Uvic Thesis Template

Total Page:16

File Type:pdf, Size:1020Kb

Uvic Thesis Template Macro- and microfossils from the Upper Cretaceous sedimentary rocks of Hornby Island, British Columbia, Canada by Sandy Melvin Stuart McLachlan B.A., University of Victoria, 2010 CRMP, University of Victoria, 2013 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Science Sandy Melvin Stuart McLachlan, 2017 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Macro- and microfossils from the Upper Cretaceous sedimentary rocks of Hornby Island, British Columbia, Canada by Sandy Melvin Stuart McLachlan B.A., University of Victoria, 2010 CRMP, University of Victoria, 2013 Supervisory Committee Dr. Vera Pospelova, Co-Supervisor, (School of Earth and Ocean Sciences) Dr. Richard Hebda, Co-Supervisor, (School of Earth and Ocean Sciences) Dr. Eileen van der Flier-Keller, Departmental Member (School of Earth and Ocean Sciences) iii Abstract Heteromorph ammonites and dinoflagellate cysts from the Upper Cretaceous Northumberland Formation on Hornby Island, British Columbia, Canada are examined. The collection and preparation of new material has enabled the recognition of eleven species of which only three have been reported from the locality. Of these taxa represented from three heteromorph ammonite families in the study area, five are new occurrences and three are new to science. This expansion of the Hornby Island ammonite fauna is presented alongside a pioneering taxonomic survey of dinoflagellate cysts from the same rocks. Together, these macro- and microfossils reinforce a late Campanian age for the Northumberland Formation with the upper extent of the section approaching the Campanian-Maastrichtian boundary (CMB) interval. The palaeoecology and evolutionary relationships of these heteromorph ammonoids are considered with new insights into their ontogenetic development and neritic palaeoenvironmental circumstances. The dinoflagellate cysts and associated terrestrial palynomorphs have also allowed for enhanced palaeoenvironmental reconstruction and depositional setting inference. The scope of the studied material, and the presence of key index taxa, enables refined biostratigraphy and a stronger basis for correlation of the Hornby Island succession with neighboring coeval biotic provinces. iv Table of Contents Supervisory Committee .................................................................................................................. ii Abstract .......................................................................................................................................... iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................. vi List of Figures ............................................................................................................................... vii List of Plates ................................................................................................................................. xii Dedication .................................................................................................................................... xxi Chapter 1 Introduction.................................................................................................................. 1 1.1 Thesis structure .................................................................................................................... 1 Chapter 2 Reassessment of the late Campanian (Late Cretaceous) heteromorph ammonite fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae ........................................................................................ 2 2.1 Contribution of authors ........................................................................................................ 2 2.2 Abstract ................................................................................................................................ 2 2.3 Introduction and geological setting ...................................................................................... 3 2.4 Materials and methods ......................................................................................................... 9 2.5 Institutional abbreviations .................................................................................................. 12 2.6 Morphological abbreviations ............................................................................................. 12 2.7 Systematic Palaeontology .................................................................................................. 12 2.7.1 Family Baculitidae Gill, 1871 ..................................................................................... 13 2.7.2 Family Diplomoceratidae Spath, 1926 ....................................................................... 19 2.7.3 Family Nostoceratidae Hyatt, 1894 ............................................................................ 58 2.8 Discussion .......................................................................................................................... 88 2.9 Summary ............................................................................................................................ 91 2.10 Acknowledgments ........................................................................................................... 92 Chapter 3 General Discussion .................................................................................................... 93 3.1 Heteromorph ammonite taphonomy .................................................................................. 93 3.2 Heteromorph ammonite polymorphism ............................................................................. 95 3.3 Heteromorph ammonoid ontogeny and palaeoecology ..................................................... 98 3.4 Heteromorph ammonoid evolutionary progression ......................................................... 101 3.5 Heteromorph ammonoid palaeobiogeography ................................................................. 103 v Chapter 4 Late Campanian (Late Cretaceous) dinoflagellate cysts from Hornby Island, British Columbia with implications for Nanaimo Group biostratigraphy and palaeoenvironmental reconstructions ........................................................................................................................ 