Evaluating the Use of Spartan in Studying the Effects of Charged Lysine Residues

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Use of Spartan in Studying the Effects of Charged Lysine Residues Evaluating the Use of Spartan in Studying the Effects of Charged Lysine Residues Mark Lazari Abstract Spartan by Wavefunction, Inc. is a powerful computational modeling tool that is used in both the research and academic realms.1 This study reviews Spartan's ability to run conformational searches on alanine and lysine containing peptides, and compares Spartan's calculated values to those of Gaussian, another computational modeling program. The goal is to begin steps in understanding the effects of protonation of a lysine residue in a string of alanine residues, where lysine will reside either as the amino acid on the N-terminus or the C-terminus of the peptide. The study found that the protonation of a lysine residue placed at the C-terminus stabilized the α-helical structure of the peptide, and destabilization of the α-helix occurred when the protonated lysine residue was placed at the N-terminus. Spartan allows for a more user-friendly approach to conformational searches than Gaussian, and it gives a more graphical view of the conformations. This allows for better viewing of the structures and conformations while simultaneously calculating their thermodynamic data. Background statistical mechanics methods based on quantum mechanics. The details of these Introduction to Computational Chemistry theories and resulting mathematical methodologies will not be covered in this Computational Chemistry has revolutionized paper. For clarity, any mention of "methods" our way of viewing molecules at the quantum refers to the particular mathematical approach mechanical scale by allowing us to simulate taken to run a calculation. Examples of these various chemical scenarios that are not methods include but are not limited to semi- possible to study in a lab. In Organic empirical AM1, molecular mechanics or Chemistry, the transition states of molecules MMFF, and density functional B3LYP/6- represent the theoretical structure molecules 31G*). go through during a reaction. In lab, these As one might assume, something based transition states cannot be isolated. With solely on simulations from statistics and Computational Chemistry, the transition states probability has its advantages and can be modeled, and their thermodynamic disadvantages. Many of the advantages are properties can be studied in various listed above, however, the disadvantage is conditions (e.g. solvents, gas-phase, etc.) and clearly a lack of tangible, reproducible at various temperatures. For Biochemistry, experimental lab results. Many in silico proteins can be better understood in terms of studies are done in tandem with experimental their behavior with other molecules (e.g. an data, and many computational programs enzyme binding to its substrate), and the contain built-in protocols to help researchers structures and conformations of peptides and better compare experimental data with the nucleic acid sequences can be more readily calculated theoretical results. By comparing seen and understood via computational reproducible computational data with simulations. This in silico work draws its reproducible lab data, one can better fine-tune basis from what we have learned thus far the programming to continually gain more from Physics and Physical Chemistry by reliable results. bringing in wavefunction theory and various Spartan Review forms (e.g. ball and stick, tube, etc.), as well One program that is used for as reveal any hydrogen bonding, ribbons for computational analysis and molecular proteins, labels, chiral centers, etc. Using modeling is Spartan by Wavefunction, Inc. some keyboard shortcuts and keyboard-mouse Spartan boasts a more user-friendly interface combinations, the user can also rotate the in terms of modeling and programming, molecule at a which lowers the learning curve in both the chosen bond, academic and commercial realms of research. adjust the bond The modeling aspect is simple, length, and adjust straightforward, and allows for a wide range the chirality of of molecules to be built quickly and given chiral efficiently. Spartan separates modeling centers. For "pieces" in terms of their relative uses, as seen further in Figure 1 to the right, which is taken from customization, Spartan '08. One tab in Spartan's build menu the user can lock is set up specifically to deal with most organic certain bond molecule pieces, such as tetrahedral carbon lengths, angles, atoms, trigonal pyramidal nitrogen atoms, as and dihedral well as groups such as benzene rings and angles, and use carbonyl groups. Another tab allows for more those constraints customizability, which is used most often for as starting points Inorganic Chemistry. This tab gives the user as well as the ability to choose the atom, its geometry, limitations when and its bond type (i.e. single, double, triple, optimizing the etc.). Spartan's builder also allows for amino molecule's acids and nucleic acids to be added geometry. One individually or in sequence. For peptides, the example of this is forcing an ammonia (NH3) user has the option to give the amino acid molecule to remain in its trigonal planar sequence an α-helix or β-sheet conformation geometry, which represents the transition as well as choose how to terminate the state of ammonia during inversion. This can peptide at both the N-terminus and C- be seen in Figure 2 below. With these tools, terminus. Using the peptide builder in the user can effectively build a molecule, concert with the other builder tabs, the user view