Differential Geometry of Three Dimensions

Total Page:16

File Type:pdf, Size:1020Kb

Differential Geometry of Three Dimensions DIFFERENTIAL GEOMETRY OF THREE DIMENSIONS DIFFERENTIAL GEOMETRY OF THREE DIMENSIONS By G. E. "WEATHERBURN, M.A., D.Sc., LL.D. EMERITUS PROFESSOR 07 MATHEMATICS UNIVERSITY OF WESTERN AUSTRALIA. VOLUME I CAMBRIDGE AT THE UNIVERSITY PRESS 1955 V, PUBLISHED BY THB SYNDICS OF THE CAMBRIDGE UNIVERSITY PRESS London Office Bentiey House, N.W. I American Branch New York Agents for Canada,, India, and Pakistan' Maximilian First Edition 1927 Reprinted 1931 1939 1947 1955 First printed in Great Britain at The University Press, Cambridge Eeprmted by Spottwwoode, Sattantyne <b Co., Ltd , Colchester PEEFAOE TO THE FOURTH IMPRESSION present impression is substantially a reprint of the original THEwork. Since the book was first published a few errors have been corrected, and one or two paragraphs rewritten. Among the friends and correspondents who kindly drew my attention to desirable changes were Mr A S. Ramsey of Magdaler-e College, Cambridge, who suggested the revision of 5, and the late R J. A Barnard of Melbourne University, whose mfluence was partly responsible for my initial interest in the subject. The demand for the book, since its first appearance twenty years ago, has justified the writer's belief in the need for such a vectonal treatment. By the use of vector methods the presentation of the subject is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically. At a later stage some of these students will proceed to the study of multidimensional differential geometry and the tensor calculus. It is highly desirable that the study of the geometry of Euclidean 3-space should thus come first, and this can be undertaken with most students at an earlier stage by vector methods than by the Ricci calculus. A student's appreciation of the more general case will undoubtedly be enhanced by an earlier acquaintance with differential geometry of three dimensions The more elementary parts of the subject are discussed in Chapters I-XI. The remainder of the book is devoted to differ- ential invariants for a surface and their applications. It will be apparent to the reader that these constitute a powerful weapon for analysing the geometrical properties of surfaces, and of systems of curves on a surface. The unit vector, n, normal to a surface at the current point, plays a prominent part m this discussion The first curvature of the surface :s the negative of the divergence of n; while the second curvature is expressible simply in terms of the divergence and the Laplacian of n with respect to the surface. CARNEGIE INSTITUTE TECHNni nr>v , ,, VI PEEFACB Extensive applications of these invariants to the geometry of surfaces are given in the second volume of this book. Applications to physical problems connected with curved surfaces have been given elsewhere* by the author. * 1. On differential invariants in geometry of surfaces, with some applications to mathematical physios Quarterly Journal of Mathematics, Yol 60, pp. 280-69 (Cambridge, 1925). 2 On small deformation of surfaces and of thin elastic shells. Ibid., Yol. 50, pp. 272-96 (1925). 8. On the motion of an extensible membrane in a given curved surface. Phil Yol 578-80 Mag , 23, pp (1037). 4 On transverse vibrations of cur\ed membranes. Phil Mag , Yol 28, pp 632- 84 (1989). C E. W. UNIVERSITY ov W A , PERTH, AUSTRALIA, 22 January, 1947. CONTENTS PAGE PEEFAOE v INTRODUCTION VECTOR NOTATION AND FORMULAE Sums, products, derivatives ... 