Technical Improvements of Windside Wind Turbine Systems
Total Page:16
File Type:pdf, Size:1020Kb
BERTIL BRÄNNBACKA Technical improvements of Windside wind turbine systems ACTA WASAENSIA 328 ELECTRICAL ENGINEERING 3 Reviewers Professor Jorma Kyyrä School of Electrical Engineering Department of Electrical Engineering and Automation P.O. Box 13000 00076 Aalto Finland Professor Ola Carlson Chalmers University of Technology Energy and Environment SE-412 96 Göteborg Sweden III Julkaisija Julkaisupäivämäärä Vaasan yliopisto Elokuu 2015 Tekijä(t) Julkaisun tyyppi Bertil Brännbacka Monografia Julkaisusarjan nimi, osan numero Acta Wasaensia, 328 Yhteystiedot ISBN Vaasan yliopisto 978-952-476-634-0 (painettu) Teknillinen tiedekunta 978-952-476-635-7 (verkkojulkaisu) Sähkö- ja energiatekniikan ISSN yksikkö 0355-2667 (Acta Wasaensia 328, painettu) Pl 700 2323-9123 (Acta Wasaensia 328, verkkojulkaisu) 65101 Vaasa 1799-6961 (Acta Wasaensia. Sähkötekniikka 3, painettu) 2343-0532 (Acta Wasaensia. Sähkötekniikka 3, verkkojulkaisu) Sivumäärä Kieli 159 Englanti Julkaisun nimike Teknisiä parannuksia Windside-tuulivoimaloihin Tiivistelmä Tuulivoiman käyttö on kasvanut tasaisesti, koska ympäristötietoisuus on lisääntynyt ja vastuullinen energiantuotanto vaikuttaa kaikkiin ihmisiin. Kierteisiä pystyakselisia tuulivoimaloita käytetään usein ladattaessa akkuja automaattisilla sääasemilla, vapaa- ajan rakennuksissa jne. On erittäin toivottavaa, että tuulivoimala toimii suurella hyö- tysuhteella mahdollisimman paljon. Akkujen lataus tuulivoimaloissa on sekä alhaisilla että suurilla tuulennopeuksilla haastavaa. Näin ollen tämän tutkimuksen päätavoitteena on löytää keinoja kehittää akunlatausta alhaisilla ja suurilla tuulennopeuksilla käyttämällä apulaitteina kaupalli- sesti saatavilla olevia sähköisiä komponentteja. Lähestymistapana oli tutkia tuulivoimaloita todellisissa tuuliolosuhteissa. Tutkittiin kahta erikokoista Windside-tuulivoimalaa. Todellista dataa kerättiin ja analysoitiin. Myös analyyttistä mallia käytettiin onton akselin kehittämisessä. Prototyyppiakselia tutkittiin iskutesteillä ja modaalianalyysillä. Lisäksi simuloitiin jännitettä nostavaa hakkuriteholähdettä ja tähti-kolmio-kytkimen toimintaa. Tämän työn keskeisiä teknillisiä saavutuksia ovat automaattisesti palautuva tähti- kolmio-kytkin ja ontto akseli. Niiden edut ovat moninaisia. Niitä voidaan käyttää sovelluksissa, joissa tarvitaan pieniä pystyakselisia tuuliturbiineita. Automaattisesti palautuvan tähti-kolmio-kytkimen käyttö pienissä tuulivoimaloissa lisää vuotuista energiantuottoa 9 % ja 24 V:n akkujen käyttö 12 V:n sijasta 7 %. Onton akselin käyt- täminen kasvattaa tutkitun isomman voimalatyypin käytettävyyttä. Kehitetty ontto akseli vähentää kokonaispainoa ja käytettyjen raaka-aineiden määrää. Asiasanat Pystyakselinen tuulivoimala, akun lataus, energiantuotto, tähti-kolmio kytkin, Wind- side V Publisher Date of publication Vaasan yliopisto August 2015 Author(s) Type of publication Bertil Brännbacka Monograph Name and number of series Acta Wasaensia, 328 Contactinformation ISBN University of Vaasa 978-952-476-634-0 (print) Faculty of Technology 978-952-476-635-7 (online) Department of Electrical ISSN Engineering and Energy 0355-2667 (Acta Wasaensia 328, print) Technology 2323-9123 (Acta Wasaensia 328, online) 1799-6961 (Acta Wasaensia. Electrical Engineering 3, print) P.O. Box 700 2343-0532 (Acta Wasaensia. Electrical Engineering 3, online) FI-65101 Vaasa, Finland Number of pages Language 159 English Title of publication Technical improvements of Windside wind turbine systems Abstract Motivation for the use of wind power has been increasing steadily because of in- creased environmental awareness and responsible production of energy affects all human beings. Helical vertical-axis wind turbines are often used to charge batteries in places such as automatic weather stations, recreational buildings etc. It is highly desirable that the turbines operate with high efficiency as much as possible. The problems encountered with battery charging by wind turbines are that the charging is poor in both low and high wind speeds. Thus, the main objective of this study is to find methods of improving the charging of batteries at low and high wind speeds by developing auxiliary devices using original components. The approach was to study the wind turbines in real wind conditions. Two different sizes of Windside wind turbines were investigated. Field data was collected and analyzed. Also, an analytical model was used in the development of the hollow shaft. The prototype shaft was checked by hammer shock test and modal analysis. Furthermore, simulation studies were used to develop the step-up converter and to show the operation of the star delta switch. Two novel techniques developed in this work are an automatic reversible star-delta