MF-Tyre/MF-Swift 6.2

Total Page:16

File Type:pdf, Size:1020Kb

MF-Tyre/MF-Swift 6.2 MF-Tyre/MF-Swift 6.2 Help Manual Copyright © 2013 TNO The Netherlands http://www.delft-tyre.nl Document revision: 10/17/2013 © 2013 TNO All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. The terms and conditions governing the licensing of MF-Tyre consist solely of those set forth in the document titled ‘License conditions of MF-Tyre software’. The terms and conditions governing the licensing of MF-Swift and MF-Tool consist solely of those set forth in the written contracts between TNO and its customers. MF-Tool, MF-Tyre and MF-Swift are part of the Delft-Tyre product line, developed at TNO, The Netherlands. MF-Tool, MF-Tyre, MF-Swift and Delft-Tyre are a registered trademarks of TNO. Printed: June, 2013, The Netherlands Publisher TNO PO Box 756 5700 AT Helmond The Netherlands 4 MF-Tyre/MF-Swift 6.2 Table of Contents 1 Rele..a..s..e... .N...o..t.e...s.................................................................................................................................. 6 1.1 Conte..n..t.s. .o..f. .t.h..e.. .6....2.. .R..e..l.e..a..s.e.. .............................................................................................................. 6 2 Com..p...a..t.i.b...i.l.i.t.y.. .T...a..b...l.e......................................................................................................................... 9 3 Lic.e...n..s..e... .M...a..n...u..a..l............................................................................................................................. 10 3.1 Lice.n..s.i.n..g.. .S...e..t. .U..p.. ............................................................................................................................ 11 3.2 The .L..i.c..e..n..s.e.. .S...e..r.v..e..r. .M...a..n..a..g..e..r. ......................................................................................................... 11 3.2.1 Startin.g.. .t.h..e.. .L..i.c..e..n..s..e.. .S..e..r..v..e..r. .M...a..n..a..g..e..r. .o..n.. .U..N...IX... .P..la..t.f..o..r.m...s............................................................................................................... 12 3.2.1.1 Ma..n..u..a..l. .S..t.a..r.t................................................................................................................................................................................ 12 3.2.1.2 Au..t.o..m...a..t.ic.. .S...t.a..r.t........................................................................................................................................................................... 12 3.2.2 Startin.g.. .t.h..e.. .L..i.c..e..n..s..e.. .S..e..r..v..e..r. .M...a..n..a..g..e..r. .o..n.. .W...i.n..d..o..w...s........................................................................................................................ 13 3.2.2.1 Ma..n..u..a..l. .S..t.a..r.t................................................................................................................................................................................ 13 3.2.2.2 Au..t.o..m...a..t.ic.. .S...t.a..r.t........................................................................................................................................................................... 14 3.3 Lice.n..s.e.. .T..r..o..u..b..l.e..s.h..o..o..t.i.n..g.. .G...u..i.d..e.. ..................................................................................................... 15 4 Tec...h..n...i.c..a..l. .S...u..p...p..o...r.t........................................................................................................................ 17 4.1 Cont.a..c..t. .I.n..f.o..r.m...a..t.i.o..n.. ........................................................................................................................ 17 5 Us.e..r.. .M...a..n...u..a..l................................................................................................................................... 20 5.1 Intro.d..u..c..t.i.o..n.. .................................................................................................................................... 20 5.1.1 MF-Ty.r.e........................................................................................................................................................................................... 20 5.1.2 MF-Sw...if..t........................................................................................................................................................................................ 21 5.2 Mod.e..l. .U..s..a..g..e.. .................................................................................................................................. 23 5.2.1 Simula.t.i.o..n.. .G...u..id..e..l.i.n..e..s...................................................................................................................................................................... 23 5.2.2 Dynam..i.c..s.. .M..o..d..e............................................................................................................................................................................... 24 5.2.3 Tyre m..o..d..e..l. .o..p..e..r.a..t.i.n..g.. .m..o..d..e..s........................................................................................................................................................... 25 5.2.3.1 ISW....IT..C...H....................................................................................................................................................................................... 28 5.2.4 Suppo.r..t.e..d.. .o..p..e..r.a..t.i.n..g.. .m..o..d..e..s............................................................................................................................................................ 28 5.2.5 Conve.n..t.i.o..n..s.................................................................................................................................................................................... 29 5.2.6 Tyre m..o..d..e..l. .o..u..t.p..u..t.......................................................................................................................................................................... 30 5.3 Tyre. .P..r..o..p..e..r.t.y.. .F..i.l.e.. .......................................................................................................................... 