1 CHAPTER I CURVES WITH TORSION ABT. 1. Tangent .10 2. Principal normal. Curvature 11 3. Binomial Torsion, Serret-Frenet formulae 13 4 Loous of centre of curvature . ... 17 EXAMPLES I . 18 5. Spherical curvature . 21 6. Locus of centre of spherical curvature . ... 23 7. Theorem Curve determined by its intrinsic equations 25 8. Helices ... 26 9 Spherical indioatrix of tangent, etc. .... 28 10. Involutes ... 30 11. Evolutes ... 32 12. Bertrand curves 34 EXAMPLES II 36 CHAPTER II ENVELOPES. DEVELOPABLE SURFACES 13. Surfaces 38 38 14. Tangent plane. Normal .... ... ONE-PARAMETER FAMILY OF SURFACES 40 16. Envelope Characteristics 42 16. Edge of regression 43 17. Developable surfaces DEVELOPABLES ASSOCIATED WITH A CURVE 45 18 Osculating developable 46 19. Polar developable 46 20. Rectifying developable ... TWO-PARAMETER FAMILY OF SURFACES 48 21. Envelope Characteristic points . .... EXAMPLES III B0 VU1 CONTENTS CHAPTER III CURVILINEAR COORDINATES ON A SURFACE FUNDAMENTAL MAGNITUDES ABT. 22. Curvilinear coordinates 51 23. First order magnitudes ....>... .53 24. Directions on a surface ... 55 The normal 25. ... 57 26 Second order magnitudes . 68 27 Derivatives of n 60 28. Curvature of normal section Mourner's theorem ... 61 EXAMPLES IV . ... 63 CHAPTER IV CURVES ON A SURFACE LINES OF CURVATURE 29. Principal directions and curvatures 66 30 First and second curvatures . 68 31. Eider's theorem . 72 32 Dupin's indicatiix . 74 33 The surface z=f (x, y} . 75 34. Surface of revolution . 77 EXAMPLES V ... 78 CONJUGATE SYSTEMS 35 Conjugate directions . 80 36 Conjugate systems ... 81 ASYMPTOTIC LINES 37. Asymptotic lines ... ... 83 38 Curvature and torsion . .... .84 ISOMETRIC LINES 39 Isometric parameters . .... 85 NOLL LINES 40 Null lines, or minimal curves . 87 EXAMPLES VI 88 CHAPTER V .THE EQUATIONS OF GAUSS AND OF CODAZZI 41. Gauss's formulae for Tin Tia, Tas 90 42. Gauss characteristic equation 93 43 Mainardi-Codazzi relations . ... 94 44. Alternative expression. Bonnet's theorem 95 45. Derivatives of the angle a 96 EXAMPLES VII . ... 96 CONTENTS iz CHAPTER VI GEODE&ICS AND GEODESIC PARALLELS GEODESIOS ART. PAaH 46 Geodesic property 99 47. of Equations geodesies . 100 ' 48. Surface of revolution 102 49. Torsion of a . geodesic . .... 103 CURVES IN RELATION TO GEODESIOS BO. Bonnet's theorem 105 51. Joaohimsthal's theorems . f 106 B2.< Vector curvature 108 53. Geodesic curvature, KO . 108 54. Other formulae for KO 110 55.' Examples. Bonnet's formula 112 GEODESIC PARALLELS 06. Geodesic parallels. Geodesic distance 113 57. Geodesic polar coordinates . .... 115 58. Total second curvature of a geodesic triangle . .116 59. Theorem on geodesic parallels 118 and . 60. Geodesic ellipses hyperbolas .... 119 81. Liouville surfaces 120 EXAMPLES VIII 121 CHAPTER VII QUADRIO SURFACES. RULED SURFACES QUADRIO SURFACES 62 Central quadrics. Curvilinear coordinates 124 63. Fundamental magnitudes 125 64. Geodesies Liouvillo's equation 127 65. Other properties. Joachimsthal's theorem 129 66. Paraboloids 131 EXAMPLES IX 133 RULED SURFACES 67. Skew surface or scroll ... ...... 135 68. Consecutive generators. Parameter of distribution . 136 69. Line of stnotion Central point .... 138 70. Fundamental magnitudes 139 71. Tangent plane. Central plane ... l40 72. Bonnet's theorem 143 73. Asymptotic lines 144 EXAMPLES X 144 X CONTENTS CHAPTER VIII EVOLTTTE OR SURFACE OF CENTRES. PARALLEL SURFACES SURFACE ov CENTRES AST. *AO 1*8 74. Centro-surface. General properties 1 B 1 76 Fundamental magnitudes 1&* 76 "Wemgarten surfaces 77. Lines of curvature 1&6 156 78 Degenerate evolute PARALLEL SURFACES 158 79 Parallel surfaces . ... ... 