Northern Power Systems Windpact Drive Train Alternative Design Study Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Goldwind Brochure-1.5-Web.Indd
www.goldwindamerica.com E-mail: [email protected] Goldwind USA, Inc. 200 West Madison Street Suite 2800 Chicago, Illinois, USA Tel: +1 312-948-8050 Fax: +1 312-948-8051 PC: 60601 Xinjiang Goldwind Science & Technology Co., Ltd 107 Shanghai Road, Economic & Technological Development Zone, Urumqi, Xinjiang Tel: +86-(0)991-3767999 PMDD WIND TURBINE Fax: +86-(0)991-3762039 PC: 830026 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. No. 19 Kangding Road, Economic & Technological 1.5MW Development Zone, Beijing (I) Tel: +86-(0)10-87857500 Fax: +86-(0)10-87857529 PC: 100176 No. 8 Boxing 1st Road, Economic & Technological Development Zone, Beijing (II) Tel: +86-(0)10-67511888 Fax: +86-(0)10-67511983 PC: 100176 www.goldwindamerica.com E-mail: [email protected] Goldwind USA, Inc. 200 West Madison Street Suite 2800 Chicago, Illinois, USA Tel: +1 312-948-8050 Fax: +1 312-948-8051 PC: 60601 Xinjiang Goldwind Science & Technology Co., Ltd 107 Shanghai Road, Economic & Technological Development Zone, Urumqi, Xinjiang Tel: +86-(0)991-3767999 PMDD WIND TURBINE Fax: +86-(0)991-3762039 PC: 830026 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. No. 19 Kangding Road, Economic & Technological 1.5MW Development Zone, Beijing (I) Tel: +86-(0)10-87857500 Fax: +86-(0)10-87857529 PC: 100176 No. 8 Boxing 1st Road, Economic & Technological Development Zone, Beijing (II) Tel: +86-(0)10-67511888 Fax: +86-(0)10-67511983 PC: 100176 GOLDWIND 1.5MW PMDD WIND TURBINE SERIES DYNAMIC POWER CURVE GENERAL TECHNICAL SPECIFICATIONS -
The 4Th Wind Energy Systems Engineering Workshop
The 4th Wind Energy Systems Engineering Workshop September 13th-14th, 2017 Risø DTU National Laboratory for Sustainable Energy Roskilde, Denmark Sponsored by: DTU Wind Energy National Renewable Energy Laboratory Workshop Agenda Overview: The 4th workshop on systems engineering for wind energy will take place on the 13th and 14th of September, 2017. The first workshop in December 2010 was a success in catalyzing interest in this important topic among participants from industry, the national laboratories and academia. The second and third workshops in January 2013 and 2015, respectively, with more than 100 participants each, demonstrated the significant growth in interest from the research and industry community surrounding systems engineering for wind energy and integrated approaches to wind turbine and plant design. At this fourth workshop, DTU Wind Energy and NREL will be hosting the workshop in Europe to encourage participation from European wind energy systems engineering practitioners and interested parties. This year’s theme will be on exposing interactions in the system and exploring how different wind energy stakeholders addressing them in new, integrated and innovative ways. Short Agenda Wednesday, September 13th, 2017 8:30 a.m. – 9:00 a.m. Registration and Breakfast 8:30 a.m. ‒ 12:15 p.m. Morning sessions 12:15 p.m. ‒ 1:00 p.m. Lunch 1:30 p.m. ‒ 5:45 p.m. Afternoon sessions 5:45 p.m. ‒ 7:30 p.m. Evening reception and poster session (appetizers) Thursday, September 14th, 2017 8:00 a.m. – 8:30 a.m. Registration and Breakfast 8:30 a.m. ‒ 12:00 p.m. -
SRI: Wind Power Generation Project Main Report
Environment Impact Assessment (Draft) May 2017 SRI: Wind Power Generation Project Main Report Prepared by Ceylon Electricity Board, Ministry of Power and Renewable Energy, Democratic Socialist Republic of Sri Lanka for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 17 May 2017) Currency unit – Sri Lankan rupee/s(SLRe/SLRs) SLRe 1.00 = $0.00655 $1.00 = SLRs 152.70 ABBREVIATIONS ADB – Asian Development Bank CCD – Coast Conservation and Coastal Resource Management Department CEA – Central Environmental Authority CEB – Ceylon Electricity Board DoF – Department of Forest DS – District Secretary DSD – District Secretaries Division DWC – Department of Wildlife Conservation EA – executing agency EIA – environmental impact assessment EMoP – environmental monitoring plan EMP – environmental management plan EPC – engineering,procurement and construction GND – Grama Niladhari GoSL – Government of Sri Lanka GRM – grievance redress mechanism IA – implementing agency IEE – initial environmental examination LA – Local Authority LARC – Land Acquisition and Resettlement Committee MPRE – Ministry of Power and Renewable Energy MSL – mean sea level NARA – National Aquatic Resources Research & Development Agency NEA – National Environmental Act PIU – project implementation unit PRDA – Provincial Road Development Authority PUCSL – Public Utility Commission of Sri Lanka RDA – Road Development Authority RE – Rural Electrification RoW – right of way SLSEA – Sri Lanka Sustainable Energy Authority WT – wind turbine WEIGHTS AND MEASURES GWh – 1 gigawatt hour = 1,000 Megawatt hour 1 ha – 1 hectare=10,000 square meters km – 1 kilometre = 1,000 meters kV – 1 kilovolt =1,000 volts MW – 1 megawatt = 1,000 Kilowatt NOTE In this report, “$” refers to US dollars This environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. -
