Cybernetics - a Brave New World!

Total Page:16

File Type:pdf, Size:1020Kb

Cybernetics - a Brave New World! Cybernetics - a brave new world! Course; 1BA6 Assignment 2 Word count; 2010 This paper will address the development of cybernetic-robotic enhancements for living organisms, their pros, cons, impacts and ramifications. To quote a definition of cybernetics; “Cybernetics is the interdisciplinary study of the structure of regulatory systems.” 1 In slightly easier to comprehend terms; cybernetics is a process of looking at and manipulating a system, or series of linked systems to aid it to function in an improved manner. The field itself was defined by the mathematician Norbert Wiener, and further refined by others such as the business and management expert Anthony Stafford Beer and and psychologist Gordon Pask. Due to popular media, and the general interest at the concept of a self- improving AI using a cybernetic method, many people have now come to associate fields of robotics, engineering and software engineering under the umbrella of cybernetics, while it is only a small branch of a wider science and analytical method which deals with these issues. Herein lies the “Kanga Rat”; as it now a part of the mainstream consciousness to recognise cybernetics as directly related to robotics and human augmentations, so one cannot mention without being misunderstood, except to a small group who would understand its original meaning. However, it is the issues regarding mechanically enhanced humans with self-improving technology, and the field of automated AI we will be addressing. To place a human face upon the current issue, this paper turns to Kevin Warwick, a man resolved to 'improve' himself: indeed, in his own words; “I was born human. But it was an accident of fate – a condition merely of time and place. I believe it’s something we have the power to change…”2. As of writing this paper, Professor Warwick has completed two experiments upon himself, in the name of becoming a cyborg; a being which is part human, and part machine. He also heads a detail looking into cybernetic AI, with come success. The project culminated in one robot “teaching” another to “walk”, via the internet. Neither of the robots had been programmed at any point to move around, so the first one “learnt” on its own, and then “taught” the second robot.3 There have also been some rather bizarre results, such as an experiment to test the reactive nature of a robot to a changing environment. One such robot reached the logical conclusion of self- termination, as it could no longer deal with its environment.4 Returning to the topic on hand, Professor Warwick's “Project Cyborg”, as it is known, is the “solution” to Prof. Warwick's dilemma of being born human. In August of 1998, Prof. Warwick was implanted with an RFID chip (radio-frequency identification chip). The purpose of this was to test the limits of what the human body could willingly accept in terms of augmentations, and to see if a meaningful signal was still being broadcast by the implant. It allowed him to control many computerised system, such as doors, heaters and lights, without need to lift a finger.5 The second stage of the project was a lot more complex. Prof. Warwick had an electrode array surgically implanted into his arm, which allowed a highly detailed signal to be sent out, enough to manipulate a robotic arm with high precision. He then proceeded to preform complex operations with a mechanical arm in Columbia University, New York, while remaining in the University of Reading himself.6 He then proceeded to implant a much simpler array into his wife's arm, and, using the internet and a series of electrical impulses, they experienced the first ever purely electronic communication experiment between the nervous systems of two humans. As of writing this paper, there has been no measurable loss of function to Prof. Warwick's hand due to the implant. While the potential for the manipulation of sensory data is phenomenal news for people suffering from damage to their nervous system, there are still ethical qualms around the ideas Prof. Warwick proposes. Some do not follow his rather extreme views, wherein the implantation of an RFID chip into a person shouldn't be viewed as anything more than a simple formality, rather than a basic robbery of all privacy. Prof. Warwick holds a rather poor view of humans as a limited and weak species, and is recorded as stating; “Humanity can change itself but hopefully it will be an individual choice. Those who want to stay human can and those who want to evolve into something much more powerful with greater capabilities can. There is no way I want to stay a mere human.”7a He has also stated; “Genetic changes offer short term, slight modifications. However the step to Cyborgs offers humans a natural, technological upgrade in the technological world we have instigated. Yes I feel it will be the next evolutionary step. Indeed we will need to do it if we are to compete with intelligent machines. ”7b From these two statements, we can gather that Prof. Warwick holds a vision of the future in which he will transcend being “just” human, and wherein intelligent machines are a viable threat, or at least a competitor for dominance. With the learning machines he has helped create and the alterations he has already preformed, these could well be viable scenarios in the near future. The term “Cyborg” was coined in 1960, by one Manfred Clynes, and was referring to the advantages of a self-regulating, human-machine hybrid, operating in areas completely unsuited to a normal humans' ability, such as deep sea or outer space.8 There are two recognised forms of cyborg; firstly, the “fictional” cyborg. Generally, these are the first forms conjured up in the mind when speaking of cybernetics, mechanical-augmentations and cyborgs in general. They are portrayed as