Identification of a Cis-Regulatory Module for Bundle Sheath-Specific Gene Expression and Transcriptome Analysis of the Chilling Response of the C4 Grass Zea Mays

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Cis-Regulatory Module for Bundle Sheath-Specific Gene Expression and Transcriptome Analysis of the Chilling Response of the C4 Grass Zea Mays Identification of a cis-regulatory module for bundle sheath-specific gene expression and transcriptome analysis of the chilling response of the C4 grass Zea mays Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Sandra Kirschner aus Neuss Düsseldorf, August 2017 aus dem Institut für Entwicklungs- und Molekularbiologie der Pflanzen der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Peter Westhoff Korreferentin: Prof. Dr. Maria von Korff Schmising Tag der mündlichen Prüfung: 09.11.2017 Erklärung Ich versichere an Eides Statt, dass die Dissertation von mir selbstständig und ohne unzulässige fremde Hilfe unter Beachtung der “Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die Dissertation habe ich in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglose Promotionsversuche unternommen. Neuss, 04.08.2017 Sandra Kirschner Contents I Contents I. Introduction ................................................................................................... 1 1. C4 photosynthesis .............................................................................................................. 1 1.1. The dark side of Rubisco.......................................................................................................... 1 1.2. C4 plants have a distinct anatomy and concentrate CO2 around Rubisco to supress photorespiration .................................................................................................................................. 2 1.3. The benefits of the CO2 concentrating mechanism .................................................................. 5 1.4. The convergent evolution of C4 photosynthesis ....................................................................... 9 1.5. A model for the step-by-step evolution of C4 photosynthesis ................................................ 10 2. Cis-regulatory modules for BS- and M-specific expression ........................................ 14 2.1. Implementation of the C4 cycle in C3 plants .......................................................................... 14 2.2. Modules conferring BS- and M-specific gene expression on diverse regulatory levels ........ 15 2.3. More modules for C4 expression patterns are required .......................................................... 19 3. C4 photosynthesis and temperature............................................................................... 20 3.1. C4 crop plants are often susceptible to low temperatures ....................................................... 20 3.2. Chilling susceptibility in relation to photosynthetic enzymes ............................................... 21 3.3. Low temperature tolerance of C4 grasses ............................................................................... 22 3.4. The need for chilling tolerant crops ....................................................................................... 24 II. Scientific Aims ............................................................................................. 25 III.A Summary ................................................................................................... 26 III.B Zusammenfassung .................................................................................... 28 IV. Literature ..................................................................................................... 30 V. Manuscripts ................................................................................................. 39 1. Sandra Kirschner, Helen Woodfield, Katharina Prusko, Maria Koczor, Udo Gowik, Julian M. Hibberd, Peter Westhoff (2017). The SULTR2;2 promoter from Arabidopsis thaliana contains a positive regulator for gene expression in the bundle sheath. In progress. ............................................................................................................................ 40 2. Transcriptome analysis of maize subjected to chilling stress ................................. 