Tailwinds Construction and Manufacturing

Total Page:16

File Type:pdf, Size:1020Kb

Tailwinds Construction and Manufacturing NEWS ABOUT INNOVATION, MAINTENANCE, TAILWINDS CONSTRUCTION AND MANUFACTURING Kawailoa Wind is installing NRG Systems’ Bat Deterrent System on its 30 turbines. (Courtesy: NRG Systems) mitigate the impacts of renewable en- bat conservation can co-exist.” INNOVATION ergy development,” said Bryan Martin, Kawailoa Wind is curtailing, or chief executive officer of D. E. Shaw Re- turning off turbines in low wind NRG Systems sells newable Investments (DESRI), which speeds at night, when bats are most ac- owns and operates Kawailoa Wind. tive, to minimize Hawaiian hoary bat Bat Deterrent System “We are excited to partner with NRG fatalities. NRG’s Bat Deterrent Systems to Hawaii wind farm Systems at Kawailoa Wind as part of are expected to be used in addition to those efforts.” curtailment. NRG Systems, Inc. has announced Bat fatalities have been document- the first commercial sale of its Bat ed in association with wind-farm oper- MORE INFO nrgsystems.com Deterrent System to Kawailoa Wind, ations in Hawaii — an occurrence that Hawaii’s largest wind farm. Located has been seen at wind farms across the on the island of Oahu, Kawailoa Wind globe. Because of this, conservation of INNOVATION will outfit each of its 30 turbines with these animals has become one of the a Bat Deterrent System. The adoption most pressing issues facing the renew- Vaisala expands of NRG’s pioneering technology is part able energy industry today. of Kawailoa Wind’s ongoing efforts to “Wind energy is crucial to providing weather radar offering help conserve the Hawaiian hoary bat, renewable energy in Hawaii,” said Bri- which has been on the United States’ ta Woeck, environmental compliance to include X-band list of endangered species since 1970. officer for Kawailoa Wind. “Kawailoa Vaisala, a global leader in weather, en- “DESRI has a history of adopting Wind is invested in finding solutions vironmental, and industrial measure- innovative technologies and ideas to so that clean energy generation and ment, recently announced the develop- 30 JULY 2019 ment of an advanced X-band Weather INNOVATION 9.36 kilowatts peak (kWp), are of He- Radar. The smaller size and lower cost liatek technology (HeliaSol 308-5986 of an X-band radar will make it an ide- Acciona installs model). They are only 1 millimeter al instrument to enhance the weather thick, and each one has a surface area detection capabilities of a specific lo- photovoltaic modules of 5,986 x 308 mm. cation. In difficult terrain, it fills the on turbine tower In contrast to the conventional gaps to reliably detect snow, rain, and technology used in the manufacture other weather activity. Adding X-band The Energy Division of Acciona has de- of photovoltaic models based on sili- radars to an existing network will also veloped a pioneering solution in the con, these organic panels use carbon improve the accuracy of precipitation field of hybridization between wind as raw material and are characterized measurement, providing better data and photovoltaic power. It consists of by their structural flexibility, which for flood warnings or hydro-electric covering a wind-turbine tower with makes them adaptable to different power plants, for example. In airport flexible organic panels to produce en- surfaces. Other key features are lower environments, the radar allows for ergy for the internal electricity con- maintenance costs, less energy con- detection of wind shear, wake vortices, sumption of the turbine. sumption during manufacture, easier convective weather, even birds. The innovative project will allow logistics, and the complete recycling The new X-band Weather Radar the study of the performance of the of the materials used, although their provides accurate measurements for organic panels — an emerging pho- efficiency is still below that of silicon a limited area, filling in a gap in a tovoltaic technology — and their ap- modules. national radar network or delivering plication to improve wind-turbine “The hybridization project in Breña precise information for an airport. efficiency. means the optimization of the use of Severe weather in mountainous areas The system has been installed in space for renewable energy produc- and gaps under sparse weather radar one of the turbines of the Breña Wind tion, and it will enable us to test the networks will be visible when X-band Farm in Albacete, Spain, which Accio- efficiency of organic photovoltaics, a radars are added to the radar networks. na owns and operates. The turbine technology that we believe has one of Airport safety and efficiency will be is an AW77/1500 of Nordex-Acciona the best improvement curves in terms improved with accurate detection and Windpower technology, mounted on of technological efficiency,” said Belén nowcasting of hazardous conditions. an 80-meter-high steel tower (hub Linares, energy innovation director at “X-band radar will enhance a weath- height). Acciona. “That