and adjust its restrictions and conditions, can easily adjust the peptide to fit his or her and label the molecule and its constituents for own personal needs. complete customizability all while having an easy to understand visual representation of Once the molecule is built, depending on these changes. the version of Spartan one has (e.g. '02, '06, '08), the user can view the molecule in various Spartan keeps is determined by the amount the user had defined to keep as well as the Spartan Calculations energy interval designated for the samples. After a molecule has been built, a series of By default, this interval is set to 40 kJ/mol, calculations can be done on it that will and only versions of Spartan '06 and above optimize it in terms of energy. Essentially, have the ability to adjust the default energy the calculations serve to find the lowest interval value. Spartan will search through energy conformation, or the arrangement of and calculate the energies of all the the atoms of a molecule in three-dimensional conformations allowed by the user (e.g. 5000 space. How Spartan does this is dependent on of the 200,000) using the defined method (e.g. the type of calculation desired, which are semi-empirical AM1) and generate in a explain below. Spartan will also calculate a separate file the number of conformations variety of chemical and physical properties defined by the user, assuming it was able to that are common for all molecular modeling find that many conformations within the programs. The advantage Spartan has over defined energy interval. If 100 conformations many other modeling programs, however, is are kept, Spartan will generate 100 the fact that it can calculate and output a conformations that are within an interval of molecule's conformations at various energies. energies that range from most energetically This is helpful in analyzing, understanding, favorable to 40 kJ/mol higher than the and determining the physical representations favorable energy (assuming the default energy of organic and biological molecules in both interval was used). Due to Spartan's graphical the energetically favorable (high energy) and nature, these conformations can be easily unfavorable (low energy) conformations. viewed and judged both in terms of structure The calculations used in this study are and energy. The amount of conformations the conformer distribution, equilibrium geometry, computer can search through and store are and energy (or single point energy). Spartan greatly limited by the computer's RAM offers other calculations for transition state capacity and available hard drive space. The analysis, other conformational search speed, aside from the computer's processor protocols, etc. that can be found in the quality, is determined by the method for program's handbook. These calculations are energy calculations set for each conformation used to quickly, efficiently, and accurately (e.g. semi-empirical, molecular mechanics, determine the most energetically favorable etc.). conformations of each polypeptide. The Equilibrium geometry is one of the more methods are explained in the following straightforward calculations to run using sections, but the follow are brief summaries Spartan, and its goal is to simply optimize the of what each calculation does. geometry of the molecule in terms of energy. Conformer distribution uses the Monte What makes Spartan a powerful program is its Carlo method of searching through possible ability to optimize a series of molecules conformations of molecules. The Monte stored within a given file. For example, if the Carlo method is described below. Spartan 100 conformations retained from the allows the user to customize the amount of conformer distribution calculation were conformations that will be searched through determined using molecular mechanics (e.g. a simple two residue peptide has on the calculations, and the user wanted to optimize order of 200,000 possible conformations) as each molecules' geometry in terms of AM1 well as tell Spartan to retain the structures of a calculations,
Recommended publications
  • Mercury 2.4 User Guide and Tutorials 2011 CSDS Release
    Mercury 2.4 User Guide and Tutorials 2011 CSDS Release Copyright © 2010 The Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The Cambridge Structural Database System (CSD System) comprising all or some of the following: ConQuest, Quest, PreQuest, Mercury, (Mercury CSD and Materials module of Mercury), VISTA, Mogul, IsoStar, SuperStar, web accessible CSD tools and services, WebCSD, CSD Java sketcher, CSD data file, CSD-UNITY, CSD-MDL, CSD-SDfile, CSD data updates, sub files derived from the foregoing data files, documentation and command procedures (each individually a Component) is a database and copyright work belonging to the Cambridge Crystallographic Data Centre (CCDC) and its licensors and all rights are protected. Use of the CSD System is permitted solely in accordance with a valid Licence of Access Agreement and all Components included are proprietary. When a Component is supplied independently of the CSD System its use is subject to the conditions of the separate licence. All persons accessing the CSD System or its Components should make themselves aware of the conditions contained in the Licence of Access Agreement or the relevant licence. In particular: • The CSD System and its Components are licensed subject to a time limit for use by a specified organisation at a specified location. • The CSD System and its Components are to be treated as confidential and may NOT be disclosed or re- distributed in any form, in whole or in part, to any third party. • Software or data derived from or developed using the CSD System may not be distributed without prior written approval of the CCDC.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Automated Construction of Quantum–Classical Hybrid Models Arxiv:2102.09355V1 [Physics.Chem-Ph] 18 Feb 2021
