8IUS'DIJ : 14:20-15:10 Industrial Products by Radiation Processing HUSSaia : Dr. Takashi Sasaki aaaona": ussanawifra 4 01s. uuty asiuspui inaaswa 14120 - 15:iO Radloisotope Techniques for Problem Solving in the Oil and Gas Industry WUSS818 : Dr. J.S. Charlton 9 : iJs-6iu : sfl. fls.ima nscimie teas. MRJU 15:10-15:35 Ei : wan8oluIfisioulea6U8iJwarniuiirfufifleian3niJu8jua:auijliIf)sMaS naoHDmannaiiriinseaiJenaiuas SKD11 Hiauanaoiu : maiaon aunsfls 15:35 - 16:00 E2 : msriia/rmfloafioflsaiilflalainniiJaauroflsau 4 aua wiauawaoiu : iJs:6iu : wfl. uisfis IJS^61USDU : wfl. cis. a^arn ounslaei 15:10-15:35 Bi: iJflnsaiwaaiijalsiatfunajwaaloiavlu/naluswsuoamRnaj3lalari Hiauanaonu : sw. ms. R=5U J 15:35 - 16:00 B2 : wiauawaoiu : ansna : * msaJs^ua>iirtinJs:diiInaoaiJin]JUDi«aas'u.viails:m»ilna 16:00 - 18:00 msalhJsiaisaa " uaiHaasmnMaamjajnulnaan 2000 " 18:00- 18:30 msi]s:mjaiijruiJs:BiiJuaoaiJiRiJU3iRaBs'imoils:innlne 2 ffimnv 2541 1 08:00 - 09:00 auunssflms ua: wajiu/nnli]aipias aisna : ussaiawitm 5 ils^eiu : sfl. tis. IIS:61USDIJ : ingJutTa essuoiua 09:00 - 09:50 Synchrotron Radiation Application on Protein X-ray Crystallography HUSS81B : cis. waoMa noias ua: 01s. Dsmou imaosstu v 1 aqaona': ussmawuro 6 IJS:BIU : as. aims 09:00 - 09:50 msltf Electron Beam S:H\janannnssxjMTJ8 ( Application of Electron Beam Accelerators for Industry in Thailand ) HUSS818 : Mr. Gray Buetzow ua: uiaa/isfiu' Ta'riijflna 09:50 - 10:10 nnOiiJviin - murl iTajasssiJ aisna : ussaiawura 7 ils^eiu : uiaplsffa 01s. asm/] 10:10 - 11:00 ( Development of Nuclear Instruments in Thailand ) sfl. oswvi iTona=5sa ua= M. aone iJniaiB"88" aaaona : ussaiawuro 8 ds^eui : as. itjoovnun auitiafls inainuuri aminooff 1 o: 1 o - 11 :oo msiIejniiua:mofluuaj5uRalijl«amsWmmflThlmijao5uiihrHiru ( Area Wide Control of Fruit Fly by the Sterile Insect Technique ) Hussaia : uiaasnnS flsasTnina aisna: iJs;6iu : w.0. as. flatuson inoloum siausons 11:00 - 11:25 Di : wiauawaoiu : as. onsrtia naoman 11:25 - 11:50 D2: nisMiaQouarMfmiijManissifToiIsnijrisofieijanMmnlflaWaHahaTffisaa PSA mauanaonu : w.n.nttjo 01s. aitiHST eiisovifjTisna eqaona': Hajiu5oaanm5Ti8ifncttits33/nyiuarmsinT»is iJs:eiu : AS. mygtra uainoiaorf inaTnona 11:00-11:25 A1 : wiauanaoiu : unoavn iMao65a 11:25-11:50 A2 : tJiauawaoiu : fis. asstiwa uunau 9 : iJs:6iu : IJS:61USDIJ : inoaioflssiflii VISUUHS 11:00-11:25 Ci : 11:25 - 11:50 C2 : unamjihifisoa\sflauluifiiJiHialiiiDfia]JTfiTi:iaaTijaonan mauawaoTu : unaa^aoaM HSansna 12:00 - 13:20 uvunssfims / uanwnnlifaiaos ua^sviJs~mudimsnai<iDu aisna : ussaiawwm 9 vJs=6iu : uiaaniM uonamie iJs:6iusou : uiaimou sajinaom 13:20 - 14:10 Social Advantage on the Peaceful Use of Nuclear Energy WUSSaia : Dr. Yoshio Murao 14:10-16:10 msamJsiaisdJ " BDius3uiJas:«Tj/jflin«lumswianni»is«gn9ua^mjl.Ti8 " waniJsia : fl. uiauuTins uiavjaau WOU'WBUU uiauums iffiaiTa ymiuumsa/iilsia: PIS. auns 16:10 - 16:40 - \Js:6iuFiai:nssumsocimsiJs:diJ3inms onu. 7 (vwiJgv unawnfl; naiosiaoiu - latnemsa'iunoiuviaooiuilsLntijmaa'iiw (xnmnsooflnd nnswu) 16:40 - fiuum - murl msxJsnjuSinms " >'" nsjn 7 1-2 sknnu 2541 ni 50 U nsoirrwumuns wan aamsTi 1 wyrnu Dai W5T1 2 SUDimj 08:00-09:00 aimiumj 08:00-09:00 mjunssfimsua:Haonu/nRWai0ias' 09:00-09:50 msussBiaviifiu isao msussaiBviinu isao Synchrotron Radiation msTJ Electron Beam 09:00-09:30 wsuta Application on srwuawamnssijMnB Protein X-ray Crystallography 09:50-to: 10 Whtbuiai - muvl 09:30-10:00 iJs:6iuamlnssflmsiia::msiauawao'iiimflTiJaiia9s7
Recommended publications
  • RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE and OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 1-1-2009 RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected] Follow this and additional works at: http://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Please take our one minute survey! Recommended Citation Powell, Robert, "RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS" (2009). All Theses. Paper 743. This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Robert A. Powell December 2009 Accepted by: Dr. E. Harry Law, Committee Co-Chair Dr. Beshahwired Ayalew, Committee Co-Chair Dr. John Ziegert Abstract This work deals with the question of relating open-loop handling metrics to driver- in-the-loop performance (closed-loop). The goal is to allow manufacturers to reduce cost and time associated with vehicle handling development. A vehicle model was built in the CarSim environment using kinematics and compliance, geometrical, and flat track tire data. This model was then compared and validated to testing done at Michelin’s Laurens Proving Grounds using open-loop handling metrics. The open-loop tests conducted for model vali- dation were an understeer test and swept sine or random steer test.
    [Show full text]
  • MF-Tyre/MF-Swift Copyright TNO, 2013
    MF-Tyre/MF-Swift Copyright TNO, 2013 MF-Tyre/MF-Swift Dr. Antoine Schmeitz 2 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction TNO’s tyre modelling toolchain tyre (virtual) testing parameter fitting + tyre model signal tyre MBS database MF-Tyre processing TYDEX files property solver file MF-Swift MF-Tool Measurement Identification Simulation Copyright TNO, 2013 1 MF-Tyre/MF-Swift 3 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction What is MF-Tyre/MF-Swift? MF-Tyre/MF-Swift is an all-encompassing tyre model for use in vehicle dynamics simulations This means: emphasis on an accurate representation of the generated (spindle) forces tyre model is relatively fast can handle continuously varying inputs model is robust for extreme inputs model the tyre as simple as possible, but not simpler for the intended vehicle dynamics applications 4 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction Model usage and intended range of application All kind of vehicle handling simulations: e.g. ISO tests like steady-state cornering, lane changes, J-turn, braking, etc. Sine with Dwell, mu split, low mu, rollover, fishhook, etc. Vehicle behaviour on uneven roads: ride comfort analyses durability load calculations (fatigue spectra and load cases) Simulations with control systems, e.g. ABS, ESP, etc. Analysis of drive line vibrations Analysis of (aircraft) shimmy vibrations; typically about 10-25 Hz Used for passenger car, truck, motorcycle and aircraft tyres Copyright TNO, 2013 2 MF-Tyre/MF-Swift 5 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Modelling aspects and contents (1) 1.
    [Show full text]
  • Mechanical Analyses of Multi-Piece Mining Vehicle Wheels to Enhance Safety
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2014 Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety Zhanbiao Li University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Li, Zhanbiao, "Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety" (2014). Electronic Theses and Dissertations. 5197. https://scholar.uwindsor.ca/etd/5197 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety By Zhanbiao Li A Dissertation Submitted to the Faculty of Graduate Studies through Mechanical, Automotive, and Materials Engineering Department in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2014 © 2014 Zhanbiao Li Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety By Zhanbiao Li APPROVED BY: __________________________________________________ Dr.