is why we have decided er detection arsenal, making it even Installed on the tower are 120 so- to pilot it.” more reliable and accurate,” said Pek- lar panels facing southeast-southwest The immediate application of the ka Utela, director of Weather Radars to capture the maximum of the sun’s Breña project is to produce part of the for Vaisala. “By developing a smaller rays throughout the day. They are energy that the internal systems of the system allowing simple site selection, distributed at eight different heights, wind turbine need. When the turbine as well as providing maximum weath- occupying around 50 meters of the is running, some of the energy gen- er detection sensitivity with automatic tower’s surface area. The photovoltaic erated is used to power the auxiliary and continuous calibration, the new modules, with an overall capacity of systems. In shutdown mode, certain X-band radar will answer the chal- lenges decision-makers face in severe weather situations.” The intelligence the X-band radar collects will provide significantly im- proved situational awareness. When integrated with other measurement systems, such as Vaisala C-band Weath- er Radar or wind Lidar, users will get the most comprehensive, real-time data available. At airports, accurate wind shear detection, complemented by Lidars, helps optimize take-off and landing sequences, as well as enhanc- ing the safety of flight operations. MORE INFO vaisala.com/weather-radars An X-band Weather Radar antenna. (Courtesy: Vaisala) windsystemsmag.com 31 TAILWINDS THE BUSINESS OF WIND es Siemens Gamesa’s solid position in one of the largest wind power markets in the world. The contract also includes a ser- vice and maintenance agreement for Siemens Gamesa’s premium mainte- nance program, offering the best in scale and flexibility to maximize en- ergy asset returns. Project completion is expected for the end of 2020. “EDF Renewables is a very strong partner for us, and we are glad to be working with them on a number of projects like Milligan and the recent- ly announced Coyote and Oso Grande wind projects,” said José Antonio Mi- The system has been installed in one of the turbines of the Breña Wind Farm in Albacete, randa, CEO of Onshore Americas at Spain. (Courtesy: Acciona) Siemens Gamesa Renewable Energy. “This order again is evidence of our cus- systems need to continue functioning tive and aviation safety systems, the tomer’s confidence in Siemens Gamesa so they are fed from the grid, which technology is low cost and highly reli- and our leading technology.” means that the wind turbine is reg- able. MEMS equipped CMS have trans- The SG 4.5-145 offers a flexible istering a net consumption of energy. formed the return on investment for power rating from 4.2 MW to 4.8 MW turbine monitoring, particularly for depending on site conditions and has MORE INFO www.acciona.com owners of smaller or older models. a rotor diameter of 145 meters. It is Lowering the cost of CMS hardware optimized for medium wind onshore has allowed owners to refine repair locations to maximize energy produc- INNOVATION and maintenance strategies to real- tion with low noise emission levels. ize greater OPEX savings. The latest Operators need to CMS hardware collects a wide range MORE INFO www.siemensgamesa.com of wind-turbine performance metrics, invest in disruptive allowing wind-farm operators to iden- tech, says Onyx Insight tify and confirm faults much earlier MANUFACTURING and to act preventatively to save mon- Micro Electro-Mechanical Systems ey on repairs and site visits. The low- Vestas introduces (MEMS) have radically changed the re- cost technology can benefit older and turn on investment model for turbine smaller turbine models significantly. the V138-3.0 MW condition monitoring in the United to reduce LCOE States, helping wind-farm owners MORE INFO www.onyxinsight.com make significant OPEX savings. By Following the launch of the EnVentus cutting the cost of condition moni- platform in January, including the toring systems (CMS), low-cost MEMS MANUFACTURING V162-5.6 MW and V150-5.6 MW tur- sensors have helped wind-farm own- bines, Vestas recently introduced the ers to improve operational planning, Siemens Gamesa V138-3.0 MW turbine at AWEA WIND- cut unscheduled maintenance, and POWER in Houston, Texas. Based on make OPEX savings of up to 8 percent reaches 1 GW for EDF the scalable EnVentus platform archi- each year, according to ONYX InSight. Renewables in the U.S. tecture, the V138-3.0 MW’s 138-meter First introduced by ONYX InSight rotor provides a large rotor-size-to-gen- in the wind-energy industry, MEMS Siemens Gamesa Renewable Energy erator-rating ratio, strengthening sensors are used in CMS hardware has been awarded another order by Vestas’ portfolio of turbines through to measure and report on vibration, EDF Renewables to supply 30 SG 4.5- superior park level energy production, temperature, and oil condition in the 145 and 36 SG 2.7-129 wind turbines higher certainty in performance, and drive train.