Corporate Non-Financial Reporting in Germany
Copyright © Development International e.V., 2019 ISBN: 978-3-9820398-1-7 Authors: Chris N. Bayer, PhD Gisella Vogel Sarah Kaltenhäuser Katherine Storrs Jiahua (Java) Xu, PhD Juan Ignacio Ibañez, LL.M. Title: A New Responsibility for Sustainability: Corporate Non-Financial Reporting in Germany Date published: May 6, 2019 Funded by: iPoint-systems gmbh www.ipoint-systems.com Executive Summary Germany's economy is the fourth-largest in the world (by nominal GDP), and with 28% of the euro area market, it represents the largest economy in Europe.1 Considering the supply chains leading to its economy, Germany's cumulative environmental, social and governance performance reverberates globally. The EU Non-Financial Reporting Directive (NFRD) is the impetus behind this study – a new regulation that seeks to “increase the relevance, consistency and comparability of information disclosed by certain large undertakings and groups across the Union.”2 Large undertakings in EU member states are not only required to report on their financial basics, now they are also required by Article 1 of the Directive to account for their non- financial footprint, including adverse impacts they have on the environment and supply chains. In accordance with the Directive, the German transposition stipulates that the non-financial declaration must state which reporting framework was used to create it (or explain why no framework was applied), as well as apply non-financial key performance indicators relevant to the particular business. These requirements are our point of departure: We systematically assess the degree of non-financial transparency and performance reporting for 2017 applying an ex-post assessment framework premised on the Global Reporting Initiative (GRI), the German Sustainability Code (Deutscher Nachhaltigkeitskodex, DNK) and the United Nations Global Compact (UNGC). -
Nordex Group Announces New N149/5.X Turbine
PRESS RELEASE Entering the 5 MW class: Nordex Group announces new N149/5.X turbine Powerful addition to the Delta4000 series presented in 2017 Hamburg, 26 March 2019. The Nordex Group is extending its product portfolio with a multi-megawatt machine in the 5 MW class. After the N149/4.0-4.5 and the N133/4.8, the new N149/5.X is the third turbine type in the Delta4000 series. The N149/5.X is designed for moderate and light-wind areas and can also perform optimally at sites with complex requirements. Apart from the classic core markets in Europe, the target markets for the N149/5.X also cover global growth regions such as South Africa, Australia and South America. The N149/5.X is designed for maximum flexibility and can be operated in different modes in the 5 MW range depending on site requirements and customer needs. This enables customers to individually configure the wind farm in terms of the output, capacity and lifetime of the turbine, as well as with regard to sound requirements, and thus adapt it ideally to the company's respective business model. The N149/5.X is a logical progression based on the successful approach of a flexible power range in the N149/4.0-4.5. "Thanks to the proven technological basis of the Delta4000 product series we are in a position to continuously develop highly efficient solutions for different wind regimes and different geographical regions and to ensure short lead times for product launches. We have designed the N149/5.X with its maximum flexibility and efficiency to exactly meet the needs of our customers," says José Luis Blanco, CEO Nordex Group. -
Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor
Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 Fabian Wendt,1 Paul Veers,1 Josh Paquette,2 Chris Kelly,2 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 1 1 2 2 Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories Suggested Citation Johnson, Nick, Pietro Bortolotti, Katherine Dykes, Garrett Barter, Patrick Moriarty, Scott Carron, Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, and Brandon Ennis. 2019. Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-73605. https://www.nrel.gov/docs/fy19osti/73605.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. -
ENERCON Wind Energy Converters Technology & Service