a mesh of organic and synthetic materials, and serve to pose the query of the difference between man and machine, when concerned with morality, free will and empathy. Then there are actual cyborgs; these are people, or organisms, which use cybernetic technology to repair or overcome physical limitations present in their bodies, such as a double-leg amputee being able to walk freely again with with a pair of mechanical legs, or someone suffering from a weak heart having it replaced by an artificial one. Due to this, many people already fit the title of “cyborg”, not just Prof. Warwick, though admittedly he takes it to extremes. Within the field of medicine, there are two recognised forms of “cyborg”; the restorative and the enhanced. While the restorative will be any person or animal which has a less than fully operational body using robotic implants to bring them functionality where there was none, while enhanced cyborgs utilise these procedures to gain the maximum output (of benefits or augmentations) for the minimum input (of energy expended). The later form has been adopted by many disciplines, such as the military using enhanced soldiers, or sports, wherein marathon runners having a leg replaced by a certain model of prosthetic have somewhat improved their speeds. It is difficult to bring to the fore the topic of cybernetic mechanical enhancements without also entering the realm of transhumanism. Essentially, it is an “international intellectual and cultural movement supporting the use of science and technology to improve human mental and physical characteristics and capacities.” 9 This movement regards the limitations of being human, such as disease, ageing, disability and involuntary death to be unnecessary and undesirable, and wish to correct or affect these negative occurrences using biotechnologies and other emerging technological advances. Because of this definition, Prof. Warwick certainly falls under the heading of being a transhumanist. Due to its rather radical view on the imperfections of humanity, the movement has attracted both strong support and very vocal opposition, with both sides hold very powerful views, such as professor Francis Fukuyama, who calls transhumanism “some sort of odd cult ”10, and detracts the very concept as “the world's most dangerous idea.” In opposition to this, the science editor for Reason magazine, describes it as a "movement that epitomizes the most daring, courageous, imaginative, and idealistic aspirations of humanity"11. Transhumanist impulses have been present in the human race for a long time. Even in the writing of the Epic of Gilgamesh, there has been a form of yearning for immortality, a desire to break the bonds being “simply” human. It has been speculated by many who support transhumanism that all initial developments and improvements would first appear as unnatural and “blasphemous”, before they could be accepted as a necessary part of furthering humanity, either under genetic manipulation, or under human augmentations. Primarily, the technologies of nanotechnology, biotechnology, information technology and cognitive science are highly valued by the transhumanist movement as highly likely to aid in the ultimate goal of becoming more than human. Despite the promised gains, however, there have been many arguments detracting transhumanism. These generally take two forms; the ethical and the practical criticism. The practical criticism postulates that massive alterations to the human body are simply infeasible on the scale called for by transhumanism, while the ethical criticism states that it is morally infeasible moral principles would be carried over. There are many veins of argument against the movement, such as the Hubris, the Terminator, and the Eugenics war arguments, among others; In the Hubris argument, man cannot exceed being a man through any means other than by spiritual fulfilment (“Changing the genetic identity of man as a human person through the production of an infrahuman being is radically immoral” - The Vatican)12.
Recommended publications
  • Towards Chipification: the Multifunctional Body Art of the Net Generation
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences 1-6-2006 Towards chipification: the multifunctional body art of the Net Generation Katina Michael University of Wollongong, [email protected] M G. Michael University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Michael, Katina and Michael, M G.: Towards chipification: the multifunctional body art of the Net Generation 2006. https://ro.uow.edu.au/infopapers/372 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Towards chipification: the multifunctional body art of the Net Generation Abstract This paper considers the trajectory of the microchip within the context of converging disciplines to predict the realm of likely possibilities in the shortterm future of the technology. After presenting the evolutionary development from first generation to fourth generation wearable computing, a case study on medical breakthroughs using implantable devices is presented. The findings of the paper suggest that before too long, implantable devices will become commonplace for everyday humancentric applications. The paradigm shift is exemplified in the use of microchips, from their original purpose in identifying humans and objects to its ultimate trajectory with multifunctional capabilities buried within the body. Keywords wearable computing, chip implants, emerging technologies, culture, smart clothes, biomedicine, biochips, electrophorus Disciplines Physical Sciences and Mathematics Publication Details This paper was originally published as: Michael, K & Michael, MG, Towards chipification: the multifunctional body art of the Net Generation, Cultural Attitudes Towards Technology and Communication 2006 Conference, Murdoch University, Western Australia, 2006, 622-641.