80 Curvature .159 81. Involutes of a surface 160 INVERSE SURFACES 162 82 Inverse surface . 83. Curvature 164 EXAMPLES XI 165 CHAPTER IX CONFORMAL AND SPHERICAL REPRESENTATIONS. MINIMAL SURFACES CONFORMAL REPRESENTATION 84 Conforms! representation Magnification 167 168 85 Surface of revolution represented on a plane . 8G Surface of a sphere represented on a plane. Maps . .170 SPHERICAL REPRESENTATION 87. Spherical image. General properties . 172 88. Other properties 173 89 Second order magnitudes 175 00. Tangential coordinates 175 MINIMAL SURFACES 91 Minimal surface. General properties 176 92 Spherical image . ....... 178 93. Differential equation in Cartesian coordinates . .179 EXAMPLES XII 181 CHAPTERS CONGRUENCES OF LINES RECTILINEAR CONGRUENCES 94. of lines. of Congruence straight Surfaces the congruence . .183 95 Limits. Principal planes 184 96 Hamilton's formula 187 97. Foci. Focal planes 189 CONTENTS Si ABT. PA0K 98. Parameter of distribution for a surface 192 99 Mean ruled surfaces 103 100. Normal congruence of straight luies 196 101 Theorem of Malus and Dupin 197 102. Isotropio congruence 198 CURVILINEAR CONGRUENCES 103 Congruence of curves. Foci Focal surface 199 104 Surfaces of the congruence 200 105 Normal congruence of curves . 202 EXAMPLES XIII ... 203 CHAPTER XI TRIPLY ORTHOGONAL SYSTEMS OF SURFACES 106. Triply orthogonal systems 207 107. Normals Curvilinear coordinates 207 108 Fundamental magnitudes .... ... 209 109. Dupin's theorem. Curvature ... 211 110 Second derivatives of r Derivatives of the unit normals . 213 111. Lamp's relations . 214 112. Theorems of Darboux 216 EXAMPLES XIV 218 CHAPTER XII DIFFERENTIAL INVARIANTS FOR A SURFACE 113. Point-functions for a surface ....... 220 114. Gradient of a scalar function 220 116 Some applications 223 116. Divergence of a vector . .... 225 117. Isometric parameters and curves 227 118 Curl of a vector 228 119 Vector functions (cont) . ... .... 230 120 Formulae of expansion 232 121. Geodesic curvature 233 EXAMPLES XV 236 TRANSFORMATION OP INTEGRALS 122. Divergence theorem 238 123. Other theorems 240 124 Circulation theorem 243 EXAMPLES XVI 244 Xli CONTENTS CONCLUSION FURTHER RECENT ADVANCES ABT. 125. of curves on a Orthogonal systems surface . 247 126. Family of curves on a surface 248 127 Small deformation of a surface 250 128. curvilinear coordinates in Obkque space . 251 129. Congruences of curves .... .... 252 EXAMVLES XVII . .254 130. Family of curves (continued) 258
Recommended publications
  • Toponogov.V.A.Differential.Geometry
    Victor Andreevich Toponogov with the editorial assistance of Vladimir Y. Rovenski Differential Geometry of Curves and Surfaces A Concise Guide Birkhauser¨ Boston • Basel • Berlin Victor A. Toponogov (deceased) With the editorial assistance of: Department of Analysis and Geometry Vladimir Y. Rovenski Sobolev Institute of Mathematics Department of Mathematics Siberian Branch of the Russian Academy University of Haifa of Sciences Haifa, Israel Novosibirsk-90, 630090 Russia Cover design by Alex Gerasev. AMS Subject Classification: 53-01, 53Axx, 53A04, 53A05, 53A55, 53B20, 53B21, 53C20, 53C21 Library of Congress Control Number: 2005048111 ISBN-10 0-8176-4384-2 eISBN 0-8176-4402-4 ISBN-13 978-0-8176-4384-3 Printed on acid-free paper. c 2006 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re- trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TXQ/EB) 987654321 www.birkhauser.com Contents Preface ....................................................... vii About the Author .............................................