Recommended publications
  • Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor
    Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 Fabian Wendt,1 Paul Veers,1 Josh Paquette,2 Chris Kelly,2 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 1 1 2 2 Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories Suggested Citation Johnson, Nick, Pietro Bortolotti, Katherine Dykes, Garrett Barter, Patrick Moriarty, Scott Carron, Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, and Brandon Ennis. 2019. Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-73605. https://www.nrel.gov/docs/fy19osti/73605.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications.
    [Show full text]
  • ENERCON Wind Energy Converters Technology & Service
    ENERCON wind energy converters Technology & Service PAGE 2 ENERCON U¾QOHUH*HQHO%DNóġTechnology & Service Yeniliklerle gelen avantaj PAGE 3 1 ENERCON turbine technology 6 Rotor blades 8 Direct drive 9 Annular generator technology 10 Tower construction 12 Precast concrete towers 13 Steel towers 14 Foundation construction 15 2 ENERCON WEC control system 16 Sensor system 18 ENERCON ice detection system 18 Rotor blade de-icing system 19 ENERCON storm control 19 3 ENERCON grid integration and wind farm management 20 Optimum grid integration 22 P/Q diagram/voltage stability 24 Power-frequency control 25 Inertia Emulation 26 Fault ride-through - option 27 Generation management system – power regulation for maximum yield 28 Bottleneck management – maximum output during bottlenecks 28 ENERCON SCADA RTU 29 ENERCON FCU 29 4 ENERCON remote monitoring 30 ENERCON SCADA system 32 ENERCON Service Info Portal 35 ENERCON PartnerKonzept 36 5 6 ENERCON product overview 40 PAGE 4 Technology & Service PAGE 5 Introduction ENERCON has been among the top producers is performed with 3D CAD systems which assist of wind energy converters for nearly 30 years the developers in verifying overstress and criti- now. Two of the key contributing factors to the FDODUHDVE\PHDQVRIWKHʖQLWHHOHPHQWPHWKRG company´s success are innovation and quality. Production processes are not launched until com- Both highly developed vertical integration and a prehensive quality tests have been completed – a comprehensive quality management system play strategy which has been successfully adopted by D VLJQLʖFDQW UROH LQ VHFXULQJ (1(5&21vV KLJK (1(5&21vV H[FOXVLYH SURGXFWLRQ SODQWV VLQFH quality standards. 2009. The company is therefore distinguished by outstanding quality and a high degree of vertical Through constant product enhancement and integration.
    [Show full text]
  • ENERCON Magazine for Wind Energy 01/14
    WINDBLATT ENERCON Magazine for wind energy 01/14 ENERCON installs E-115 prototype New two part blade concept passes practial test during installation at Lengerich site (Lower Saxony). ENERCON launches new blade test station Ultra modern testing facilities enables static and dynamic tests on rotor blades of up to 70m. ENERCON announces new WECs for strong wind sites E-82/2,3 MW and E-101/3 MW series also to be available for Wind Class I sites. 4 ENERCON News 21 ENERCON Fairs 23 ENERCON Adresses 12 18 Imprint Publisher: 14 New ENERCON wind energy converters ENERCON GmbH ENERCON announces E-82 and E-101 for strong wind sites. Dreekamp 5 D-26605 Aurich Tel. +49 (0) 49 41 927 0 Fax +49 (0) 49 41 927 109 www.enercon.de Politics Editorial office: Felix Rehwald 15 Interview with Matthias Groote, Member of the European Parliament Printed by: Chairmann of Committee on the Environment comments on EU energy policy. Beisner Druck GmbH & Co. KG, 8 Buchholz/Nordheide Copyright: 16 ENERCON Comment on EEG Reform All photos, illustrations, texts, images, WINDBLATT 01/14 graphic representations, insofar as this The Government's plans are excessive inflict a major blow on the onshore industry. is not expressly stated to the contrary, are the property of ENERCON GmbH and may not be reproduced, changed, transmitted or used otherwise without the prior written consent of Practice ENERCON GmbH. Cover Frequency: The WINDBLATT is published four 18 Replacing old machines times a year and is regularly enclosed 8 Installation of E-115 prototype to the «neue energie», magazine for Clean-up along coast: Near Neuharlingersiel ENERCON replaces 17 old turbines with 4 modern E-126.