32 5.3.1 Overv.i.e..w......................................................................................................................................................................................... 32 5.3.2 Reduc.e..d.. .I.n..p..u..t. .D..a..t.a.. .R...e..q..u..ir..e..m..e..n..t.s.................................................................................................................................................. 33 5.3.3 Scalin.g.. .f.a..c..t.o..r.s................................................................................................................................................................................ 34 5.3.4 Backw..a..r..d.. .c..o..m..p..a..t.i.b..i.li.t.y................................................................................................................................................................... 34 5.3.5 Tyre m..o..d..e..l. .s..e..t.t.in..g..s......................................................................................................................................................................... 36 5.3.6 Miscel.l.a..n..e..o..u..s................................................................................................................................................................................. 39 5.3.7 Param.e..t.e..r.s.. .i.n.. .t.h..e.. .T..y..r.e.. .P..r..o..p..e..r.t.y.. .F..i.le............................................................................................................................................... 39 5.4 Road.. .D...a..t.a.. .F..i.l.e.. ............................................................................................................................... 47 5.4.1 TNO R.o..a..d.. .T..y..p..e..s............................................................................................................................................................................. 48 5.4.2 TNO O..p..e..n..C..R..G... .R..o..a..d....................................................................................................................................................................... 53 5.5 Mult.i.-.B..o..d..y.. .S..i.m...u..l.a..t.i.o..n.. .P..a..c..k..a..g..e..s. .................................................................................................... 56 5.6 Refe.r..e..n..c.e..s.
Recommended publications
  • The Parliament of the Commonwealth of Australia Tyre Safety Report Op the House of Representatives Standing Committee on Road Sa
    THE PARLIAMENT OF THE COMMONWEALTH OF AUSTRALIA TYRE SAFETY REPORT OP THE HOUSE OF REPRESENTATIVES STANDING COMMITTEE ON ROAD SAFETY JUNE 1980 AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA 1980 © Commonwealth of Australia 1980 ISBN 0 642 04871 1 Printed by C. I THOMPSON, Commonwealth Govenimeat Printer, Canberra MEMBERSHIP OF THE COMMITTEE IN THE THIRTY-FIRST PARLIAMENT Chairman The Hon. R.C. Katter, M.P, Deputy Chai rman The Hon. C.K. Jones, M.P. Members Mr J.M. Bradfield, M.P. Mr B.J. Goodluck, M.P. Mr B.C. Humphreys, M.P. Mr P.F. Johnson, M.P. Mr P.F. Morris, M.P. Mr J.R. Porter, M.P. Clerk to the Committee Mr W. Mutton* Advisers to the Committee Mr L. Austin Mr M. Rice Dr P. Sweatman Mr Mutton replaced Mr F.R. Hinkley as Clerk to the Committee on 7 January 1980. (iii) CONTENTS Chapter Page Major Conclusions and Recommendations ix Abbreviations xvi i Introduction ixx 1 TYRES 1 The Tyre Market 1 -Manufacturers 1 Passenger Car Tyres 1 Motorcycle Tyres 2 - Truck and Bus Tyres 2 ReconditionedTyi.es 2 Types of Tyres 3 -Tyre Construction 3 -Tread Patterns 5 Reconditioned Tyres 5 The Manufacturing Process 7 2 TYRE STANDARDS 9 Design Rules for New Passenger Car Tyres 9 Existing Design Rules 9 High Speed Performance Test 10 Tests under Conditions of Abuse 11 Side Forces 11 Tyre Sizes and Dimensions 12 -Non-uniformity 14 Date of Manufacture 14 Safety Rims for New Passenger Cars 15 Temporary Spare Tyres 16 Replacement Passenger Car Tyres 17 Draft Regulations 19 Retreaded Passenger Car Tyres 20 Tyre Industry and Vehicle Industry Standards 20
    [Show full text]
  • RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE and OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 1-1-2009 RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected] Follow this and additional works at: http://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Please take our one minute survey! Recommended Citation Powell, Robert, "RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS" (2009). All Theses. Paper 743. This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Robert A. Powell December 2009 Accepted by: Dr. E. Harry Law, Committee Co-Chair Dr. Beshahwired Ayalew, Committee Co-Chair Dr. John Ziegert Abstract This work deals with the question of relating open-loop handling metrics to driver- in-the-loop performance (closed-loop). The goal is to allow manufacturers to reduce cost and time associated with vehicle handling development. A vehicle model was built in the CarSim environment using kinematics and compliance, geometrical, and flat track tire data. This model was then compared and validated to testing done at Michelin’s Laurens Proving Grounds using open-loop handling metrics. The open-loop tests conducted for model vali- dation were an understeer test and swept sine or random steer test.