    [Show full text]
  • Geometry of Curves
    Appendix A Geometry of Curves “Arc, amplitude, and curvature sustain a similar relation to each other as time, motion and velocity, or as volume, mass and density.” Carl Friedrich Gauss The rest of this lecture notes is about geometry of curves and surfaces in R2 and R3. It will not be covered during lectures in MATH 4033 and is not essential to the course. However, it is recommended for readers who want to acquire workable knowledge on Differential Geometry. A.1. Curvature and Torsion A.1.1. Regular Curves. A curve in the Euclidean space Rn is regarded as a function r(t) from an interval I to Rn. The interval I can be finite, infinite, open, closed n n or half-open. Denote the coordinates of R by (x1, x2, ... , xn), then a curve r(t) in R can be written in coordinate form as: r(t) = (x1(t), x2(t),..., xn(t)). One easy way to make sense of a curve is to regard it as the trajectory of a particle. At any time t, the functions x1(t), x2(t), ... , xn(t) give the coordinates of the particle in n R . Assuming all xi(t), where 1 ≤ i ≤ n, are at least twice differentiable, then the first derivative r0(t) represents the velocity of the particle, its magnitude jr0(t)j is the speed of the particle, and the second derivative r00(t) represents the acceleration of the particle. As a course on Differential Manifolds/Geometry, we will mostly study those curves which are infinitely differentiable (i.e.
    [Show full text]
  • ON the CURVATURES of a CURVE in RIEMANN SPACE*F
    ON THE CURVATURES OF A CURVE IN RIEMANN SPACE*f BY E,. H. CUTLER Introduction. The curvature and torsion of a curve in ordinary space have three properties which it is the purpose of this paper to attempt to extend to the curvatures of a curve in Riemann space. First, if the curvature vanishes identically the curve is a straight line ; if the torsion vanishes identically the curve lies in a plane. Second, the distances of a point of the curve from the tangent line and the osculating plane at a nearby point are given approxi- mately by formulas involving the curvature and torsion. Third, the curva- ture of a curve at a point is the curvature of its projection on the osculating plane at the point. In extending to Riemann space we take as the Riemannian analogue of the line or plane, a geodesic space generated by geodesies through a point. Such a space possesses the property of the line or plane of being de- termined by the proper number of directions given at a point, but it will not in general have the three properties given above. On the other hand, if we take as the analogue of line or plane only totally geodesic spaces, then, if such osculating "planes" exist, the three properties will hold. Curves with a vanishing curvature. Given a curve C: xi = x'(s), i = l, •••,«, in a Riemann space Vn with fundamental tensor g,-,-(assumed defi- nite). Following BlaschkeJ we write the Frenet formulas for the curve. The « associate vectors are given by ¿x* dx' (1) Éi|' = —> fcl'./T" = &-i|4 ('=1.