    Automated construction of quantum{classical hybrid models Christoph Brunken and Markus Reiher∗ ETH Z¨urich, Laboratorium f¨urPhysikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Z¨urich, Switzerland February 18, 2021 Abstract We present a protocol for the fully automated construction of quantum mechanical-(QM){ classical hybrid models by extending our previously reported approach on self-parametri- zing system-focused atomistic models (SFAM) [J. Chem. Theory Comput. 2020, 16 (3), 1646{1665]. In this QM/SFAM approach, the size and composition of the QM region is evaluated in an automated manner based on first principles so that the hybrid model describes the atomic forces in the center of the QM region accurately. This entails the au- tomated construction and evaluation of differently sized QM regions with a bearable com- putational overhead that needs to be paid for automated validation procedures. Applying SFAM for the classical part of the model eliminates any dependence on pre-existing pa- rameters due to its system-focused quantum mechanically derived parametrization. Hence, QM/SFAM is capable of delivering a high fidelity and complete automation. Furthermore, since SFAM parameters are generated for the whole system, our ansatz allows for a con- venient re-definition of the QM region during a molecular exploration. For this purpose, a local re-parametrization scheme is introduced, which efficiently generates additional clas- sical parameters on the fly when new covalent bonds are formed (or broken) and moved to the classical region. arXiv:2102.09355v1 [physics.chem-ph] 18 Feb 2021 ∗Corresponding author; e-mail: [email protected] 1 1 Introduction In contrast to most protocols of computational quantum chemistry that consider isolated molecules, chemical processes can take place in a vast variety of complex environments.
    [Show full text]
  • Instructions on Making Pdf Files Containing 3D
    Detailed Instructions for Creating an Embedded Virtual 3-D Image of a Molecule Creating the documents with embedded virtual three-dimensional images may be done fairly easily by repeating the following procedures. Once you have embedded your first image, the use of that image is limited only by your imagination. The following instructions are written in extreme detail with annotated screen shots of the four programs you will use throughout for clarification. Once you are familiar with the procedure embedding a structure of interest should take less than 20 min., limited only by the speed with which you can click a mouse. In practice most of our embedded 3-D images have been created by our undergraduate student collaborators. Step 1. Creating a 2-D image in ChemSketch Using ACD ChemSketch 11.0 Freeware (http://www.acdlabs.com/download/chemsk_download.html ) a two dimensional structure may be drawn as per your specific need (see Figure 1). Once the molecule is drawn, optimized it by clicking the 3-D optimization button then save as an MDL molfile (*.mol). Figure 1: A screen shot of acetone drawn with ChemSketch after 3-D optimization. Step 2. Converting the *.mol file to a *.pdb file using Open Babel The file can now be converted from a .mol file to a .pdb file, Protein Data Bank format, to be properly accessed with the Adobe Acrobat 3D Toolkit 8.1.0. The file conversion is done using Open Babel Graphical User Interface v2.2.0 (openbabel.sourceforge.net) under default settings. Step by step instructions: A.
    [Show full text]
  • Getting Started in Jmol
    Getting Started in Jmol Part of the Jmol Training Guide from the MSOE Center for BioMolecular Modeling Interactive version available at http://cbm.msoe.edu/teachingResources/jmol/jmolTraining/started.html Introduction Physical models of proteins are powerful tools that can be used synergistically with computer visualizations to explore protein structure and function. Although it is interesting to explore models and visualizations created by others, it is much more engaging to create your own! At the MSOE Center for BioMolecular Modeling we use the molecular visualization program Jmol to explore protein and molecular structures in fully interactive 3-dimensional displays. Jmol a free, open source molecular visualization program used by students, educators and researchers internationally. The Jmol Training Guide from the MSOE Center for BioMolecular Modeling will provide the tools needed to create molecular renderings, physical models using 3-D printing technologies, as well as Jmol animations for online tutorials or electronic posters. Examples of Proteins in Jmol Jmol allows users to rotate proteins and molecular structures in a fully interactive 3-dimensional display. Some sample proteins designed with Jmol are shown to the right. Hemoglobin Proteins Insulin Proteins Green Fluorescent safely carry oxygen in the help regulate sugar in Proteins create blood. the bloodstream. bioluminescence in animals like jellyfish. Downloading Jmol Jmol Can be Used in Two Ways: 1. As an independent program on a desktop - Jmol can be downloaded to run on your desktop like any other program. It uses a Java platform and therefore functions equally well in a PC or Mac environment. 2. As a web application - Jmol has a web-based version (oftern refered to as "JSmol") that runs on a JavaScript platform and therefore functions equally well on all HTML5 compatible browsers such as Firefox, Internet Explorer, Safari and Chrome.