    [Show full text]
  • Pdf (Accessed 14 Sept
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SOAS Research Online Zhou, X., Li, X., Lema, R., Urban, F., 2015. Comparing the knowledge bases of wind turbine firms in Asia and Europe: patent trajectories, networks, and globalization. Science and Public Policy, 1-16. doi: 10.1093/scipol/scv055 Comparing the knowledge bases of wind turbine firms in Asia and Europe: patent trajectories, networks, and globalisation Yuan Zhou1, Xin Li2, Rasmus Lema3, Frauke Urban4 1 School of Public Policy and Management, Tsinghua University, Beijing, China 2 School of Economics and Management, Beijing University of Technology, China 3 Department of Business and Management, Aalborg University, Denmark 4 School of Oriental and African Studies SOAS, University of London, UK Abstract This study uses patent analyses to compare the knowledge bases of leading wind turbine firms in Asia and Europe. It concentrates on the following aspects: (a) the trajectories of key technologies, (b) external knowledge networks, and (c) the globalisation of knowledge application. Our analyses suggest that the knowledge bases differ significantly between leading wind turbine firms in Europe and Asia. Europe’s leading firms have broader and deeper knowledge bases than their Asian counterparts. In contrast, Chinese lead firms, with their unidirectional knowledge networks, are highly domestic in orientation with respect to the application of new knowledge. The Indian lead firm Suzlon, however, exhibits a better knowledge position. While our quantitative analyses validate prior qualitative studies it also brings new insights. The study suggests that European firms are still leaders in this industry, and Asian lead firms are unlikely to create new pathways that will disrupt incumbents in the near future.
    [Show full text]
  • RCON, 2015. ENERCON Product Overview
    Sub MW E-44, E-48, E-53 MW E-70, E-82 E2, E-82 E4, E-92, E-101, E-101 E2, E-115, E-126 EP4 Multi-MW E-126 The most suitable wind energy converter for every location ENERCON product overview PAGE 2 ENERCON product overview Advantage through innovation PAGE 3 ENERCON wind energy converters – Advantage through innovation. For more than 25 years, ENERCON wind energy converters have been synonymous with technological progress and high profitability. The importance of technologies contributing to power supply security is constantly increasing. ENERCON’s control systems offer a wide range of technological options which can be adapted to the grid parameters of large power transmission systems. Continuous research and development, as well as a degree of vertical integration that is unrivalled in the industry, ensure the high quality standards, the reliability and the profitability of ENERCON wind energy converters. Together with customer-oriented service, they guarantee the company’s continued success. PAGE 4 ENERCON product overview E-44 E-44 PAGE 5 Calculated power curve Technical specifi cations E-44 Power P (kW) Power coefficient Cp (-) Rated power: 900 kW 1,000 0.60 Rotor diameter: 44 m 900 800 0.50 Hub height in meter: 45 / 55 700 0.40 600 Wind zone (DIBt): - 500 - 0.30 Wind class (IEC): IEC/EN IA E 44 400 300 0.20 900 kW WEC concept: Gearless, variable speed, 200 0.10 100 single blade adjustment 0 0.00 0 5 10 15 20 25 Rotor Wind speed v at hub height (m/s) Type: Upwind rotor with active pitch control Rotational direction: Clockwise Power- Wind Power P No.