106 4.1 Abstract ............................................................................................................................ 106 4.2 Materials and methods ..................................................................................................... 106 4.3 Morphological abbreviations ........................................................................................... 114 4.4 Systematic Palaeontology ................................................................................................ 114 4.5 Discussion ........................................................................................................................ 168 4.5.1 Age interpretation ..................................................................................................... 168 4.5.2 Dinoflagellate cyst zones .......................................................................................... 171 4.5.3 Palaeoenvironmental and paleolatitudinal reconstructions ....................................... 172 4.6 Acknowledgments ........................................................................................................... 177 4.7 Taxonomic entities ........................................................................................................... 177 Chapter 5 Conclusion ............................................................................................................... 182 5.1 Summary of research ....................................................................................................... 182 References .................................................................................................................................. 183 Appendix I List of heteromorph ammonite specimens ............................................................. 233 Appendix II Heteromorph ammonite specimen measurements ............................................... 254 Appendix III Nostoceras (Nostoceras) species ........................................................................ 266 Appendix IV Glossary of heteromorph ammonite terms .......................................................... 271 Appendix V Palynological counts data ..................................................................................... 274 Appendix VI Palynomorph relative abundances ...................................................................... 277 vi List of Tables Table 2.1. Dichotomous key for identification of species belonging to the genus Solenoceras Conrad, 1860. .................................................................................................................... 51 Table 2.2. Qualitative and quantitative characters applicable to the description of helical whorls belonging to species within the genus Nostoceras
Recommended publications
  • Handbook of Texas Cretaceous Fossils
    University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern­ m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl­ edge and the only security that free­ men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________
    [Show full text]
  • Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America
    THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(2):83–104 (June 30, 2006) Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA AND LOUELLA R. SAUL Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. The Cretaceous record of the nuculid bivalve Acila (Truncacila) Grant & Gale, 1931, is established for the first time in the region extending from the Queen Charlotte Islands, British Columbia, southward to Baja California, Mexico. Its record is represented by three previously named species, three new species, and one possible new species. The previously named species are reviewed and refined. The cumulative geologic range of all these species is Early Cretaceous (late Aptian) to Late Cretaceous (early late Maastrichtian), with the highest diversity (four species) occurring in the latest Campanian to early Maastrichtian. Acila (T.) allisoni, sp. nov., known only from upper Aptian strata of northern Baja California, Mexico, is one of the earliest confirmed records of this subgenus. ‘‘Aptian’’ reports of Trun- cacila in Tunisia, Morocco, and possibly eastern Venzeula need confirmation. Specimens of the study area Acila are most abundant in sandy, shallow-marine deposits that accumulated under warm- water conditions. Possible deeper water occurrences need critical evaluation. INTRODUCTION and Indo-Pacific regions and is a shallow-burrowing de- posit feeder. Like other nuculids, it lacks siphons but has This is the first detailed study of the Cretaceous record an anterior-to-posterior water current (Coan et al., 2000).
    [Show full text]
  • Cozzette Sandstone, Book Cliffs, Colorado, U.S.A
    Journal of Sedimentary Research, 2015, v. 85, 459–488 Research Article DOI: http://dx.doi.org/10.2110/jsr.2015.26 TECTONICALLY CONTROLLED NEARSHORE DEPOSITION: COZZETTE SANDSTONE, BOOK CLIFFS, COLORADO, U.S.A. 1 2 2 ANDREW S. MADOF, NICHOLAS CHRISTIE-BLICK, AND MARK H. ANDERS 1Chevron Energy Technology Company, Houston, Texas 77002-7308, U.S.A. 2Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A. e-mail: [email protected] ABSTRACT: The Book Cliffs of eastern Utah and western Colorado have been pivotal in the development of outcrop-based sequence stratigraphic concepts for nonmarine to shallow marine siliciclastic depositional settings. Prior studies in this area, and more generally in the Cretaceous western interior foreland basin of North America, have concluded that nearshore accumulation is controlled for the most part by the interaction between oscillatory eustatic change and longer-term regional patterns of flexural subsidence. New outcrop and subsurface evidence reported here from the eastern Book Cliffs suggests that three-dimensional tectonic tilting at length scales of up to , 50 km (31 mi) and timescales of less than , 200 kyr also strongly influenced sedimentation. Continental ice sheets are thought to have been small at the time. Documented patterns of accumulation are inconsistent with those expected from interactions of eustasy and regional flexure alone. The upper Campanian Cozzette Sandstone Member of the Mount Garfield Formation consists of twelve lithofacies arranged into six lithofacies assemblages, inferred to have been deposited in shallow marine, marginal marine, and nonmarine depositional environments.