    [Show full text]
  • Motorcycle Tyres
    MOTORCYCLE TYRES SAFE TYRES SAVE LIVES tyresafe.org Motorcycle Tyres and Your Safety General Advice in tyre size or type (construction) Tyres are the only parts of the should not be undertaken without motorcycle which are in contact seeking advice from the motorcycle with the road. Safety in acceleration, or tyre manufacturers, as the effect braking, steering and cornering all on motorcycle handling, safety and depend on a relatively small area clearances must be taken into account. of road contact. It is therefore of The tyre industry has long recognised paramount importance that tyres the consumer’s role in the regular care should be maintained in good condition and maintenance of their tyres. The at all times and that when the time point at which a tyre is replaced is a comes to change them suitable decision for which the owner of the replacements are fitted. tyre is responsible. The original tyres for a motorcycle In some other European countries it are determined by joint consultation is illegal to use replacements which between the motorcycle and differ in certain respects (e.g. size, load, tyre manufacturers and take into construction, and speed rating) from account all aspects of operation. the tyre fitted originally by the vehicle It is recommended that changes manufacturer. DIAGONAL RADIAL PLY BIAS-BELTED (CROSS PLY) BELTS ANGLED FABRIC ANGLED FABRIC PLIES FABRIC BELT AT PLIES (NOT ANGLED) PLIES SIMILAR BEAD FILLER ANGLES TO PLIES INNER INNER INNER TUBELESS TUBELESS TUBELESS LINING WIRE BEAD LINING WIRE BEAD LINING WIRE BEAD (ON TUBELESS TYRES) (ON TUBELESS TYRES) (ON TUBELESS TYRES) Choosing the Right Tyre All three construction types can be manufactured in differing tread profiles Today’s motorcycles vary in design and patterns which may also be and specification including scooter and available for front and rear fitment.
    [Show full text]
  • MF-Tyre/MF-Swift Copyright TNO, 2013
    MF-Tyre/MF-Swift Copyright TNO, 2013 MF-Tyre/MF-Swift Dr. Antoine Schmeitz 2 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction TNO’s tyre modelling toolchain tyre (virtual) testing parameter fitting + tyre model signal tyre MBS database MF-Tyre processing TYDEX files property solver file MF-Swift MF-Tool Measurement Identification Simulation Copyright TNO, 2013 1 MF-Tyre/MF-Swift 3 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction What is MF-Tyre/MF-Swift? MF-Tyre/MF-Swift is an all-encompassing tyre model for use in vehicle dynamics simulations This means: emphasis on an accurate representation of the generated (spindle) forces tyre model is relatively fast can handle continuously varying inputs model is robust for extreme inputs model the tyre as simple as possible, but not simpler for the intended vehicle dynamics applications 4 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Introduction Model usage and intended range of application All kind of vehicle handling simulations: e.g. ISO tests like steady-state cornering, lane changes, J-turn, braking, etc. Sine with Dwell, mu split, low mu, rollover, fishhook, etc. Vehicle behaviour on uneven roads: ride comfort analyses durability load calculations (fatigue spectra and load cases) Simulations with control systems, e.g. ABS, ESP, etc. Analysis of drive line vibrations Analysis of (aircraft) shimmy vibrations; typically about 10-25 Hz Used for passenger car, truck, motorcycle and aircraft tyres Copyright TNO, 2013 2 MF-Tyre/MF-Swift 5 Copyright TNO, 2013 Dr. Antoine Schmeitz MF-Tyre/MF-Swift Modelling aspects and contents (1) 1.