73 VI. Addendum .................................................................................................. 123 1. Bundle sheath cells are more susceptible to chilling than mesophyll cells .......... 124 2. ke-1 contains a functional mitochondrial target sequence .................................... 134 VII. Acknowledgements ................................................................................................ 144 Abbreviations II Abbreviations °C Degree Celsius 3-PGA 3-Phosphoglycerate 3’/5’UTR 3’/5’ Untranslated region 5’RACE Rapid amplification of 5' complementary DNA ends A Rate of CO2 uptake A. thaliana Arabidopsis thaliana ABA Abscisic Acid ACR8 ACT domain repeat 8 ARF Auxin response factor Asat Light-saturated rate of CO2 uptake ATP Adenosine triphosphate AuxRE Auxin response element bp Base pairs BS Bundle sheath bZIP Basic leucine zipper C2, C3, C4 Two-, three-, four-carbon molecule CA Carbonic anhydrase CAM Crassulaceaen acid metabolism CaMV35S 35S promoter of the cauliflower mosaic virus CBP Calmodulin-binding protein cDNA Complementary DNA CDS Coding sequence cm Centimetre cM Centimorgan CO2 Carbon dioxide Col-0 Columbia-0 Cyt f Cytochrome f DAT Days after transplanting dH2O Distilled water DNA Desoxyribonucleic acid DNase Desoxyribonuclease DR Distal region of Mem1 Abbreviations III DST element Downstream element DW Dry weight ETIF3SU4 Eukaryotic translation initiation factor 3 subunit 4 F. bidentis/Fb Flaveria bidentis F. pringlei/Fp Flaveria pringlei F. trinervia/Ft Flaveria trinervia FDR False discovery rate G. gynandra/Gg Gynandropsis gynandra GDC Glycine decarboxylase complex GFP Green fluorescent protein GLDPA Glycine decarboxylase PA gene of Flaveria trinervia GO Gene ontology GSH Glutathione GST Glutathione S-transferase GUS β-glucuronidase h Hour(s) H2B Histone 2B H2O2 Hydrogen peroxide – HCO3 Bicarbonate HSF Heat shock factor Hz Hertz kb Kilo base pairs kcat Catalytic turnover rate kDa Kilodalton ke-1 Kühlempfindlich-1 Km Michaelis constant l Litre LSU Large subunit of Rubisco LT50 50 % rhizome mortality M Mesophyll M x g Miscanthus x giganteus MAP Mitogen activated protein Mb Mega base pairs MDH Malate dehydrogenase Abbreviations IV ME Malic enzyme Mem1/2 Mesophyll expression module 1/2 MeSA Methyl salicylate mg Milligram min Minute(s) MJ Megajoule ml Millilitre mRNA Messenger ribonucleic acid Mt Megatonne MU 4-methylumbelliferone MUG 4-methylumbelliferone β-D-glucuronide my Million years mya Million years ago N. benthamiana Nicotiana benthamiana NAD Nicotinamide adenine dinucleotide NAD-ME Nicotinamide adenine dinucleotide-malic enzyme NADP Nicotinamide adenine dinucleotide phosphate NADP-MDH Nicotinamide adenine dinucleotide phosphate-malate dehydrogenase NADP-ME Nicotinamide adenine dinucleotide phosphate-malic enzyme NADPH Nicotinamide adenine dinucleotide phosphate, reduced form NH3 Ammonia NIL Near isogenic line nm Nanometre nM Nanomolar NUE Nitrogen use efficiency O2 Molecular oxygen OAA Oxalacetate PCA Principal component analysis pCO2 Carbon dioxide partial pressure PCR Polymerase chain reaction PEP Phosphoenolpyruvate PEP-CK Phosphoenolpyruvate carboxykinase PEPC Phosphoenolpyruvate carboxylase PFD Photon flux density Abbreviations V PG Phosphoglycolate pH Potential of hydrogen PIP Plasma membrane intrinsic protein PNUE Photosynthetic nitrogen use efficiency ppcA Phosphoenolpyruvate carboxylase gene A of Flaveria PPDK Pyruvate, orthophosphate dikinase ppm Parts per million PPFD Photosynthetic photon flux density PR Proximal region of Mem1 PSII Photosystem II qRT-PCR Quantitative real-time polymerase chain reaction QTL Quantitative trait locus R2 Coefficient of determination RNA Ribonucleic acid RNase Ribonuclease ROS Reactive oxygen species RPKM Reads per million mapped reads and kb transcript length Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase RuBP Ribulose-1,5-bisphosphate RUE Radiation use efficiency s Second(s) S. pectinata Spartina pectinata SAUR SMALL AUXIN-UP RNA SDS-PAGE Sodium dodecyl sulfate polyacrylamid gel electrophoresis SULTR2;2 Sulfate transporter gene 2;2 TCA Tricarboxylic acid TEL50 50 % electrolyte leakage THI Thiamine thiazole synthase TSS Transcription start site Vmax Substrate saturated enzyme