    [Show full text]
  • Vol. 3 No.3 September 1999
    ISSN 1342-8144 Formerly Transactions and Proceedings of the Palaeontological Society of Japan Vol. 3 No.3 September 1999 The Palaeontological Society of Japan Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Jan Bergstrom (Swedish Museum of Natural History, Stockholm, Sweden), Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoru Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D.K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 1999-2000 President: Kei Mori Councillors:
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Late-Cretaceous Fossils on Gabriola Island
    File: 517 Version: 10.1 Fossils from the late-Cretaceous on Gabriola Island Nick Doe Anyone who knows I have made a mistake, or would like more information, please contact me. I have many more pictures of the fossils than are shown here. These are notes on fossils that friends, exposures of the same formation. neighbours, and Jenni Gehlbach and I, have All four formations on Gabriola are marine found on Gabriola Island, BC, Canada. sedimentary rocks belonging to the late- We walk the beach on the south side of the Cretaceous Nanaimo Group. There are no island every day; however, we are not Paleogene or Neogene rocks on the island. paleontologists, nor are we fossil collectors; Whatever rocks there may have been here of so, these notes are not an exhaustive record that age were removed during the m a n y of every fossil that has ever been observed glaciations of the Pleistocene. on the island. From oldest to youngest, the formations are: The fossils on Gabriola fall into two very —Northumberland Formation, mainly different groups. Those from: mudrock with siltstone, mudstone, and —the late Cretaceous; and those from sandstone interlayers. Late Campanian. —the late Pleistocene and early Holocene. The Northumberland Formation north of This note discusses only the former. Ice-age Gabriola is sometimes still called the fossils on Gabriola —the bones of woolly Lambert Formation, a nomenclature dating mammoths and whales, and marine back to the days when there was some doubt shellfish—are discussed elsewhere. as to whether the Nanaimo and Comox Basins were the same; Background geology —Geoffrey Formation, gritty sandstone and A non-technical introduction to Gabriola conglomerate.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]
  • Deep-Water Stratigraphic Evolution of the Nanaimo Group, Hornby and Denman Islands, British Columbia
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2016 Deep-Water Stratigraphic Evolution of The Nanaimo Group, Hornby and Denman Islands, British Columbia Bain, Heather Bain, H. (2016). Deep-Water Stratigraphic Evolution of The Nanaimo Group, Hornby and Denman Islands, British Columbia (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25535 http://hdl.handle.net/11023/3342 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Deep-Water Stratigraphic Evolution of The Nanaimo Group, Hornby and Denman Islands, British Columbia by Heather Alexandra Bain A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA SEPTEMBER, 2016 © Heather Alexandra Bain 2016 ABSTRACT Deep-water slope strata of the Late Cretaceous Nanaimo Group at Hornby and Denman islands, British Columbia, Canada record evidence for a breadth of submarine channel processes. Detailed observations at the scale of facies and stratigraphic architecture provide criteria for recognition and interpretation of long-lived slope channel systems, emphasizing a disparate relationship between stratigraphic and geomorphic surfaces. The composite submarine channel system deposit documented is 19.5 km wide and 1500 m thick, which formed and filled over ~15 Ma.