    [Show full text]
  • Kähler Manifolds, Ricci Curvature, and Hyperkähler Metrics
    K¨ahlermanifolds, Ricci curvature, and hyperk¨ahler metrics Jeff A. Viaclovsky June 25-29, 2018 Contents 1 Lecture 1 3 1.1 The operators @ and @ ..........................4 1.2 Hermitian and K¨ahlermetrics . .5 2 Lecture 2 7 2.1 Complex tensor notation . .7 2.2 The musical isomorphisms . .8 2.3 Trace . 10 2.4 Determinant . 11 3 Lecture 3 11 3.1 Christoffel symbols of a K¨ahler metric . 11 3.2 Curvature of a Riemannian metric . 12 3.3 Curvature of a K¨ahlermetric . 14 3.4 The Ricci form . 15 4 Lecture 4 17 4.1 Line bundles and divisors . 17 4.2 Hermitian metrics on line bundles . 18 5 Lecture 5 21 5.1 Positivity of a line bundle . 21 5.2 The Laplacian on a K¨ahlermanifold . 22 5.3 Vanishing theorems . 25 6 Lecture 6 25 6.1 K¨ahlerclass and @@-Lemma . 25 6.2 Yau's Theorem . 27 6.3 The @ operator on holomorphic vector bundles . 29 1 7 Lecture 7 30 7.1 Holomorphic vector fields . 30 7.2 Serre duality . 32 8 Lecture 8 34 8.1 Kodaira vanishing theorem . 34 8.2 Complex projective space . 36 8.3 Line bundles on complex projective space . 37 8.4 Adjunction formula . 38 8.5 del Pezzo surfaces . 38 9 Lecture 9 40 9.1 Hirzebruch Signature Theorem . 40 9.2 Representations of U(2) . 42 9.3 Examples . 44 2 1 Lecture 1 We will assume a basic familiarity with complex manifolds, and only do a brief review today. Let M be a manifold of real dimension 2n, and an endomorphism J : TM ! TM satisfying J 2 = −Id.
    [Show full text]
  • Quantum Dynamical Manifolds - 3A
    Quantum Dynamical Manifolds - 3a. Cold Dark Matter and Clifford’s Geometrodynamics Conjecture D.F. Scofield ApplSci, Inc. 128 Country Flower Rd. Newark, DE, 19711 scofield.applsci.com (June 11, 2001) The purpose of this paper is to explore the concepts of gravitation, inertial mass and spacetime from the perspective of the geometrodynamics of “mass-spacetime” manifolds (MST). We show how to determine the curvature and torsion 2-forms of a MST from the quantum dynamics of its constituents. We begin by reformulating and proving a 1876 conjecture of W.K. Clifford concerning the nature of 4D MST and gravitation, independent of the standard formulations of general relativity theory (GRT). The proof depends only on certain derived identities involving the Riemann curvature 2-form in a 4D MST having torsion. This leads to a new metric-free vector-tensor fundamental law of dynamical gravitation, linear in pairs of field quantities which establishes a homeomorphism between the new theory of gravitation and electromagnetism based on the mean curvature potential. Its generalization leads to Yang-Mills equations. We then show the structure of the Riemann curvature of a 4D MST can be naturally interpreted in terms of mass densities and currents. By using the trace curvature invariant, we find a parity noninvariance is possible using a de Sitter imbedding of the Poincar´egroup. The new theory, however, is equivalent to the Newtonian one in the static, large scale limit. The theory is compared to GRT and shown to be compatible outside a gravitating mass in the absence of torsion. We apply these results on the quantum scale to determine the gravitational field of leptons.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • A Theorem on Holonomy
    A THEOREM ON HOLONOMY BY W. AMBROSE AND I. M. SINGER Introduction. The object of this paper is to prove Theorem 2 of §2, which shows, for any connexion, how the curvature form generates the holonomy group. We believe this is an extension of a theorem stated without proof by E. Cartan [2, p. 4]. This theorem was proved after we had been informed of an unpublished related theorem of Chevalley and Koszul. We are indebted to S. S. Chern for many discussions of matters considered here. In §1 we give an exposition of some needed facts about connexions; this exposition is derived largely from an exposition of Chern [5 ] and partly from expositions of H. Cartan [3] and Ehresmann [7]. We believe this exposition does however contain one new element, namely Lemma 1 of §1 and its use in passing from H. Cartan's definition of a connexion (the definition given in §1) to E. Cartan's structural equation. 1. Basic concepts. We begin with some notions and terminology to be used throughout this paper. The term "differentiable" will always mean what is usually called "of class C00." We follow Chevalley [6] in general for the definition of tangent vector, differential, etc. but with the obvious changes needed for the differentiable (rather than analytic) case. However if <p is a differentiable mapping we use <j>again instead of d<f>and 8<(>for the induced mappings of tangent vectors and differentials. If AT is a manifold, by which we shall always mean a differentiable manifold but which is not assumed connected, and mGM, we denote the tangent space to M at m by Mm.