    [Show full text]
  • Warren Mcculloch and the British Cyberneticians
    Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him.
    [Show full text]
  • An Introduction to Control Systems; K. Warwick
    An Introduction to Control Systems; K. Warwick 362 pages; World Scientific, 1996; K. Warwick; 9810225970, 9789810225971; 1996; An Introduction to Control Systems; This significantly revised edition presents a broad introduction to Control Systems and balances new, modern methods with the more classical. It is an excellent text for use as a first course in Control Systems by undergraduate students in all branches of engineering and applied mathematics. The book contains: A comprehensive coverage of automatic control, integrating digital and computer control techniques and their implementations, the practical issues and problems in Control System design; the three-term PID controller, the most widely used controller in industry today; numerous in-chapter worked examples and end-of-chapter exercises. This second edition also includes an introductory guide to some more recent developments, namely fuzzy logic control and neural networks. file download wici.pdf The Breakthrough in Artificial Intelligence; While horror films and science fiction have repeatedly warned of robots running amok, Kevin Warwick takes the threats out of the realm of fiction and into the real world, truly; Computers; K. Warwick; 307 pages; ISBN:0252072235; 1997; March of the Machines Control Bruce O. Watkins; Introduction to control systems; UOM:39015002007683; Technology & Engineering; 625 pages; 1969 Robot Control; ISBN:0863411282; Jan 1, 1988; K. Warwick, Alan Pugh; Technology & Engineering; 238 pages; Theory and Applications Automatic control; ISBN:0750622989; Davinder K. Anand; 730 pages; Since the second edition of this classic text for students and engineers appeared in 1984, the use of computer-aided design software has become an important adjunct to the; Introduction to Control Systems; Jan 1, 1995 An Introduction to Control Systems pdf download 596 pages; Mar 18, 1993; STANFORD:36105004050907; based on the proceedings of a conference on Robotics, applied mathematics and computational aspects; K.
    [Show full text]
  • I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change
    I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change Prof. Eden Medina Office: Informatics 305 Email: [email protected] Class Times: W 1:00-3:30 Room: Info 001 Class Description Norbert Wiener used the term cybernetics for studies of communication and control in the animal and the machine. Cybernetics brought together ideas from biology, psychology, math, computation, and engineering and looked for underlying commonalities in areas as diverse as neurology, electronics, and the study of social systems. Historical studies of cybernetics often cite the research activity that took place in the United States during 1940s and 1950s as the peak moment of this interdisciplinary field. However, these ideas also took root in other parts of the world, where they intertwined with other national histories and political ideologies. This class will bring an international perspective to the study of cybernetics. Different geographical, political, and cultural contexts shaped the language, content, and application of cybernetic science outside of the United States. Cybernetics also offered new ways for imagining social and political change. The class will study individuals such as Norbert Wiener, Ross Ashby, Stafford Beer, Humberto Maturana, and Viktor Glushkov, among others. Since most histories of cybernetics are set in the United States and Western Europe, special attention will be given to the evolution and application of cybernetic ideas in Latin America. Required Reading Paul Edwards, The Closed
    [Show full text]
  • Human Enhancement Technologies and Our Merger with Machines
    Human Enhancement and Technologies Our Merger with Machines Human • Woodrow Barfield and Blodgett-Ford Sayoko Enhancement Technologies and Our Merger with Machines Edited by Woodrow Barfield and Sayoko Blodgett-Ford Printed Edition of the Special Issue Published in Philosophies www.mdpi.com/journal/philosophies Human Enhancement Technologies and Our Merger with Machines Human Enhancement Technologies and Our Merger with Machines Editors Woodrow Barfield Sayoko Blodgett-Ford MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Woodrow Barfield Sayoko Blodgett-Ford Visiting Professor, University of Turin Boston College Law School Affiliate, Whitaker Institute, NUI, Galway USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Philosophies (ISSN 2409-9287) (available at: https://www.mdpi.com/journal/philosophies/special issues/human enhancement technologies). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0904-4 (Hbk) ISBN 978-3-0365-0905-1 (PDF) Cover image courtesy of N. M. Ford. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Virtual Reality, Neuroscience and the Living Flesh