    [Show full text]
  • Nonlinear Finite Element Modeling and Analysis of a Truck Tire
    The Pennsylvania State University The Graduate School Intercollege Graduate Program in Materials NONLINEAR FINITE ELEMENT MODELING AND ANALYSIS OF A TRUCK TIRE A Thesis in Materials by Seokyong Chae © 2006 Seokyong Chae Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2006 The thesis of Seokyong Chae was reviewed and approved* by the following: Moustafa El-Gindy Senior Research Associate, Applied Research Laboratory Thesis Co-Advisor Co-Chair of Committee James P. Runt Professor of Materials Science and Engineering Thesis Co-Advisor Co-Chair of Committee Co-Chair of the Intercollege Graduate Program in Materials Charles E. Bakis Professor of Engineering Science and Mechanics Ashok D. Belegundu Professor of Mechanical Engineering *Signatures are on file in the Graduate School. iii ABSTRACT For an efficient full vehicle model simulation, a multi-body system (MBS) simulation is frequently adopted. By conducting the MBS simulations, the dynamic and steady-state responses of the sprung mass can be shortly predicted when the vehicle runs on an irregular road surface such as step curb or pothole. A multi-body vehicle model consists of a sprung mass, simplified tire models, and suspension system to connect them. For the simplified tire model, a rigid ring tire model is mostly used due to its efficiency. The rigid ring tire model consists of a rigid ring representing the tread and the belt, elastic sidewalls, and rigid rim. Several in-plane and out-of-plane parameters need to be determined through tire tests to represent a real pneumatic tire. Physical tire tests are costly and difficult in operations.
    [Show full text]
  • Program & Abstracts
    39th Annual Business Meeting and Conference on Tire Science and Technology Intelligent Transportation Program and Abstracts September 28th – October 2nd, 2020 Thank you to our sponsors! Platinum ZR-Rated Sponsor Gold V-Rated Sponsor Silver H-Rated Sponsor Bronze T-Rated Sponsor Bronze T-Rated Sponsor Media Partners 39th Annual Meeting and Conference on Tire Science and Technology Day 1 – Monday, September 28, 2020 All sessions take place virtually Gerald Potts 8:00 AM Conference Opening President of the Society 8:15 AM Keynote Speaker Intelligent Transportation - Smart Mobility Solutions Chris Helsel, Chief Technical Officer from the Tire Industry Goodyear Tire & Rubber Company Session 1: Simulations and Data Science Tim Davis, Goodyear Tire & Rubber 9:30 AM 1.1 Voxel-based Finite Element Modeling Arnav Sanyal to Predict Tread Stiffness Variation Around Tire Circumference Cooper Tire & Rubber Company 9:55 AM 1.2 Tire Curing Process Analysis Gabriel Geyne through SIGMASOFT Virtual Molding 3dsigma 10:20 AM 1.3 Off-the-Road Tire Performance Evaluation Biswanath Nandi Using High Fidelity Simulations Dassault Systems SIMULIA Corp 10:40 AM Break 10:55 AM 1.4 A Study on Tire Ride Performance Yaswanth Siramdasu using Flexible Ring Models Generated by Virtual Methods Hankook Tire Co. Ltd. 11:20 AM 1.5 Data-Driven Multiscale Science for Tire Compounding Craig Burkhart Goodyear Tire & Rubber Company 11:45 AM 1.6 Development of Geometrically Accurate Finite Element Tire Models Emanuele Grossi for Virtual Prototyping and Durability Investigations Exponent Day 2 – Tuesday, September 29, 2020 8:15 AM Plenary Lecture Giorgio Rizzoni, Director Enhancing Vehicle Fuel Economy through Connectivity and Center for Automotive Research Automation – the NEXTCAR Program The Ohio State University Session 1: Tire Performance Eric Pierce, Smithers 9:30 AM 2.1 Periodic Results Transfer Operations for the Analysis William V.