    [Show full text]
  • Starting SCF Calculations by Superposition of Atomic Densities
    Starting SCF Calculations by Superposition of Atomic Densities J. H. VAN LENTHE,1 R. ZWAANS,1 H. J. J. VAN DAM,2 M. F. GUEST2 1Theoretical Chemistry Group (Associated with the Department of Organic Chemistry and Catalysis), Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands 2CCLRC Daresbury Laboratory, Daresbury WA4 4AD, United Kingdom Received 5 July 2005; Accepted 20 December 2005 DOI 10.1002/jcc.20393 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedure is less obvious. For instance, there is no need to converge the corresponding closed-shell Hartree–Fock calculation when dealing with an open-shell species. We describe the various choices and illustrate them with test calculations, showing that the procedure is easier, and on average better, than starting from a converged minimal basis calculation and much better than using a bare nucleus Hamiltonian. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 926–932, 2006 Key words: SCF calculations; atomic densities Introduction hrstuhl fur Theoretische Chemie, University of Kahrlsruhe, Tur- bomole; http://www.chem-bio.uni-karlsruhe.de/TheoChem/turbo- Any quantum chemical calculation requires properly defined one- mole/),12 GAMESS(US) (Gordon Research Group, GAMESS, electron orbitals. These orbitals are in general determined through http://www.msg.ameslab.gov/GAMESS/GAMESS.html, 2005),13 an iterative Hartree–Fock (HF) or Density Functional (DFT) pro- Spartan (Wavefunction Inc., SPARTAN: http://www.wavefun.
    [Show full text]
  • D:\Doc\Workshops\2005 Molecular Modeling\Notebook Pages\Software Comparison\Summary.Wpd
    CAChe BioRad Spartan GAMESS Chem3D PC Model HyperChem acd/ChemSketch GaussView/Gaussian WIN TTTT T T T T T mac T T T (T) T T linux/unix U LU LU L LU Methods molecular mechanics MM2/MM3/MM+/etc. T T T T T Amber T T T other TT T T T T semi-empirical AM1/PM3/etc. T T T T T (T) T Extended Hückel T T T T ZINDO T T T ab initio HF * * T T T * T dft T * T T T * T MP2/MP4/G1/G2/CBS-?/etc. * * T T T * T Features various molecular properties T T T T T T T T T conformer searching T T T T T crystals T T T data base T T T developer kit and scripting T T T T molecular dynamics T T T T molecular interactions T T T T movies/animations T T T T T naming software T nmr T T T T T polymers T T T T proteins and biomolecules T T T T T QSAR T T T T scientific graphical objects T T spectral and thermodynamic T T T T T T T T transition and excited state T T T T T web plugin T T Input 2D editor T T T T T 3D editor T T ** T T text conversion editor T protein/sequence editor T T T T various file formats T T T T T T T T Output various renderings T T T T ** T T T T various file formats T T T T ** T T T animation T T T T T graphs T T spreadsheet T T T * GAMESS and/or GAUSSIAN interface ** Text only.