activity WUE Water use efficiency YFP Yellow fluorescent protein Z. mays/Zm Zea mays θ Light response curve Abbreviations VI µg Microgram µl Microliter Φ Maximum quantum efficiency ΦCO2 Efficiency of CO2 assimilation Nucleobases of the DNA A Adenine C Cytosine G Guanine T Thymine Amino acids A Alanine M Methionine C Cysteine N Asparagine D Aspartic acid P Proline E Glutamic acid Q Glutamine F Phenylalanine R Arginine G Glycine S Serine H Histidine T Threonine I Isoleucine V Valine K Lysine W Tryptophan L Leucine Y Tyrosine Introduction 1 I. Introduction 1. C4 photosynthesis 1.1. The dark side of Rubisco Photosynthesis is an elementary process performed by plants, algae and some bacteria. Atmospheric and inorganic CO2 as well as water are transformed in dependence of light energy into organic carbohydrates and O2. Three photosynthetic mechanisms are known: C3, C4 and crassulacean acid metabolism (CAM) that can be differentiated by the location and time of CO2 fixation. The majority
Recommended publications
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • CEPLAS Jahresbericht 2014 V12.Indd
    CEPLAS ANNUAL REPORT 2014 CEPLAS ANNUAL REPORT 2014 Index 1. General presentation Summary 2 Our vision 2 Second year achievements 3 Major goals for 2015 3 2. Organisation Organisational structure 6 3. Research programme 3.1 Research Area A 10 Summary 10 A1 Genotypic and phenotypic analysis of interspecific hybrids between A. montbretiana and A. alpina 12 A2 Comparative transcriptome profiling of meristem states in annual and perennial Arabis and Arabidopsis species and hybrids 12 A3 Comparison of annual-perennial species pairs across the Brassicaceae 13 A4 Genotypic and phenotypic analysis of tiller development in cultivated (Hordeum vulgare) and wild barley species (H. v. spp. spontaneum, H. bulbosum) 14 A5 Transcriptome data analysis and optimal experimental design 14 A6 Analysis of the roles of PERPETUAL FLOWERING 1 direct target genes in perennial flowering and their divergence in sister annual species 15 A7 Competence for axillary meristem formation: analysis of the lateral suppressor pathway in Arabidopsis 15 A8 Light control of plant growth and development in seasonal and perpetual Arabis alpina 16 A9 Genetic dissection of natural variation in tiller development in cultivated and wild barley 16 A10 Analysis of an evolutionary conserved module regulating root system development in monocot and dicot species 17 A11 The control of adventitious root formation in the perennial Arabis alpina 17 A12 Nutrient recycling in the perennial plant Arabis alpina 17 3.2 Research Area B 18 Summary 18 B1 Mesophyll and bundle-sheath-specific transcriptomes of C3 /C4 species pairs 20 B2 Circadian control of transcriptomes and proteomes of C3 /C4 species pairs 20 B3 Experimental evolution towards C4 21 B4 Genetic variation for leaf anatomy in Arabidopsis 21 B5 Genetic control of leaf anatomy in C3 /C4 Flaveria and Arabidopsis 22 B6 Identification of C4 genetic dominance by a comparative transcriptome analysis of C3 and C4 Flaveria spp.
    [Show full text]
  • Kinetic Modifications of C4 PEPC Are Qualitatively Convergent, but Larger in Panicum Than in Flaveria
    This is a repository copy of Kinetic modifications of C4 PEPC are qualitatively convergent, but larger in Panicum than in Flaveria. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/163389/ Version: Published Version Article: Moody, N.R., Christin, P.-A. and Reid, J.D. orcid.org/0000-0003-4921-1047 (2020) Kinetic modifications of C4 PEPC are qualitatively convergent, but larger in Panicum than in Flaveria. Frontiers in Plant Science, 11. 1014. ISSN 1664-462X https://doi.org/10.3389/fpls.2020.01014 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ ORIGINAL RESEARCH published: 03 July 2020 doi: 10.3389/fpls.2020.01014 Kinetic Modifications of C4 PEPC Are Qualitatively Convergent, but Larger in Panicum Than in Flaveria Nicholas R. Moody 1, Pascal-Antoine Christin 2 and James D. Reid 1* 1 Department of Chemistry, University of Sheffield, Sheffield, United Kingdom, 2 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom C4 photosynthesis results from a set of anatomical features and biochemical components that act together to concentrate CO2 within the leaf and boost productivity.