    Angles New Perspectives on the Anglophone World 2 | 2016 New Approaches to the Body The Brain Without the Body? Virtual Reality, Neuroscience and the Living Flesh Marion Roussel Electronic version URL: http://journals.openedition.org/angles/1872 DOI: 10.4000/angles.1872 ISSN: 2274-2042 Publisher Société des Anglicistes de l'Enseignement Supérieur Electronic reference Marion Roussel, « The Brain Without the Body? Virtual Reality, Neuroscience and the Living Flesh », Angles [Online], 2 | 2016, Online since 01 April 2016, connection on 28 July 2020. URL : http:// journals.openedition.org/angles/1872 ; DOI : https://doi.org/10.4000/angles.1872 This text was automatically generated on 28 July 2020. Angles. New Perspectives on the Anglophone World is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. The Brain Without the Body? Virtual Reality, Neuroscience and the Living Flesh 1 The Brain Without the Body? Virtual Reality, Neuroscience and the Living Flesh Marion Roussel Introduction 1 “The Brain Without the Body” can strike one as a curious title. It reminds us of the concept of the “Body without Organs” developed by French philosophers Gilles Deleuze and Félix Guattari (1980). I am using this expression to refer to a virtual reality environment project named AlloBrain@AlloSphere that was conducted between 2005 and 2009 by architect and artist Marcos Novak. I experienced it myself in March 2014 at the University of California, Santa Barbara. 2 AlloBrain is an immersive environment modelled from Novak’s brain MRIs and then extruded in the form of a three-dimensional volume. Its aim is to plunge inside the architect’s head, in his cerebral space.
    [Show full text]
  • 1 © Stafford Beer December 1992 WORLD in TORMENT a TIME
    ã Stafford Beer December 1992 WORLD IN TORMENT A TIME WHOSE IDEA MUST COME You will remember the beginning of humankind. Our first parents were quick to get themselves into trouble. They were expelled from the garden of Eden. I understand that Adam took Eve's hand, and said: 'My dear, we are living in a time of transition'. Perhaps people have always felt like that. We certainly do today. Have you ever tried to list the components of contemporary change? It is easy enough to cite the marvels of modern science and technology - how the computer, and television, and medical science have changed our lives. If you start with such matters, it becomes a 'profound insight' to observe that there has been a change in the rate of change. But that was obvious twenty to thirty years ago, for I was writing books about it then. Components of Contemporary Change Today, my list is different. At the top is the spectacular advance in human misery. I estimate that more human beings are enduring agony today than ever before; the number could be greater than the sum of sufferers throughout history. I speak of starvation and epidemic; war and terrorism; deprivation, exploitation, and physical torture. I repeat the word agony; I am not talking about 'hard times'. Second on my list is the collapse of the civilisation we have known in our lifetime. We are looking at the rubble that remains of two competing empires. Soviet communism has accepted its own demise; Western capitalism has not accepted it yet. But I am not making a forecast.
    [Show full text]
  • What Is Systems Theory?
    What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann . Contents - 1 Overview - 2 History - 3 Developments in system theories - 3.1 General systems research and systems inquiry - 3.2 Cybernetics - 3.3 Complex adaptive systems - 4 Applications of system theories - 4.1 Living systems theory - 4.2 Organizational theory - 4.3 Software and computing - 4.4 Sociology and Sociocybernetics - 4.5 System dynamics - 4.6 Systems engineering - 4.7 Systems psychology - 5 See also - 6 References - 7 Further reading - 8 External links - 9 Organisations // Overview 1 / 20 What is Systems Theory? Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritj of Capra , organizational theory and management with individuals such as Peter Senge , interdisciplinary study with areas like Human Resource Development from the work of Richard A.