    [Show full text]
  • ENERCON Magazine for Wind Energy 02/11
    WINDBLATT ENERCON Magazine for wind energy 02/11 E-101 Prototype ENERCON installs first WEC from its new 3 MW series near Görmin in Germany Technology ENERCON now offers its tried-and-tested inverters also for solar projects International ENERCON and WindVision celebrated the official opening of the E-126 Wind Farm Estinnes 4 ENERCON News 11 ENERCON Fairs 13 ENERCON Addresses 14 19 Imprint Publisher: ENERCON GmbH Technology Dreekamp 5 26605 Aurich, Germany Phone +49 (0) 49 41 927 0 12 ENERCON solar inverters Fax +49 (0) 49 41 927 109 6 www.enercon.de ENERCON wants to create new business opportunities with its tried-and-tested inver- ter technology.The components are now available for photovoltaic projects as well. Editorial office: WINDBLATT 02/11 Felix Rehwald Ruth Brand-Schock Printed by: Beisner Druck GmbH & Co. KG, Buchholz/Nordheide International Copyright: All photos, illustrations, texts, images, graphic representations, insofar as this 14 Inauguration of Wind Farm Estinnes, Belgium is not expressly stated to the contrary, Cover are the property of ENERCON GmbH Largest project with E-126 worldwide produces 187 GWh of green power annually. and may not be reproduced, changed, transmitted or used otherwise 6 E-101 Prototype without the prior written consent of ENERCON GmbH. ENERCON recently erected the first WEC from its new 3 MW series near Görmin (Mecklenburg West 16 Mobile production in Brazil Concrete tower factory makes segments right at the wind farm. Pomerania). Two further E-101 machines are being installed near Haren (Lower Saxony). Frequency: The WINDBLATT is published three times a year and is regularly enclosed 17 ENERCON in Taiwan to the «new energy», magazine for renewable energies, of the German Three wind farms put into operation.
    [Show full text]
  • Technical Improvements of Windside Wind Turbine Systems
    BERTIL BRÄNNBACKA Technical improvements of Windside wind turbine systems ACTA WASAENSIA 328 ELECTRICAL ENGINEERING 3 Reviewers Professor Jorma Kyyrä School of Electrical Engineering Department of Electrical Engineering and Automation P.O. Box 13000 00076 Aalto Finland Professor Ola Carlson Chalmers University of Technology Energy and Environment SE-412 96 Göteborg Sweden III Julkaisija Julkaisupäivämäärä Vaasan yliopisto Elokuu 2015 Tekijä(t) Julkaisun tyyppi Bertil Brännbacka Monografia Julkaisusarjan nimi, osan numero Acta Wasaensia, 328 Yhteystiedot ISBN Vaasan yliopisto 978-952-476-634-0 (painettu) Teknillinen tiedekunta 978-952-476-635-7 (verkkojulkaisu) Sähkö- ja energiatekniikan ISSN yksikkö 0355-2667 (Acta Wasaensia 328, painettu) Pl 700 2323-9123 (Acta Wasaensia 328, verkkojulkaisu) 65101 Vaasa 1799-6961 (Acta Wasaensia. Sähkötekniikka 3, painettu) 2343-0532 (Acta Wasaensia. Sähkötekniikka 3, verkkojulkaisu) Sivumäärä Kieli 159 Englanti Julkaisun nimike Teknisiä parannuksia Windside-tuulivoimaloihin Tiivistelmä Tuulivoiman käyttö on kasvanut tasaisesti, koska ympäristötietoisuus on lisääntynyt ja vastuullinen energiantuotanto vaikuttaa kaikkiin ihmisiin. Kierteisiä pystyakselisia tuulivoimaloita käytetään usein ladattaessa akkuja automaattisilla sääasemilla, vapaa- ajan rakennuksissa jne. On erittäin toivottavaa, että tuulivoimala toimii suurella hyö- tysuhteella mahdollisimman paljon. Akkujen lataus tuulivoimaloissa on sekä alhaisilla että suurilla tuulennopeuksilla haastavaa. Näin ollen tämän tutkimuksen päätavoitteena on löytää
    [Show full text]
  • Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers
    energies Article Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers Andrés Honrubia-Escribano 1,* , Francisco Jiménez-Buendía 2 , Jorge Luis Sosa-Avendaño 2, Pascal Gartmann 3, Sebastian Frahm 4, Jens Fortmann 5 , Poul Ejnar Sørensen 6 and Emilio Gómez-Lázaro 1 1 Renewable Energy Research Institute and DIEEAC-ETSII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain 2 Siemens Gamesa Renewable Energy, S.A., 31621 Pamplona, Spain 3 WRD Wobben Research and Development GmbH, D-26607 Aurich, Germany 4 Senvion GmbH, Überseering 10, 22297 Hamburg, Germany 5 HTW Berlin-University of Applied Sciences, 12459 Berlin, Germany 6 Wind Energy Systems, Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark * Correspondence: [email protected]; Tel.: +34-967-599-200 (ext. 8216) Received: 19 June 2019; Accepted: 2 August 