ENERCON wind energy converters Technology & Service PAGE 2 ENERCON U¾QOHUH*HQHO%DNóġTechnology & Service Yeniliklerle gelen avantaj PAGE 3 1 ENERCON turbine technology 6 Rotor blades 8 Direct drive 9 Annular generator technology 10 Tower construction 12 Precast concrete towers 13 Steel towers 14 Foundation construction 15 2 ENERCON WEC control system 16 Sensor system 18 ENERCON ice detection system 18 Rotor blade de-icing system 19 ENERCON storm control 19 3 ENERCON grid integration and wind farm management 20 Optimum grid integration 22 P/Q diagram/voltage stability 24 Power-frequency control 25 Inertia Emulation 26 Fault ride-through - option 27 Generation management system – power regulation for maximum yield 28 Bottleneck management – maximum output during bottlenecks 28 ENERCON SCADA RTU 29 ENERCON FCU 29 4 ENERCON remote monitoring 30 ENERCON SCADA system 32 ENERCON Service Info Portal 35 ENERCON PartnerKonzept 36 5 6 ENERCON product overview 40 PAGE 4 Technology & Service PAGE 5 Introduction ENERCON has been among the top producers is performed with 3D CAD systems which assist of wind energy converters for nearly 30 years the developers in verifying overstress and criti- now. Two of the key contributing factors to the FDODUHDVE\PHDQVRIWKHʖQLWHHOHPHQWPHWKRG company´s success are innovation and quality. Production processes are not launched until com- Both highly developed vertical integration and a prehensive quality tests have been completed – a comprehensive quality management system play strategy which has been successfully adopted by D VLJQLʖFDQW UROH LQ VHFXULQJ (1(5&21vV KLJK (1(5&21vV H[FOXVLYH SURGXFWLRQ SODQWV VLQFH quality standards. 2009. The company is therefore distinguished by outstanding quality and a high degree of vertical Through constant product enhancement and integration. -
Wind Energy and Economic Recovery in Europe How Wind Energy Will Put Communities at the Heart of the Green Recovery
Wind energy and economic recovery in Europe How wind energy will put communities at the heart of the green recovery Wind energy and economic recovery in Europe How wind energy will put communities at the heart of the green recovery October 2020 windeurope.org Wind energy and economic recovery in Europe: How wind energy will put communities at the heart of the green recovery WindEurope These materials, including any updates to them, are The socio-economic impact evaluation of wind energy on published by and remain subject to the copy right of the European Union has been carried out using the SNA93 the Wood Mackenzie group ("Wood Mackenzie"), its methodology (System of National Accounts adopted in licensors and any other third party as applicable and are 1993 by the United Nations Statistical Commission) and made available to WindEurope (“Client”) and its Affiliates Deloitte’s approaches, which evaluate the effects of the under terms agreed between Wood Mackenzie and Client. renewable energy in the economy. The use of these materials is governed by the terms and conditions of the agreement under which they were Deloitte has provided WindEurope solely with the services provided. The content and conclusions contained are and estimations defined in the proposal signed by confidential and may not be disclosed to any other person WindEurope and Deloitte on March 13th, 2020. Deloitte without Wood Mackenzie's prior written permission. accepts no responsibility or liability towards any third The data and information provided by Wood Mackenzie party that would have access to the present document should not be interpreted as advice. -
Master Document Template
Copyright by Krystian Amadeusz Zimowski 2012 The Thesis Committee for Krystian Amadeusz Zimowski Certifies that this is the approved version of the following thesis: Next Generation Wind Energy Harvester to Power Bridge Health Monitoring Systems APPROVED BY SUPERVISING COMMITTEE: Supervisor: Richard H. Crawford Co-supervisor: Kristin L. Wood Next Generation Wind Energy Harvesting to Power Bridge Health Monitoring Systems by Krystian Amadeusz Zimowski, B.S.M.E. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin May 2012 Dedication This thesis is first of all dedicated to my parents, who sacrificed everything for me and for my education. Acknowledgements I would like to acknowledge Dr. Kristin Wood, Dr. Richard Crawford, and Dr. Sharon Wood, for allowing me to work on such a fantastic research project and for mentoring me throughout my graduate studies at The University of Texas at Austin. I am grateful that the National Science Foundation and the National Institute for Standards and Technology (NIST) Technology Innovation Program (TIP) provided funds to address the critical issue of bridge health monitoring systems. I would like also extend a personal thank you to Dr. Dan Jensen at the United States Air Force Academy for granting me the funding to work on this project through a National Science Foundation (NSF) grant for improving student learning using finite element learning modules. Finally, I would like to extend a personal thanks to my fellow mechanical engineers with whom I worked on this project: Sumedh Inamdar, Eric Dierks, and Travis McEvoy. -
ENERCON Magazine for Wind Energy 01/14