switch, and a hollow shaft. The benefits of the developed items are manyfold. They can be utilized in applications where small vertical-axis wind turbines are used. The use of automatic reversible star-delta switch increases the annual energy yield of the small turbines by 9 % and the use of 24 V battery bank instead of 12 V by 7 %. The hollow shaft increases the usability of the type wind turbines examined. The devel- oped hollow shaft reduces the overall weight and raw materials used. Keywords Vertical axis wind turbine, battery charging, star-delta switch, energy yield, Wind- side VII PREFACE This thesis derives from a wind power activity at the University of Vaasa from the beginning of year 2002 to the end of 2013. The participants in the project were Department of Electrical Engineering in University of Vaasa and the manufactur- er of studied wind turbine devices, i.e. Oy Windside Production Ltd. Two small wind turbines each of 300 W rated powers and a larger wind turbine of 2 kW rat- ed power from the manufacturer were used. All studied wind turbines were in real use, mounted on roofs of university buildings at the University of Vaasa in Vaasa in west coast region in middle of Finland. The studied smaller wind turbines were mounted on the roof of the six-floor height library building Tritonia and the big- ger wind turbine on the roof the five-floor height Fabriikki building. The research work related to this thesis has been carried out in the Technobothnia Laboratory in Vaasa and at several real wind turbine devices at the University of Vaasa during years 2001–2011 as a separate wind power project. A part of the measurements have been done at the manufacture’s factory in Pihtipudas. Professor Timo Vekara at the University of Vaasa has supervised the work. I want to warmly thank him for foresee, inspiration and guidance at the vertical-axis wind turbine project. Professor Kimmo Kauhaniemi at the University of Vaasa has evaluated some of the work. I want to thank him for it. The researchers Timo Rinne and Heikki Salminen have been of great help and both mentally and with practical and theoretical things throughout the period. Oy Windside Production Ltd arranged a part of the equipment for the tests and I thank their CEO Risto Joutsiniemi for that. This research work has been performed during the years when I acted as a labora- tory engineer of electrical engineering at the University of Vaasa. Vaasa, Finland, May 21st, 2015 Bertil Brännbacka IX Contents PREFACE …………………………………………………………………… . .VII 1 INTRODUCTION ........................................................................................... 1 1.1 Background and motivation .................................................................. 1 1.2 Research scope, arguments and objectives ........................................... 2 1.3 State of the art ....................................................................................... 4 1.4 Organisation of this thesis ..................................................................... 9 1.5 Limitations of this thesis ..................................................................... 10 2 WIND TURBINES ........................................................................................ 11 2.1 Natural winds ...................................................................................... 12 2.1.1 Global winds ...................................................................... 12 2.1.2 Local winds ........................................................................ 14 2.1.3 Wind turbulence and gusts ................................................. 19 2.2 Aerodynamics and fluid mechanics .................................................... 19 2.2.1 Drag force .......................................................................... 22 2.2.2 Reynolds number ............................................................... 22 2.3 Output power of ideal wind turbines .................................................. 24 2.3.1 Horizontal-axis wind turbines ............................................ 24 2.3.2 Drag-based vertical-axis wind turbines ............................. 29 2.4 Permanent magnet generator .............................................................. 30 2.5 Star-delta connection .......................................................................... 33 2.5.1 Star-delta and delta-star transformation ............................. 34 2.5.2 Star-delta connection of a three-phase load ....................... 35 2.5.3 The three-phase PM generators under study ...................... 36 2.5.4 Star-delta connection of a three-phase wind generator ...... 45 2.6 Output power of real wind turbines .................................................... 46 2.6.1 Horizontal-axis wind turbines ...........................................