2019; Published: 7 August 2019 Abstract: The participation of wind power in the energy mix of current power systems is progressively increasing, with variable-speed wind turbines being the leading technology in recent years. In this line, dynamic models of wind turbines able to emulate their response against grid disturbances, such as voltage dips, are required. To address this issue, the International Electronic Commission (IEC) 61400-27-1, published in 2015, defined four generic models of wind turbines for transient stability analysis. To achieve a widespread use of these generic wind turbine models, validations with field data are required. This paper performs the validation of three generic IEC 61400-27-1 variable-speed wind turbine model topologies (type 3A, type 3B and type 4A).
    [Show full text]
  • Vestas Exec: Nordics Show How All Countries Will Become Subsidy-Free
    PRODUCED BY RECHARGE OFFICIAL SHOW DAILY DAY ONE Vestas exec: Nordics show how all The era of fast- falling turbine countries will become subsidy-free prices is over, BERND RADOWITZ says Nordex boss Nils de Baar, Vestas’ president he Nordic countries are leading for Central and BERND RADOWITZ Northern Europe the way into a future where Tsubsidy-free onshore wind will The fast and damaging decline of be the norm, Vestas’ Northern and wind turbine prices that has troubled Central Europe president Nils de Baar the industry in recent years has told Recharge. stopped, José Luis Blanco, chief “We believe all markets will go executive of the Nordex Group, told through the same transformation Recharge. from having a regulated feed-in “We see that the rapid decrease in tariff, to going into auctions — prices has come to an end. They are which we see now in a majority of stabilising,” he said. markets — [before] ending up in “We have highly-competitive new merchant environments,” de Baar products tailored for volume as well said in an interview. as for growth markets, and we are “If planning policy allows us to positive that we, and the industry, install the latest and most efficient can expect better prices in the technology with scale, then we coming years.” believe the technology will take us to most economic source of energy. We an order for a merchant project in His view is supported by Wood merchant onshore wind projects. believe that will be the future.” Finland last year. CONTINUED on Page 3 Vestas | “Some countries will take longer, De Baar’s comments came after Subsidy-free projects in but eventually all will get there.
    [Show full text]
  • Wind Energy in Sweden – Opportunities and Threats
    Wind energy in Sweden – opportunities and threats Almedalen 2009 • Potential • Support system • Financial crisis • Local production The projects under construction together with smaller projects and single WTG’s are expected to contribute an additional 2 TWh of electricity before the end of 2010. Today Sweden produces 2 TWh of wind electricity, some 1.5 % of the Swedish consumption This map shows projects with all necessary permits in hand. Due to the global financial crisis, most of these projects will face a delay in terms of financial close. Almost all projects south of Lake Vänern are offshore projects and will only be built if the Government introduces a separate support system. Support system 1 Every electricity wholesaler has to show at least a certain Photovoltaic amount of these in their mix. He does this by buying certificates from the Wind power producer The amount of necessary certificates (the quota) Small hydro power rises up to 2016 Year 2016 Sweden will have 17 TWh more Bio power renewable electricity as compared to 2002 5 Support system 2 Two products to sell Electricity Price of electricity (€43/MWh) MWh Certificate Price of certificates (€30/MWh) 6 This example: €73 /MWh Wind investment in Sweden • Support system – Tradable green certificate system since 2003 • Works well and will result in 17 TWh new RES•E until 2016 – About 7 wind, 9 biomass CHP and 1 hydro • The system will be extended in time and volume to generate 25 TWh RES•E until 2020 – All of the additional 8 TWh will be wind • Required investment – Additional 13 TWh wind energy • requires about 5 000 MW installed capacity • Equals 2 500 2MW WTG’s • 7.5 billion euro The Financial Crisis • All industrial sectors are affected • Renewable energy sector will come out earlier than others.