    [Show full text]
  • Diplomarbeit Endversion 02.05.11
    DIPLOMARBEIT Titel der Diplomarbeit Gel-Elektrophoretische Auftrennung von Proteinen bei Artemisia pancicii am Bisamberg (NÖ) Verfasserin Yang Fan Qiu angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, am 02. 05. 2011 Studienkennzahl lt. A 444 Studienblatt: Studienrichtung lt. Ökologie Studienblatt: Betreuerin / Betreuer: Univ.-Prof. Dr. Rudolf Maier Univ.-Prof. Dr. Wolfram Weckwerth II Inhalt 1 EINLEITUNG .............................................................................................................1 1.1 Die Pflanze Artemisia pancicii ................................................................................................................ 1 1.1.1 Geschichtlicher Hintergrund ................................................................................................................ 1 1.1.2 Merkmale ............................................................................................................................................. 1 1.1.3 Herkunft............................................................................................................................................... 2 1.1.4 Vorkommen ......................................................................................................................................... 2 1.1.5 Fundort Bisamberg............................................................................................................................... 3 1.1.6 Gefährdung .........................................................................................................................................
    [Show full text]
  • 1 A. Two New Melanagromyza Species on Re-Checking European Specimens Identified As During a Visit to Kenya in February, 1988, I Ob• M
    Taxonomic Appendix Inevitably during the course of this study which in­ 3 paratypes in National Museums of Kenya, Nairo­ volved the revisionary examination of some hun­ bi, further paratypes in author's collection. dreds of species, new species, new synonyms and Remarks. This is the largest Melanagromyza known new combinations have been discovered. In addi­ in Africa, with M. seneciocaulis Spencer (1960a), tion, lectotypes have been designated, an incorrect a stem-feeder in S. ruderalis in South Africa original spelling has been emended and the status of being marginally smaller. M. compositana Spencer species in three genera has been discussed. It seems (1959), which is widespread in the Nairobi area is appropriate to include all this taxonomic informa­ generally similar but also smaller, and more green­ tion here, rather than scattered through the main ish. M. heatoni doubtless also feeds on other high text. altitude Senecio species among the 85 known in East Africa. I have pleasure in dedicating this fine species to 1. New species my friend Tom Heaton, who organised and provid­ ed transport for the safari to the Aberdares. 1 a. Two new Melanagromyza species On re-checking European specimens identified as During a visit to Kenya in February, 1988, I ob­ M. dettmeri Hering (Spencer, 1966b) reared from a tained a series of a large Melanagromyza on Senecio number of different hosts, particularly those from moorei in the Aberdares National Park, which Crepis and Hieracium (tribe Lactuceae), I dis­ proved to be undescribed. covered that these and others represent an unde­ scribed species, close to but clearly distinct from Melanagromyza heatoni sp.n.