    [Show full text]
  • Appendix Computer Formulas ▼
    ▲ Appendix Computer Formulas ▼ The computer commands most useful in this book are given in both the Mathematica and Maple systems. More specialized commands appear in the answers to several computer exercises. For each system, we assume a famil- iarity with how to access the system and type into it. In recent versions of Mathematica, the core commands have generally remained the same. By contrast, Maple has made several fundamental changes; however most older versions are still recognized. For both systems, users should be prepared to adjust for minor changes. Mathematica 1. Fundamentals Basic features of Mathematica are as follows: (a) There are no prompts or termination symbols—except that a final semicolon suppresses display of the output. Input (new or old) is acti- vated by the command Shift-return (or Shift-enter), and the input and resulting output are numbered. (b) Parentheses (. .) for algebraic grouping, brackets [. .] for arguments of functions, and braces {. .} for lists. (c) Built-in commands typically spelled in full—with initials capitalized— and then compressed into a single word. Thus it is preferable for user- defined commands to avoid initial capitals. (d) Multiplication indicated by either * or a blank space; exponents indi- cated by a caret, e.g., x^2. For an integer n only, nX = n*X,where X is not an integer. 451 452 Appendix: Computer Formulas (e) Single equal sign for assignments, e.g., x = 2; colon-equal (:=) for deferred assignments (evaluated only when needed); double equal signs for mathematical equations, e.g., x + y == 1. (f) Previous outputs are called up by either names assigned by the user or %n for the nth output.
    [Show full text]
  • Lecture Note on Elementary Differential Geometry
    Lecture Note on Elementary Differential Geometry Ling-Wei Luo* Institute of Physics, Academia Sinica July 20, 2019 Abstract This is a note based on a course of elementary differential geometry as I gave the lectures in the NCTU-Yau Journal Club: Interplay of Physics and Geometry at Department of Electrophysics in National Chiao Tung University (NCTU) in Spring semester 2017. The contents of remarks, supplements and examples are highlighted in the red, green and blue frame boxes respectively. The supplements can be omitted at first reading. The basic knowledge of the differential forms can be found in the lecture notes given by Dr. Sheng-Hong Lai (NCTU) and Prof. Jen-Chi Lee (NCTU) on the website. The website address of Interplay of Physics and Geometry is http: //web.it.nctu.edu.tw/~string/journalclub.htm or http://web.it.nctu. edu.tw/~string/ipg/. Contents 1 Curve on E2 ......................................... 1 2 Curve in E3 .......................................... 6 3 Surface theory in E3 ..................................... 9 4 Cartan’s moving frame and exterior differentiation methods .............. 31 1 Curve on E2 We define n-dimensional Euclidean space En as a n-dimensional real space Rn equipped a dot product defined n-dimensional vector space. Tangent vector In 2-dimensional Euclidean space, an( E2 plane,) we parametrize a curve p(t) = x(t); y(t) by one parameter t with re- spect to a reference point o with a fixed Cartesian coordinate frame. The( velocity) vector at point p is given by p_ (t) = x_(t); y_(t) with the norm Figure 1: A curve. p p jp_ (t)j = p_ · p_ = x_ 2 +y _2 ; (1) *Electronic address: [email protected] 1 where x_ := dx/dt.