    [Show full text]
  • Tis 682-2540 (1997)
    TIS 682-2540 (1997) Thai Industrial Standard for Motorcycle Tyres 1. Scope 1.1 This standard specifies the class and type, maximum load, size and general requirements, marking and labelling, sampling and criteria for conformity and testing. 2. Definition For the purpose of this standard, the following definitions apply: 2.1 A motorcycle tyre, hereinafter referred to as ‘tyre’, means a tyre that is designed to be assembled with a motorcycle rim, to carry a load when inflated, to reduce vibration and to cause the motorcycle to move upon applying traction. 2.2 A bias ply tyre means a tyre with a structure in which the carcass cords are arranged diagonally at approximately 30- 70° to the centre line of the tread (see Figure 1), either “with breaker” or “without breaker”. 2.3 A radial ply tyre means a tyre with a structure in which the carcass cords are arranged at 90° or the angle near to the tread line and bound tight by a belt (see Figure 1). Centre line of tread Centre line of tread Tread Belt Figure 1 Bias ply tyre and radial ply tyre (Clause 2.2 and Clause 2.3) - 1 - - TIS 682-2540 (1997) Sectional height Overall diameter Sectional height Overall diameter Cross section Cross section Overall width Overall width Rim Rim diameter diameter A-type tread B-type tread Overall diameter Sectional height Sectional height Overall diameter Cross section Cross section Overall width Overall width Rim Rim diameter diameter C-type tread D-type tread Figure 2 Overall width, cross section width, overall diameter, and cross section height (Clauses 2.13, 2.14, 2.15 and 2.17) 2.4 Tread means the part of the tyre which normally comes into contact with the ground and is characterised as having a tread rib, tread element or tread block.
    [Show full text]
  • Dunlop Motorcycle Tyres 2015 5 Track Day/Easy Racing Gp Racer D211, Gp Racer Slick
    DUNLOP MOTORCYCLE TYRES 2015 5 TRACK DAY/EASY RACING GP RACER D211, GP RACER SLICK 9 ON ROAD: SPORT SPORTSMART2 QUALIFIER II, QUALIFIER 13 ON ROAD: SPORT TOURING ROADSMART II, ROADSMART SPECIFIC OE TYRES: SPORTMAX D221, SPORTMAX D220 ST, K700, K701, ROADSMART, SPORTMAX D205, D256, D423, D254 STREETSMART TT100, K70 TT900; SPECIFIC OE TYRES: K205, K388, TT100GP, TT900GP 18 ON ROAD: CUSTOM D404 ELITE 3 F11, F14, F17, F20, F24, K127, K177, K425, K525, K527, K555 SPECIFIC OE TYRES: CRUISEMAX, D251, D417, 491 ELITE 2, AMERICAN ELITE D401, D402 D407/D408, GT502 K591, D427, SPORTMAX D207, SPORTMAX D208, SPORTMAX QUALIFIER 25 ALL ROAD TRAILSMART TRAILMAX, D605, K660 SPECIFIC OE TYRES: D602, D605, K180, K460, K560, K850 SPORTMAX MUTANT, SPORTMAX D208, TT900 GP, D803 GP GEOMAX ENDURO, D908, D908 RR 33 OFF ROAD GEOMAX MX-11, GEOMAX MX-31 GEOMAX MX-32, GEOMAX MX-51 GEOMAX MX-52, GEOMAX MX-71 D952, MOTOCROSS ENDURO MOUSSE 39 SCOOTER SCOOTSMART GT301, TRAILMAX, D451, GPR-100 TT72 GP, TT93 GP REFERENCE 2 TECHNOLOGY We were the first to apply race tyre performance standards to street tyres. With engineers and designers across Europe, Japan and North America, Dunlop boasts a truly global Research & Development operation with innovations quickly put to the toughest test of all – racing. With innovations such as low profile tyre shapes, radial constructions, directional and constant curve tread designs, aramid casing materials, Multi-Tread (MT) technology as well as JLT – the latest Dunlop technology – all directly developed through our passion for motorsports. MULTI-TREAD (MT) JOINTLESS BELT (JLB) NTEC JLT TECHNOLOGY CONSTRUCTION Dunlop’s ingenious NTEC Jointless Tread (JLT) Years of success in global All our Sportmax street tyres pressure adjust system allows strip-winding technology allows Superbike, Endurance and GP are designed using a the rider to optimise the tyre by multiple compounds to be championships have resulted in combination of Computer adjusting inflation pressure.