    [Show full text]
  • Winter Testing in Driving Simulators
    ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se Cover picture: Original photo by Hejdlösa Bilder AB, edited by Artem Kusachov Reg. No., VTI: 2014/0006-8.1 Printed in Sweden by VTI, Linköping 2018 Preface The project Winter testing in driving simulator (WinterSim) was a PhD student project carried out by the Swedish National Road and Transport Research Institute (VTI) within the ViP Driving Simulation Centre (www.vipsimualtion.se). The focus of the project was to enable a realistic winter simulation environment by studying the required components and suggesting improvements to the current common practice. Two main directions were studied, motion cueing and tire dynamics. WinterSim started in November 2014 and lasted for three years, ending in December 2016. Findings from both research directions have been published in journals and at scientific conferences, and the project resulted in the licentiate thesis “Motion Perception and Tire Models for Winter Conditions in Driving Simulators” (Kusachov, 2016). This report summarises the thesis and the undertaken work, i.e. gives a short overall presentation of the project and the major findings. The WinterSim project was funded up to a licentiate thesis through the ViP competence centre (i.e. by ViP partners and the Swedish Governmental Agency for Innovation Systems, VINNOVA), Test Site Sweden and the internal PhD student program at VTI. The project was carried out by Artem Kusachov (PhD student) and Fredrik Bruzelius (project manager and supervisor of the PhD student), both at VTI.
    [Show full text]
  • A STUDY of DYNAMIC TIRE PROPERTIES OVER a RANGE of TIRE CONSTRUCTIONS by G
    NASA CONTRACTOR NASA CR-2219 REPORT A STUDY OF DYNAMIC TIRE PROPERTIES OVER A RANGE OF TIRE CONSTRUCTIONS by G. H. Nybakken, R. N. Dodge, and S. K. Clark Prepared by THE UNIVERSITY OF MICHIGAN Ann Arbor, Mich. 48105 for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1973 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-2219 4. Title and Subtitle 5. Report Date A STUDY OF DYNAMIC TIRE PROPERTIES OVER A RANGE OF TIRE March 1973 CONSTRUCTIONS 6. Performing Organization Code 7. Author(s) ''>•* -i.'-lf : ft,:, , 8. Performing Organization Report No. G. H. Nybakken, R. N. Dodge, and S. K."Clark v' 056080-19-T (Revised) ?' '* ib.'Work Unit No. 9. Performing Organization Name and Address 501-38-12-02 The University of Michigan 11. Contract or Grant No. Ann Arbor, Mich. W105 NGL-23-005-010 / 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, B.C. 205^6 15. Supplementary Notes 16. Abstract The dynamic properties of four model aircraft tires of various construction were evaluated experimentally and compared with available theory. The experimental investigation consisted of measuring the cornering force and the self-aligning torque developed by the tires undergoing sinusoidal steering inputs while operating on the University of Michigan small-scale, road-wheel tire testing apparatus. The force and moment data from the different tires are compared with both finite- and point-contact patch string theory predictions.
    [Show full text]
  • Tyre Dynamics, Tyre As a Vehicle Component Part 1.: Tyre Handling Performance
    1 Tyre dynamics, tyre as a vehicle component Part 1.: Tyre handling performance Virtual Education in Rubber Technology (VERT), FI-04-B-F-PP-160531 Joop P. Pauwelussen, Wouter Dalhuijsen, Menno Merts HAN University October 16, 2007 2 Table of contents 1. General 1.1 Effect of tyre ply design 1.2 Tyre variables and tyre performance 1.3 Road surface parameters 1.4 Tyre input and output quantities. 1.4.1 The effective rolling radius 2. The rolling tyre. 3. The tyre under braking or driving conditions. 3.1 Practical brakeslip 3.2 Longitudinal slip characteristics. 3.3 Road conditions and brakeslip. 3.3.1 Wet road conditions. 3.3.2 Road conditions, wear, tyre load and speed 3.4 Tyre models for longitudinal slip behaviour 3.5 The pure slip longitudinal Magic Formula description 4. The tyre under cornering conditions 4.1 Vehicle cornering performance 4.2 Lateral slip characteristics 4.3 Side force coefficient for different textures and speeds 4.4 Cornering stiffness versus tyre load 4.5 Pneumatic trail and aligning torque 4.6 The empirical Magic Formula 4.7 Camber 4.8 The Gough plot 5 Combined braking and cornering 5.1 Polar diagrams, Fx vs. Fy and Fx vs. Mz 5.2 The Magic Formula for combined slip. 5.3 Physical tyre models, requirements 5.4 Performance of different physical tyre models 5.5 The Brush model 5.5.1 Displacements in terms of slip and position. 5.5.2 Adhesion and sliding 5.5.3 Shear forces 5.5.4 Aligning torque and pneumatic trail 5.5.5 Tyre characteristics according to the brush mode 5.5.6 Brush model including carcass compliance 5.6 The brush string model 6.