    [Show full text]
  • Stereographic Projection Patch Kessler, December 12, 2018
    Stereographic Projection Patch Kessler, December 12, 2018 Stereographic projection is a way to flatten out the surface of a ball, such as the celestial sphere, which surrounds the earth and contains all the stars in the sky. The celestial sphere gives order out of chaos. It gives a way to predict star locations at different times, as well as the time of night from the stars. Here is a physical model of the celestial sphere from around 1480. 1480-1481, http://www.artfund.org/artwork/3600/spherical-astrolabe 1 According to legend, Ptolemy (AD 90 - AD 168) thought of stereographic projection after a donkey stepped on his model of the celestial sphere, making it flat. Applying stereographic projection to the celestial sphere results in a planar device called an astrolabe. 16th century islamic astrolabe The tips on the perforated upper plate correspond to stars, while points on the lower plate correspond to viewing directions. For instance, the point on the lower plate that the circles are shrinking towards corresponds to the viewing direction directly overhead (i.e., looking straight up). The stereographic projection of a point X on a sphere S is obtained by drawing a line from the north pole of the sphere through X, and continuing on to the plane G that the sphere is resting on. The projection of X is the point f(X) where this line hits the plane. E X S G f(X) 2 One of the most surprising things about stereographic projection is that circles get mapped to circles. P circle on the sphere E S circle in the plane G Circles that pass through the north pole get mapped to lines, however if you think of a line as an infinite radius circle, then you can say that circles get mapped to circles in all cases.
    [Show full text]
  • Geometric Properties of Central Catadioptric Line Images
    Geometric Properties of Central Catadioptric Line Images Jo˜aoP. Barreto and Helder Araujo Institute of Systems and Robotics Dept. of Electrical and Computer Engineering University of Coimbra Coimbra, Portugal {jpbar, helder}@isr.uc.pt http://www.isr.uc.pt/˜jpbar Abstract. It is highly desirable that an imaging system has a single effective viewpoint. Central catadioptric systems are imaging systems that use mirrors to enhance the field of view while keeping a unique center of projection. A general model for central catadioptric image formation has already been established. The present paper exploits this model to study the catadioptric projection of lines. The equations and geometric properties of general catadioptric line imaging are derived. We show that it is possible to determine the position of both the effec- tive viewpoint and the absolute conic in the catadioptric image plane from the images of three lines. It is also proved that it is possible to identify the type of catadioptric system and the position of the line at infinity without further infor- mation. A methodology for central catadioptric system calibration is proposed. Reconstruction aspects are discussed. Experimental results are presented. All the results presented are original and completely new. 1 Introduction Many applications in computer vision, such as surveillance and model acquisition for virtual reality, require that a large field of view is imaged. Visual control of motion can also benefit from enhanced fields of view [1,2,4]. One effective way to enhance the field of view of a camera is to use mirrors [5,6,7,8,9]. The general approach of combining mirrors with conventional imaging systems is referred to as catadioptric image formation [3].
    [Show full text]
  • Instantons on Cylindrical Manifolds 3
    Instantons on Cylindrical Manifolds Teng Huang Abstract 2 We consider an instanton, A , with L -curvature FA on the cylindrical manifold Z = R M, where M is a closed Riemannian n-manifold, n 4. We assume M × ≥ admits a 3-form P and a 4-form Q satisfy dP = 4Q and d M Q = (n 3) M P . ∗ − ∗ Manifolds with these forms include nearly K¨ahler 6-manifolds and nearly parallel G2-manifolds in dimension 7. Then we can prove that the instanton must be a flat connection. Keywords. instantons, special holonomy manifolds, Yang-Mills connection 1 Introduction Let X be an (n + 1)-dimensional Riemannian manifold, G be a compact Lie group and E be a principal G-bundle on X. Let A denote a connection on E with the curvature FA. The instanton equation on X can be introduced as follows. Assume there is a 4-form Q on X. Then an (n 3)-form Q exists, where is the Hodge operator on X. A connection, arXiv:1501.04525v3 [math.DG] 7 Mar 2016 − ∗ ∗ A , is called an anti-self-dual instanton, when it satisfies the instanton equation F + Q F =0 (1.1) ∗ A ∗ ∧ A When n + 1 > 4, these equations can be defined on the manifold X with a special holonomy group, i.e. the holonomy group G of the Levi-Civita connection on the tangent bundle TX is a subgroup of the group SO(n +1). Each solution of equation(1.1) satisfies the Yang-Mills equation. The instanton equation (1.1) is also well-defined on a manifold X with non-integrable G-structures, but equation (1.1) implies the Yang-Mills equation will have torsion.
    [Show full text]