    [Show full text]
  • Enercon Sustainability Report 2019
    PLANET SUSTAINABILITY PEOPLE PRODUCT REPORT 2019 INTRODUCTION PEOPLE – the society / PLANET – the environment / PRODUCT – the economic value / CONCLUSION / ANNEX 1. INTRODUCTION 3. PLANET – the environment 1.1 Management Statement 4 3.1 The ENERCON Environmental 1.2 ENERCON’s business 5 Management Approach 29 1.3 Intention of report and 3.2 Life Cycle Assessment 30 sustainability approach 6 3.3 Hazardous substances and materials 33 1.4 The UN Sustainable Development Goals 3.4 Circular Economy and Waste Management 35 and their significance for ENERCON 7 3.5 Water Resources Management 37 1.5 Stakeholder and materiality analyses 11 3.6 Immission 39 1.6 Sustainability vision, strategy and goals 12 3.7 Energy 40 3.8 Low carbon future and decarbonisation 42 3.9 Projects and Case Studies 44 CONTENT 2. PEOPLE – the society 4. PRODUCT – the economic value 2.1 Our approach with our employees 4.1 A sustainable product for green energy 48 and societies 16 4.2 Turnaround programme 49 2.2 Health Management 17 4.3 Implementation of comprehensive 2.3 Safety Management 19 Quality Management System 50 2.4 Human rights and labour practice 20 4.4 Sustainable Procurement 51 2.5 Diversity 20 4.5 Sustainable Development 53 2.6 Employee engagement 21 4.6 Environmental impact in costs 54 2.7 Local Communities 24 2.8 Projects and Case Studies 25 5. CONCLUSION 5.1 Summary and outlook 56 5.2 Memberships 57 5.3 Overview of ENERCON’s contributions to sustainability 58 ANNEX ANNEX 1: Table stakeholder analysis 59 ANNEX 2: Abbreviations 60 2 INTRODUCTION PEOPLE – the
    [Show full text]
  • Annual Report 2019 to Our Shareholders 02 Content
    2019 NORDEX GROUP ANNUAL REPORT KEY FIGURES AT A GLANCE Key figures Nordex Group 2018 2019 Change Earnings Sales EUR million 2,459.1 3,284,6 33,6% Gross revenue EUR million 2,364.9 3,871.4 63,8% EBITDA EUR million 101.7 123.8 21,7% EBIT EUR million –54.2 –19.6 63,8% Free Cash flow EUR million 44.0 –126.0 n/a Capital expenditure EUR million 112.9 172.5 52,8% Consolidated net profit for the year EUR million –83.9 –72.6 13,5% Earnings per share 1 EUR –0.86 –0.73 n/a EBITDA margin % 4.1 3.8 –0,3 PP Working capital ratio % –3.8 –9.1 –5.3 PP Statement of financial position Total assets as at 31 Dec. EUR million 3,058,5 4,002,7 30,9% Equity as at 31 Dec. EUR million 697.3 745.4 6,9% Equity ratio % 22.8 18.6 –4,2 PP Employees Employees as at 31 Dec. 5.676 6.880 21,2% Staff costs EUR million 325.9 360.7 10,7% Staff cost ratio % 13.3 11. 0 –2,3 PP Company-specific performance indicators Order intake segment projects EUR million 3,637,3 4,415,0 21,4% Installed capacity MW 2.522 3.090 22,5% 1 Earnings per share = basic, based on average weighted shares for 2018: 96.982 million shares (2017: 96.982 million shares) To our shareholders Key figures at a glance 01 Nordex SE Annual Report 2019 To our shareholders 02 Content CONTENT Combined Group To our shareholders Management Report 04 20 04 To our shareholders 20 Fundamental information about the Group 06 The Management Board 36 Report on Economic Position 08 Supervisory Board 38 Significant events during the reporting period 10 Nordex shares and bond 39 Overview of the financial year 13 Report of the
    [Show full text]