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • Revision of Hamites Wernickei Wollemann, 1902 (Cephalopoda, Ancyloceratina) from the Classic Lüneburg Section (Upper Cretaceous, Northern Germany)
    Acta Geologica Polonica, Vol. 66 (2016), No. 4, pp. 627–644 DOI: 10.1515/agp-2016-0033 Revision of Hamites wernickei Wollemann, 1902 (Cephalopoda, Ancyloceratina) from the classic Lüneburg section (Upper Cretaceous, northern Germany) BIRGIT NIEBUHR1 and JOHN W.M. JAGT2 1 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie (MMG), Sektion Paläozoologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany. E-mail: [email protected] 2 Natuurhistorisch Museum Maastricht, de Bosquetplein 6–7, 6211 KJ Maastricht, the Netherlands. E-mail: [email protected] ABSTRACT: Niebuhr, B. and Jagt, J.W.M. 2016. Revision of Hamites wernickei Wollemann, 1902 (Cephalopoda, Ancylocera- tina) from the classic Lüneburg section (Upper Cretaceous, northern Germany). Acta Geologica Polonica, 66 (4), 627–644. Warszawa. A re-examination of heteromorph ammonites of late Campanian age from the Zeltberg section at Lüneburg has demonstrated that the type series of Hamites wernickei in fact comprises two different species that are here assigned to the nostoceratid Nostoceras Hyatt, 1894 and the polyptychoceratid Oxybeloceras Hyatt, 1900. Nostoceras (Didy- moceras) wernickei (Wollemann, 1902) comb. nov., to which three of the four specimens that were described and illustrated by Wollemann (1902) belong, has irregularities of ribbing and tuberculation and changes its direction of growth at the transition from the helicoidal whorls to the hook, which is a typical feature of members of the sub- family Nostoceratinae. Torsion of body chambers is not developed in hairpin-shaped ammonite species, which means that the species name wernickei is no longer available for such polyptychoceratine diplomoceratids. Consequently, the fourth specimen figured and assigned to Hamites wernickei by Wollemann (1902) is here transferred to Oxy- beloceras and considered conspecific to material from the Hannover area (Lehrte West Syncline) as O.
    [Show full text]
  • Trans-Tethyan Correlation
    Acta Geologica Polonica, Vol. 67 (2017), No. 1, pp. 75–108 DOI: 10.1515/agp-2017-0005 Trans-Tethyan correlation of the Lower–Middle Cenomanian boundary interval; southern England (Southerham, near Lewes, Sussex) and Douar el Khiana, northeastern Algeria WILLIAM J. KENNEDY1 and ANDREW S. GALE2 1Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom. E-mail: [email protected] 2Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom. E-mail: [email protected] ABSTRACT: Kennedy, W.J. and Gale, A.S. 2017. Trans-Tethyan correlation of the Lower–Middle Cenomanian boundary interval; southern England (Southerham, near Lewes, Sussex) and Douar el Khiana, northeastern Algeria. Acta Geologica Polonica, 67 (1), 75–108. Warszawa. A 480 m section of marls with widely separated levels of nodular limestone in the Fahdene Formation north of Bou Khadra in Tebessa Province, northeastern Algeria, spans the Lower/Middle Cenomanian boundary. A total of 30 ammonite species are present, of which two: Forbesiceras reversum and Calycoceras (Newboldiceras) algeriense are new. The fauna allows recognition of the Northwest European upper Lower Cenomanian Mantelliceras dixoni Zone, the succeeding lower Middle Cenomanian Cunningtoniceras inerme Zone, the Acanthoceras rhotomagense Zone and its subzones of Turrilites costatus and Turrilites acutus. The sequence of index species occurs in the same order in both north-eastern Tunisia and the Southerham Grey Pit in Sussex (and indeed elsewhere in North- west Europe), indicating these to be robust assemblage zones and subzones that can be recognised on both the north and south sides of the Tethys.
    [Show full text]