WINDBLATT ENERCON Magazine for wind energy 01/14 ENERCON installs E-115 prototype New two part blade concept passes practial test during installation at Lengerich site (Lower Saxony). ENERCON launches new blade test station Ultra modern testing facilities enables static and dynamic tests on rotor blades of up to 70m. ENERCON announces new WECs for strong wind sites E-82/2,3 MW and E-101/3 MW series also to be available for Wind Class I sites. 4 ENERCON News 21 ENERCON Fairs 23 ENERCON Adresses 12 18 Imprint Publisher: 14 New ENERCON wind energy converters ENERCON GmbH ENERCON announces E-82 and E-101 for strong wind sites. Dreekamp 5 D-26605 Aurich Tel. +49 (0) 49 41 927 0 Fax +49 (0) 49 41 927 109 www.enercon.de Politics Editorial office: Felix Rehwald 15 Interview with Matthias Groote, Member of the European Parliament Printed by: Chairmann of Committee on the Environment comments on EU energy policy. Beisner Druck GmbH & Co. KG, 8 Buchholz/Nordheide Copyright: 16 ENERCON Comment on EEG Reform All photos, illustrations, texts, images, WINDBLATT 01/14 graphic representations, insofar as this The Government's plans are excessive inflict a major blow on the onshore industry. is not expressly stated to the contrary, are the property of ENERCON GmbH and may not be reproduced, changed, transmitted or used otherwise without the prior written consent of Practice ENERCON GmbH. Cover Frequency: The WINDBLATT is published four 18 Replacing old machines times a year and is regularly enclosed 8 Installation of E-115 prototype to the «neue energie», magazine for Clean-up along coast: Near Neuharlingersiel ENERCON replaces 17 old turbines with 4 modern E-126. -
Wind Power: Energy of the Future It’S Worth Thinking About
Wind power: energy of the future It’s worth thinking about. »Energy appears to me to be the first and unique virtue of man.« Wilhelm von Humboldt 2 3 »With methods from the past, there will be no future.« Dr. Bodo Wilkens Wind power on the increase »Environmental protection is an opportunity and not a burden we have to carry.« Helmut Sihler When will the oil run out? Even if experts cannot agree on an exact date, one thing is certain: the era of fossil fuels is coming to an end. In the long term we depend on renewable sources of energy. This is an irrefutable fact, which has culminated in a growing ecological awareness in industry as well as in politics: whereas renewable sources of energy accounted for 4.2 percent of the total consumption of electricity in 1996, the year 2006 registered a proportion of 12 per- cent. And by 2020 this is to be pushed up to 30 percent. The growth of recent years has largely been due to the use of wind power. The speed of technical development over the past 15 years has brought a 20-fold rise in efficiency and right now wind power is the most economical regenerat- ive form there is to produce electricity. In this respect, Germany leads the world: since 1991 more than 19.460 wind power plants have been installed with a wind power capacity of 22.247 MW*. And there is more still planned for the future: away from the coastline, the offshore plants out at sea will secure future electricity supplies. -
Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities Shuangwen (Shawn) Sheng
Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities Shuangwen (Shawn) Sheng 2016 PHM Society Annual Conference Denver, Colorado October 4, 2016 NREL/PR-5000-67283 Outline . Introduction . Current status . Challenges and opportunities Photo by Lee Jay Fingersh, NREL 17245 2 Introduction: Global Wind Energy Figure from [1] Photo by HC Sorensen, Photo by Iberdrola Renewables, Inc., NREL 16706 Middelgrunden Wind Turbine Cooperative, NREL 17856 3 Reliability of Turbine Subassemblies: Old Statistics Failure/turbine/year and downtime from two large surveys of land-based European wind turbines during 13 years Electrical System LWK Failure Rate, approx 5800 Turbine Years Electrical Control WMEP Failure Rate, approx 15400 Turbine Years Other LWK Downtime, approx 5800 Turbine Years Hydraulic System WMEP Downtime, approx 15400 Turbine Years Yaw System Rotor Hub Mechanical Brake Rotor Blades Gearbox Generator Drive Train Figure from [2] 1 0.75 0.5 0.25 0 2 4 6 8 10 12 14 Failure/turbine/year Downtime per failure (days) • The Wissenschaftliches Mess-und Evaluierungsprogramm (WMEP) database was accomplished from 1989 to 2006 and contains failure statistics from 1,500 wind turbines [3]. • Failure statistics published by Landwirtschaftskammer Schleswig-Holstein (LWK) from 1993 to 2006 contain failure data from more than 650 wind turbines [3]. 4 Outage Duration for Different Subsystems: New Statistics . Downtime caused by premature component/subsystem failures, led by gearboxes, challenges the wind industry and results in an increased cost of energy for wind power. Average Turbine Outage Duration for Failures >1 Hour (days) 6 - Mechanical: yaw systems, mechanical brakes, hydraulic systems, rotor hubs, drivetrain 4 - Electrical: sensors, electrics, control systems.