    [Show full text]
  • AYÇİÇEĞİ (Helianthus Annuus L.) GENOTİPLERİNDE KURAKLIĞA DAYANIKLILIĞIN FİZYOLOJİK, BİYOKİMYASAL VE MOLEKÜLER DÜZEYDE İNCELENMESİ
    AYÇİÇEĞİ (Helianthus annuus L.) GENOTİPLERİNDE KURAKLIĞA DAYANIKLILIĞIN FİZYOLOJİK, BİYOKİMYASAL VE MOLEKÜLER DÜZEYDE İNCELENMESİ INVESTIGATION OF DROUGHT TOLERANCE AT PHYSIOLOGICAL, BIOCHEMICAL AND MOLECULAR LEVELS IN SUNFLOWER (Helianthus annuus L.) GENOTYPES AYŞE SUNA BALKAN NALÇAİYİ PROF. DR. YASEMİN EKMEKÇİ Tez Danışmanı Hacettepe Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin Biyoloji Anabilim Dalı için Öngördüğü DOKTORA TEZİ olarak hazırlanmıştır. 2018 ÖZET AYÇİÇEĞİ (Helianthus annuus L.) GENOTİPLERİNDE KURAKLIĞA DAYANIKLILIĞIN FİZYOLOJİK, BİYOKİMYASAL VE MOLEKÜLER DÜZEYDE İNCELENMESİ Ayşe Suna BALKAN NALÇAİYİ Doktora, Biyoloji Bölümü Tez Danışmanı: Prof. Dr. Yasemin EKMEKÇİ Ocak 2018, 217 sayfa Bu çalışmada, ülkemizde yetiştirilen tescilli ayçiçeği çeşitleri ile atasal melezler ve kuraklığa toleranslı olduğu bilinen atasal Helianthus agrophyllus’un kuraklık ve iyileşme süreçlerinde oluşturdukları yanıtların morfolojik, fizyolojik, biyokimyasal ve moleküler (proteom) düzeyde incelenmesi amaçlanmıştır. Çalışmanın I. aşamasında ayçiçeği çeşitleri iki farklı şiddette (orta şiddetli-7 gün / şiddetli-9 gün) kuraklık ve sonrasında iyileşme (sulama- 5 gün) uygulamalarına maruz bırakılmıştır. Bu aşamada, çeşitlerin fotosentetik aktiviteleri (klorofil a fluoresans ölçümleri), membran hasarları (iyon sızıntısı), fotosentetik pigment ve su içerikleri ölçülmüştür. Fotosentetik performans indekslerinden, kuraklık ve iyileşme faktör indeksleri ile fizyolojik ve biyokimyasal ölçümlerden hasar indeksi ve iyileşme potansiyelleri
    [Show full text]
  • The Physiological Ecology of C3-C4 Intermediate Eudicots in Warm Environments
    THE PHYSIOLOGICAL ECOLOGY OF C3-C4 INTERMEDIATE EUDICOTS IN WARM ENVIRONMENTS by Patrick John Vogan A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright Patrick John Vogan 2010 ii The Physiological Ecology of C3-C4 Intermediate Eudicots in Warm Environments Patrick John Vogan, Doctor of Philosophy, 2010 Department of Ecology and Evolutionary Biology, University of Toronto Abstract The C3 photosynthetic pathway uses light energy to reduce CO2 to carbohydrates and other organic compounds and is a central component of biological metabolism. In C3 photosynthesis, CO2 assimilation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which reacts with both CO2 and O2. While competitive inhibition of CO2 assimilation by oxygen is suppressed at high CO2 concentrations, O2 inhibition is substantial when CO2 concentration is low and O2 concentration is high; this inhibition is amplified by high temperature and aridity (Sage 2004). Atmospheric CO2 concentration dropped below saturating levels 25-30 million years ago (Tipple & Pagani 2007), and the C4 photosynthetic pathway is hypothesized to have first evolved in warm, low latitude environments around this time (Christin et al. 2008a). The primary feature of C4 photosynthesis is suppression of O2 inhibition through concentration of CO2 around Rubisco. This pathway is estimated to have evolved almost 50 times across 19 angiosperm families (Muhaidat et al. 2007), a remarkable example of evolutionary convergence. In several C4 lineages, there are species with photosynthetic traits that are intermediate between the C3 and C4 states, known as C3-C4 intermediates.