    [Show full text]
  • Mechanical Analyses of Multi-Piece Mining Vehicle Wheels to Enhance Safety
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2014 Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety Zhanbiao Li University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Li, Zhanbiao, "Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety" (2014). Electronic Theses and Dissertations. 5197. https://scholar.uwindsor.ca/etd/5197 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety By Zhanbiao Li A Dissertation Submitted to the Faculty of Graduate Studies through Mechanical, Automotive, and Materials Engineering Department in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2014 © 2014 Zhanbiao Li Mechanical Analyses of Multi-piece Mining Vehicle Wheels to Enhance Safety By Zhanbiao Li APPROVED BY: __________________________________________________ Dr.
    [Show full text]
  • Nonlinear Finite Element Modeling and Analysis of a Truck Tire
    The Pennsylvania State University The Graduate School Intercollege Graduate Program in Materials NONLINEAR FINITE ELEMENT MODELING AND ANALYSIS OF A TRUCK TIRE A Thesis in Materials by Seokyong Chae © 2006 Seokyong Chae Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2006 The thesis of Seokyong Chae was reviewed and approved* by the following: Moustafa El-Gindy Senior Research Associate, Applied Research Laboratory Thesis Co-Advisor Co-Chair of Committee James P. Runt Professor of Materials Science and Engineering Thesis Co-Advisor Co-Chair of Committee Co-Chair of the Intercollege Graduate Program in Materials Charles E. Bakis Professor of Engineering Science and Mechanics Ashok D. Belegundu Professor of Mechanical Engineering *Signatures are on file in the Graduate School. iii ABSTRACT For an efficient full vehicle model simulation, a multi-body system (MBS) simulation is frequently adopted. By conducting the MBS simulations, the dynamic and steady-state responses of the sprung mass can be shortly predicted when the vehicle runs on an irregular road surface such as step curb or pothole. A multi-body vehicle model consists of a sprung mass, simplified tire models, and suspension system to connect them. For the simplified tire model, a rigid ring tire model is mostly used due to its efficiency. The rigid ring tire model consists of a rigid ring representing the tread and the belt, elastic sidewalls, and rigid rim. Several in-plane and out-of-plane parameters need to be determined through tire tests to represent a real pneumatic tire. Physical tire tests are costly and difficult in operations.
    [Show full text]
  • Program & Abstracts
    39th Annual Business Meeting and Conference on Tire Science and Technology Intelligent Transportation Program and Abstracts September 28th – October 2nd, 2020 Thank you to our sponsors! Platinum ZR-Rated Sponsor Gold V-Rated Sponsor Silver H-Rated Sponsor Bronze T-Rated Sponsor Bronze T-Rated Sponsor Media Partners 39th Annual Meeting and Conference on Tire Science and Technology Day 1 – Monday, September 28, 2020 All sessions take place virtually Gerald Potts 8:00 AM Conference Opening President of the Society 8:15 AM Keynote Speaker Intelligent Transportation - Smart Mobility Solutions Chris Helsel, Chief Technical Officer from the Tire Industry Goodyear Tire & Rubber Company Session 1: Simulations and Data Science Tim Davis, Goodyear Tire & Rubber 9:30 AM 1.1 Voxel-based Finite Element Modeling Arnav Sanyal to Predict Tread Stiffness Variation Around Tire Circumference Cooper Tire & Rubber Company 9:55 AM 1.2 Tire Curing Process Analysis Gabriel Geyne through SIGMASOFT Virtual Molding 3dsigma 10:20 AM 1.3 Off-the-Road Tire Performance Evaluation Biswanath Nandi Using High Fidelity Simulations Dassault Systems SIMULIA Corp 10:40 AM Break 10:55 AM 1.4 A Study on Tire Ride Performance Yaswanth Siramdasu using Flexible Ring Models Generated by Virtual Methods Hankook Tire Co. Ltd. 11:20 AM 1.5 Data-Driven Multiscale Science for Tire Compounding Craig Burkhart Goodyear Tire & Rubber Company 11:45 AM 1.6 Development of Geometrically Accurate Finite Element Tire Models Emanuele Grossi for Virtual Prototyping and Durability Investigations Exponent Day 2 – Tuesday, September 29, 2020 8:15 AM Plenary Lecture Giorgio Rizzoni, Director Enhancing Vehicle Fuel Economy through Connectivity and Center for Automotive Research Automation – the NEXTCAR Program The Ohio State University Session 1: Tire Performance Eric Pierce, Smithers 9:30 AM 2.1 Periodic Results Transfer Operations for the Analysis William V.