    [Show full text]
  • Viable System Model As a Framework for Understanding
    The Viable System Model as a Framework for Understanding Organizations by Raúl Espejo and Antonia Gill Introducing the Model The Viable System Model (VSM) is not a new idea. Created by Stafford Beer over twenty years ago, it has been used extensively as a conceptual tool for understanding organizations, redesigning them (where appropriate) and supporting the management of change. Despite its successful application within numerous private and public sector organizations, however, the VSM is not yet widely known among the general management population. There are two main reasons for this. Firstly, the ideas behind the model are not intuitively easy to grasp; secondly, they run counter to the great legacy of thinking about organizations dating from the Industrial Revolution - a legacy that is only now starting to be questioned. To deal with the second point in more detail, organizations have been viewed traditionally as hierarchical institutions that operate according to a top-down command structure: strategic plans are formulated at the top and implemented by a cascade of instructions through the tiered ranks. It is now widely acknowledged that this modus operandi is too slow and inflexible to cope with the increasing rate of change and complexity surrounding most organizations. Technology developments have helped to usher in a new concept of a flatter, networked-type organization with a wider distribution of data to reach all those who actually perform the work - in real time. The ground is now fertile for viewing the organization in a new light. However, there is also much confusion about the nature of this new-style organization.
    [Show full text]
  • The Cybernetic Brain
    THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3.
    [Show full text]
  • Second Order Systems: Cybernetic Foundations for the Social Sciences Bernard Scott International Center for Sociocybernetic Studies [email protected]
    Second order systems: cybernetic foundations for the social sciences Bernard Scott International Center for Sociocybernetic Studies [email protected] Abstract This paper presents a theory of second order systems with a view to showing how it may serve as foundations for the social sciences. Currently, with rare exceptions, penetrations of cybernetic and systems theoretic concepts into the social sciences have been sporadic and, arguably, conceptually confused. The aim of the theory is to mitigate this lack and these confusions by providing a coherent conceptual framework that can bring order and transdisciplinary unity. I provide examples of the theory’s relevance for key topics in the disciplines of psychology, sociology and cultural anthropology (consciousness, communication, observation and reflexivity). I also review some examples of existing applications of cybernetics and systems theory in the social sciences and indicate their shortcomings. I show how the conceptual framework can ameliorate them. My critiques and proposals are intended to serve the transdisciplinary and metadisciplinary aims of cybernetics and the systems sciences of bringing order and unity to other disciplines. I believe my proposals are helpful also in understanding the relations between theories and concepts in cybernetics and the systems sciences. I briefly provide some justifications for this view. Topics covered include: the emergence and ontogeny of second order systems, the dynamics of second order systems, the interaction of second order systems and second order systems theory applied recursively to individual social actors, families, organisations, cultures and social systems. Key words systems sciences, social sciences, second order cybernetics, second order systems Bernard Scott is Gordon Pask Professor of Sociocybernetics at the International Center for Sociocybernetics Studies.
    [Show full text]
  • Stafford Beer's Cybernetic Informatics
    The Science of the Unknowable: Stafford Beer’s Cybernetic Informatics I 29 The Science of the Unknowable: Stafford Beer’s Cybernetic Informatics Andrew Pickering I Abstract tive on information science and information systems, This essay explores the history of Stafford Beer’s work in man- intended to bring out the singularity of the cybernetic agement cybernetics, from his early conception and simulation approach. of an adaptive automatic factory and associated experimenta- From the 1950s on Beer was a remorseless critic of tion in biological computing up to his development of the the ways in which computers were being deployed in Viable System Model of complex organizations and its imple- mentation in Chile. The essay also briefly pursues Beer into the industry, essentially to replace existing paper systems. arenas of politics and spirituality. The aim throughout is to show He felt that this did nothing to change existing organi- that all Beer’s projects can be understood as specific instantiations zational forms and that something more imaginative was and workings out of a cybernetic ontology of unknowability and required. His argument was that the postwar world was becoming: a stance that recognizes that the world can always a new kind of world. Specifically the pace of change had surprise us and that we can never dominate it through knowl- increased markedly since the war, and the important edge. The thrust of Beer’s work was thus to construct informa- tion systems that can adapt performatively
    [Show full text]