    [Show full text]
  • Extremely Low Nucleotide Diversity Among Thirty-Six New Chloroplast Genome Sequences from Aldama (Heliantheae, Asteraceae) and C
    Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera Benoit Loeuille1,*, Verônica Thode2,*, Carolina Siniscalchi3, Sonia Andrade4, Magdalena Rossi5 and José Rubens Pirani5 1 Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil 2 Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil 3 Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America 4 Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil 5 Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil * These authors contributed equally to this work. ABSTRACT Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lana- tus, and Tithonia diversifolia). We analyzed the structure and gene content of the Submitted 29 July 2020 assembled plastomes and performed comparative analyses within Aldama and with Accepted 12 January 2021 Published 24 February 2021 other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species.
    [Show full text]
  • GIRASOL Lic. Jeremías Zubrzycki
    UNIVERSIDAD DE BUENOS AIRES Facultad de Farmacia y Bioquímica ESTUDIO DE LA RESISTENCIA A Sclerotinia sclerotiorum EN LINEAS ENDOCRIADAS DE GIRASOL Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Biotecnología Lic. Jeremías Zubrzycki Directora de tesis: Norma Paniego Director asistente de tesis: Gerardo Cervigni Consejera de Estudios: Carina Rivolta Instituto de Biotecnología, CICVyA, INTA Castelar Buenos Aires, 2014 ESTUDIO DE LA RESISTENCIA A Sclerotinia sclerotiorum EN LINEAS ENDOCRIADAS DE GIRASOL RESUMEN La podredumbre húmeda del capítulo (PHC), causada por Sclerotinia sclerotiorum, es una de las limitante más importantes para el cultivo del girasol. Este trabajo tuvo como objetivo identificar las regiones del genoma de girasol asociadas a resistencia a PHC para sustentar el desarrollo de estrategias de mejoramiento asistido que permitan acelerar el proceso de creación de nuevos genotipos con resistencia a la enfermedad. Para alcanzar este objetivo se trabajó con una población de 135 líneas recombinantes endocriadas (RILs) obtenidas del cruzamiento entre las líneas PAC2 (resistencia moderada a PHC) x RHA266 (susceptible a PHC), se estableció un protocolo para corroborar la pureza genética de las RILs entre ensayos, se saturó un mapa genético de girasol con marcadores funcionales de tipo mutaciones simples (SNP), se realizaron evaluaciones a campo y se llevaron adelante estudios para la identificación de las regiones responsables de la resistencia a PHC. Para establecer el protocolo de pureza genética de genotipos de girasol se analizaron 40 marcadores de tipo SSR distribuidos en los 17 grupos de ligamiento. En una segunda etapa se seleccionaron diez marcadores capaces de discriminar de manera inequívoca a las RILs que componen la población, y que combinan tamaños de fragmentos y marca fluorescentes de tal manera que pueden resolverse claramente en una única corrida de electroforesis capilar.
    [Show full text]
  • The Role of Photorespiration During the Evolution of C4 Photosynthesis In
    1 The role of photorespiration during the evolution of C4 2 photosynthesis in the genus Flaveria 3 Authors: 4 Julia Mallmann1+, David Heckmann2+, Andrea Bräutigam3, Martin J. Lercher2,4, Andreas P.M. 5 Weber3,4 , Peter Westhoff1,4 and Udo Gowik1* 6 7 1Heinrich-Heine-Universität, Institute for Plant Molecular and Developmental Biology, 40225 8 Düsseldorf, Germany 9 2Heinrich-Heine-Universität, Institute for Computer Science, 40225 Düsseldorf, Germany 10 3Heinrich-Heine-Universität, Institute of Plant Biochemistry, 40225 Düsseldorf, Germany 11 4Cluster of Excellence on Plant Sciences (CEPLAS) "From Complex Traits towards Synthetic 12 Modules", 40225 Düsseldorf, Germany 13 14 +These authors contributed equally to this work 15 16 *For correspondence: 17 Udo Gowik, Institute for Plant Molecular and Developmental Biology, Heinrich-Heine- 18 Universität Universitätsstrasse 1, 40225 Düsseldorf, Germany. Tel: 49 (0) 211 8114368. Fax: 19 49 (0) 211 8114871. E-mail: [email protected] 20 21 Competing interests 22 The authors declare that no competing interests exist. 23 1 24 Abstract 25 26 C4 photosynthesis represents a most remarkable case of convergent evolution of a complex 27 trait, which includes the reprogramming of the expression patterns of thousands of genes. 28 Anatomical, physiological, and phylogenetic analyses as well as computational modeling 29 indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) 30 is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight 31 connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we 32 address this question through comparative transcriptomic and biochemical analyses of closely 33 related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through 34 a mechanistic model of carbon fixation.