    [Show full text]
  • Winter Testing in Driving Simulators
    ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se ViP publication 2017-2 Winter testing in driving simulators Authors Fredrik Bruzelius, VTI Artem Kusachov, VTI www.vipsimulation.se Cover picture: Original photo by Hejdlösa Bilder AB, edited by Artem Kusachov Reg. No., VTI: 2014/0006-8.1 Printed in Sweden by VTI, Linköping 2018 Preface The project Winter testing in driving simulator (WinterSim) was a PhD student project carried out by the Swedish National Road and Transport Research Institute (VTI) within the ViP Driving Simulation Centre (www.vipsimualtion.se). The focus of the project was to enable a realistic winter simulation environment by studying the required components and suggesting improvements to the current common practice. Two main directions were studied, motion cueing and tire dynamics. WinterSim started in November 2014 and lasted for three years, ending in December 2016. Findings from both research directions have been published in journals and at scientific conferences, and the project resulted in the licentiate thesis “Motion Perception and Tire Models for Winter Conditions in Driving Simulators” (Kusachov, 2016). This report summarises the thesis and the undertaken work, i.e. gives a short overall presentation of the project and the major findings. The WinterSim project was funded up to a licentiate thesis through the ViP competence centre (i.e. by ViP partners and the Swedish Governmental Agency for Innovation Systems, VINNOVA), Test Site Sweden and the internal PhD student program at VTI. The project was carried out by Artem Kusachov (PhD student) and Fredrik Bruzelius (project manager and supervisor of the PhD student), both at VTI.
    [Show full text]
  • A STUDY of DYNAMIC TIRE PROPERTIES OVER a RANGE of TIRE CONSTRUCTIONS by G
    NASA CONTRACTOR NASA CR-2219 REPORT A STUDY OF DYNAMIC TIRE PROPERTIES OVER A RANGE OF TIRE CONSTRUCTIONS by G. H. Nybakken, R. N. Dodge, and S. K. Clark Prepared by THE UNIVERSITY OF MICHIGAN Ann Arbor, Mich. 48105 for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1973 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-2219 4. Title and Subtitle 5. Report Date A STUDY OF DYNAMIC TIRE PROPERTIES OVER A RANGE OF TIRE March 1973 CONSTRUCTIONS 6. Performing Organization Code 7. Author(s) ''>•* -i.'-lf : ft,:, , 8. Performing Organization Report No. G. H. Nybakken, R. N. Dodge, and S. K."Clark v' 056080-19-T (Revised) ?' '* ib.'Work Unit No. 9. Performing Organization Name and Address 501-38-12-02 The University of Michigan 11. Contract or Grant No. Ann Arbor, Mich. W105 NGL-23-005-010 / 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, B.C. 205^6 15. Supplementary Notes 16. Abstract The dynamic properties of four model aircraft tires of various construction were evaluated experimentally and compared with available theory. The experimental investigation consisted of measuring the cornering force and the self-aligning torque developed by the tires undergoing sinusoidal steering inputs while operating on the University of Michigan small-scale, road-wheel tire testing apparatus. The force and moment data from the different tires are compared with both finite- and point-contact patch string theory predictions.
    [Show full text]
  • Fit and Adjust a Sidecar on Your Motorcycle; Three-Wheeling
    How to Fit and Adjust a Sidecar on your Motorcycle; Three-wheeling. D. A. Hobbs About the author Daryl Hobbs has been a qualified motorcycle mechanic for over twenty years. During that time he has patched, tuned, fixed, repaired, reconditioned and restored over 70 makes of motorcycle – of course this number has been assisted by owning over 20 makes. Occasionally he would buy one just because he hadn’t worked on that make or model. As a mechanic, accurate and useful information has always been important and the one area that doesn’t seem to have been catered for that well is information on fitting and adjusting sidecars. The authors baptism into the world of sidecars was attaching a second had box to a Russian made Ural. Aware that he would have to readjust just about everything; the adjustments were left a little loose on ride number one. Unfortunately the first left hand corner was in front of a pub with the usual company assembled on the front verandah. The sidecar, realising there were spectators, took a bow (toward the ground) that veered the outfit into the weeds on the wrong side of the road. If you own an outfit, tighten everything. The second outfit was a safer bet having been securely attached for over 30 years, it was a BSA M21 road painters outfit and very good indeed. The sidecar frame had comparable springing to the bike (not much), a comparable third motorcycle wheel that provides a good rolling and steering ability; you just had to leave a little earlier than everyone else to get places.
    [Show full text]