    [Show full text]
  • Kristian Lee Lardner
    Prediction of the Off-Road Rigid-Ring Model Parameters for Truck Tire and Soft Soil Interactions By Kristian Lee Lardner A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in Automotive Engineering Faculty of Engineering and Applied Science University of Ontario Institute of Technology Oshawa, Ontario, Canada July 2017 © 2017 Kristian Lardner ABSTRACT Significant time and cost savings can be realized through the use of virtual simulation of testing procedures across diverse areas of research and development. Fully detailed virtual truck models using the simplified off-road rigid-ring model parameters may further increase these economical savings within the automotive industry. The determination of the off-road rigid-ring parameters is meant to facilitate the simulation of full vehicle models developed by Volvo Group Trucks Technology. This works features new FEA (Finite Element Analysis) tire and SPH (Smoothed Particle Hydrodynamics) soil interaction modeling techniques. The in-plane and out-of-plane off-road rigid-ring parameters are predicted for an RHD (Regional Haul Drive) truck tire at varying operating conditions. The tire model is validated through static and dynamic virtual tests that are compared to previously published literature. Both the in-plane and out-of-plane off-road rigid-ring RHD parameters were successfully predicted. The majority of the in-plane parameters are strongly influenced by the inflation pressure of the tire because the in-plane parameters are derived with respect to the mode of vibration of the tire. The total equivalent vertical stiffness on a dry sand is not as heavily influenced by the inflation pressure compared to predictions on a hard surface.
    [Show full text]
  • Tyre Models for Shimmy Analysis: from Linear to Nonlinear
    Tyre models for shimmy analysis : from linear to nonlinear Citation for published version (APA): Ran, S. (2016). Tyre models for shimmy analysis : from linear to nonlinear. Technische Universiteit Eindhoven. Document status and date: Published: 11/01/2016 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim.
    [Show full text]
  • Tire - Wikipedia, the Free Encyclopedia
    Tire - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Tire Tire From Wikipedia, the free encyclopedia A tire (or tyre ) is a ring-shaped covering that fits around a wheel's rim to protect it and enable better vehicle performance. Most tires, such as those for automobiles and bicycles, provide traction between the vehicle and the road while providing a flexible cushion that absorbs shock. The materials of modern pneumatic tires are synthetic rubber, natural rubber, fabric and wire, along with carbon black and other chemical compounds. They consist of a tread and a body. The tread provides traction while the body provides containment for a quantity of compressed air. Before rubber was developed, the first versions of tires were simply bands of metal that fitted around wooden wheels to prevent wear and tear. Early rubber tires were solid (not pneumatic). Today, the majority of tires are pneumatic inflatable structures, comprising a doughnut-shaped body of cords and wires encased in rubber and generally filled with compressed air to form an inflatable cushion. Pneumatic tires are used on many types of vehicles, including cars, bicycles, motorcycles, trucks, earthmovers, and aircraft. Metal tires are still used on locomotives and railcars, and solid rubber (or Stacked and standing car tires other polymer) tires are still used in various non-automotive applications, such as some casters, carts, lawnmowers, and wheelbarrows. Contents 1 Etymology and spelling 2 History 3 Manufacturing 4 Components 5 Associated components 6 Construction types 7 Specifications 8 Performance characteristics 9 Markings 10 Vehicle applications 11 Sound and vibration characteristics 12 Regulatory bodies 13 Safety 14 Asymmetric tire 15 Other uses 16 See also 17 References 18 External links Etymology and spelling Historically, the proper spelling is "tire" and is of French origin, coming from the word tirer, to pull.
    [Show full text]
  • MF-Tyre/MF-Swift 6.2
    MF-Tyre/MF-Swift 6.2 Help Manual Copyright © 2013 TNO The Netherlands http://www.delft-tyre.nl Document revision: 10/17/2013 © 2013 TNO All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. The terms and conditions governing the licensing of MF-Tyre consist solely of those set forth in the document titled ‘License conditions of MF-Tyre software’. The terms and conditions governing the licensing of MF-Swift and MF-Tool consist solely of those set forth in the written contracts between TNO and its customers. MF-Tool, MF-Tyre and MF-Swift are part of the Delft-Tyre product line, developed at TNO, The Netherlands. MF-Tool, MF-Tyre, MF-Swift and Delft-Tyre are a registered trademarks of TNO.
    [Show full text]