    [Show full text]
  • Download Mediated Design
    “VITAL ARTICLES ON SCIENCE/CREATION” September 2003 Impact #363 MEDIATED DESIGN by Todd Charles Wood* When I was an undergraduate, my plant physiology professor required students to write a term paper for his class. Since I found the subject terribly uninteresting, I asked my professor if he could recommend a topic that had something to do with evolution or origins, a topic in which I was very interested. My professor immediately recommended that I write about the origin of C4 photosynthesis. I knew at the time that there are several types of photosynthesis. Flowering plants have at least three main categories, called C3, C4 and CAM. In C3 photosynthesis, the plant takes carbon dioxide (CO2) from the atmosphere and turns it directly into sugar. C4 and CAM plants turn CO2 into organic acids and temporarily store them. In C4 plants, the acids are transported to a special region of the leaf called the bundle sheath cells (BSCs) where they are converted into sugar. In CAM plants, the acids are turned into sugar during the night when the temperature is lower. C4 and CAM plants photosynthesize more efficiently than C3 plants in hot, dry environ- ments.1 Based on this preliminary knowledge, I assumed that C4 photosynthesis was so complicated that it must have resulted from a creation event separate from C3 photosynthesis. In technical terms, I expected that C4 plants were discontinuous with C3 plants because I assumed that God created the photo- synthesis types in separate created kinds. As I began to research the topic, my expectations were shown to be incorrect.
    [Show full text]
  • Photorespiration and the Evolution of C4 Photosynthesis
    PP63CH02-Sage ARI 27 March 2012 8:5 Photorespiration and the Evolution of C4 Photosynthesis Rowan F. Sage,1 Tammy L. Sage,1 and Ferit Kocacinar2 1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada; email: [email protected] 2Faculty of Forestry, Kahramanmaras¸Sutc¨ ¸u¨ Imam˙ University, 46100 Kahramanmaras¸, Turkey Annu. Rev. Plant Biol. 2012. 63:19–47 Keywords First published online as a Review in Advance on carbon-concentrating mechanisms, climate change, photosynthetic January 30, 2012 evolution, temperature The Annual Review of Plant Biology is online at by Universidad Veracruzana on 01/08/14. For personal use only. plant.annualreviews.org Abstract This article’s doi: C4 photosynthesis is one of the most convergent evolutionary phe- 10.1146/annurev-arplant-042811-105511 Annu. Rev. Plant Biol. 2012.63:19-47. Downloaded from www.annualreviews.org nomena in the biological world, with at least 66 independent origins. Copyright c 2012 by Annual Reviews. Evidence from these lineages consistently indicates that the C4 path- All rights reserved way is the end result of a series of evolutionary modifications to recover 1543-5008/12/0602-0019$20.00 photorespired CO2 in environments where RuBisCO oxygenation is high. Phylogenetically informed research indicates that the reposition- ing of mitochondria in the bundle sheath is one of the earliest steps in C4 evolution, as it may establish a single-celled mechanism to scavenge photorespired CO2 produced in the bundle sheath cells. Elaboration of this mechanism leads to the two-celled photorespiratory concentra- tion mechanism known as C2 photosynthesis (commonly observed in C3–C4 intermediate species) and then to C4 photosynthesis following the upregulation of a C4 metabolic cycle.
    [Show full text]