    [Show full text]
  • Chemdoodle Web Components: HTML5 Toolkit for Chemical Graphics, Interfaces, and Informatics Melanie C Burger1,2*
    Burger. J Cheminform (2015) 7:35 DOI 10.1186/s13321-015-0085-3 REVIEW Open Access ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and informatics Melanie C Burger1,2* Abstract ChemDoodle Web Components (abbreviated CWC, iChemLabs, LLC) is a light-weight (~340 KB) JavaScript/HTML5 toolkit for chemical graphics, structure editing, interfaces, and informatics based on the proprietary ChemDoodle desktop software. The library uses <canvas> and WebGL technologies and other HTML5 features to provide solutions for creating chemistry-related applications for the web on desktop and mobile platforms. CWC can serve a broad range of scientific disciplines including crystallography, materials science, organic and inorganic chemistry, biochem- istry and chemical biology. CWC is freely available for in-house use and is open source (GPL v3) for all other uses. Keywords: ChemDoodle Web Components, Chemical graphics, Animations, Cheminformatics, HTML5, Canvas, JavaScript, WebGL, Structure editor, Structure query Introduction Mobile browsers did support HTML5, which opened How we communicate chemical information is increas- the door to web applications built with only HTML, ingly technology driven. Learning management systems, CSS and JavaScript (JS), such as the ChemDoodle Web virtual classrooms and MOOCs are a few examples where Components. chemistry educators need forward compatible tools for digital natives. Companies that implement emerg- Review ing web technologies can find efficiencies and benefit The ChemDoodle Web Components technology stack from competitive advantages. The first chemical graph- and features ics toolkit for the web, MDL Chime, was introduced in The ChemDoodle Web Components library, released in 1996 [1]. Based on the molecular visualization program 2009, is the first chemistry toolkit for structure viewing RasMol, Chime was developed as a plugin for Netscape and editing that is originally built using only web stand- and later for Internet Explorer and Firefox.
    [Show full text]
  • How to Modify LAMMPS: from the Prospective of a Particle Method Researcher
    chemengineering Article How to Modify LAMMPS: From the Prospective of a Particle Method Researcher Andrea Albano 1,* , Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2 , Iwan H. Sahputra 1,3, Amin Rahmat 1, Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5 , Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,* 1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (I.H.S.); [email protected] (A.R.); [email protected] (C.A.D.-D.) 2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK; Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.) 3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia 4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia 5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; [email protected] 7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France; [email protected] * Correspondence: [email protected] or [email protected] (A.A.); [email protected] (A.A.) Citation: Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, I.H.; Rahmat, A.; Duque-Daza, C.A.; also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics.
    [Show full text]
  • Preparing and Analyzing Large Molecular Simulations With
    Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale
    [Show full text]
  • Modern Quantum Chemistry with [Open]Molcas
    Modern quantum chemistry with [Open]Molcas Cite as: J. Chem. Phys. 152, 214117 (2020); https://doi.org/10.1063/5.0004835 Submitted: 17 February 2020 . Accepted: 11 May 2020 . Published Online: 05 June 2020 Francesco Aquilante , Jochen Autschbach , Alberto Baiardi , Stefano Battaglia , Veniamin A. Borin , Liviu F. Chibotaru , Irene Conti , Luca De Vico , Mickaël Delcey , Ignacio Fdez. Galván , Nicolas Ferré , Leon Freitag , Marco Garavelli , Xuejun Gong , Stefan Knecht , Ernst D. Larsson , Roland Lindh , Marcus Lundberg , Per Åke Malmqvist , Artur Nenov , Jesper Norell , Michael Odelius , Massimo Olivucci , Thomas B. Pedersen , Laura Pedraza-González , Quan M. Phung , Kristine Pierloot , Markus Reiher , Igor Schapiro , Javier Segarra-Martí , Francesco Segatta , Luis Seijo , Saumik Sen , Dumitru-Claudiu Sergentu , Christopher J. Stein , Liviu Ungur , Morgane Vacher , Alessio Valentini , and Valera Veryazov J. Chem. Phys. 152, 214117 (2020); https://doi.org/10.1063/5.0004835 152, 214117 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp Modern quantum chemistry with [Open]Molcas Cite as: J. Chem. Phys. 152, 214117 (2020); doi: 10.1063/5.0004835 Submitted: 17 February 2020 • Accepted: 11 May 2020 • Published Online: 5 June 2020 Francesco Aquilante,1,a) Jochen Autschbach,2,b) Alberto Baiardi,3,c) Stefano Battaglia,4,d) Veniamin A. Borin,5,e) Liviu F. Chibotaru,6,f) Irene Conti,7,g) Luca De Vico,8,h) Mickaël Delcey,9,i) Ignacio Fdez. Galván,4,j) Nicolas Ferré,10,k) Leon Freitag,3,l) Marco Garavelli,7,m) Xuejun Gong,11,n) Stefan Knecht,3,o) Ernst D. Larsson,12,p) Roland Lindh,4,q) Marcus Lundberg,9,r) Per Åke Malmqvist,12,s) Artur Nenov,7,t) Jesper Norell,13,u) Michael Odelius,13,v) Massimo Olivucci,8,14,w) Thomas B.
    [Show full text]