Molecular Phylogenetics and Evolution 109 (2017) 73–79
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Description of Cryptosporidium Parvum in Carrier Pigeons
Veterinary Parasitology 243 (2017) 148–150 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Research paper First description of Cryptosporidium parvum in carrier pigeons (Columba livia) MARK Bruno César Miranda Oliveiraa, Elis Domingos Ferraria, Mariele Fernanda da Cruz Panegossia, Alex Akira Nakamuraa, Flávio Sader Corbuccia, Walter Bertequini Nagataa, Bianca Martins dos Santosb, Jancarlo Ferreira Gomesb, Marcelo Vasconcelos Meirelesa, ⁎ Giovanni Widmerc, Katia Denise Saraiva Brescianid, a Universidade Estadual Paulista (Unesp), Faculdade de Medicina Veterinária, Araçatuba, Brazil b Laboratory of Visual Informatics in Biomedical and Health, Institute of Computing, University of Campinas – UNICAMP, São Paulo, Brazil c Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA d Universidade Estadual Paulista (Unesp), Faculdade de Medicina Veterinária, Araçatuba. Rua Clóvis Pestana, 793, Jardim Dona Amélia, cep 16050-680, Araçatuba, São Paulo, Brazil ARTICLE INFO ABSTRACT Keywords: The carrier pigeon and the domestic pigeon are different breeds of the species Columba livia. Carrier pigeons are Birds used for recreational activities such as bird contests and exhibitions. Due to the close contact with humans, these Carrier pigeons birds may potentially represent a public health risk, since they can host and disseminate zoonotic parasites, such Columba livia as those belonging to the genus Cryptosporidium (phylum Apicomplexa). The purpose of this work was the de- Cryptosporidiosis tection by microscopic and molecular techniques of Cryptosporidium spp. oocysts in fecal samples of carrier Cryptosporidium parvum pigeons, and subsequently to sequence the 18S ribosomal RNA marker of positive samples to identify the species. Nested PCR A total of 100 fecal samples were collected individually in two pigeon breeding facilities from Formiga and Araçatuba, cities located in Minas Gerais state and São Paulo state, Brazil, respectively. -
Quantifying Crop Damage by Grey Crowned Crane Balearica
QUANTIFYING CROP DAMAGE BY GREY CROWNED CRANE BALEARICA REGULORUM REGULORUM AND EVALUATING CHANGES IN CRANE DISTRIBUTION IN THE NORTH EASTERN CAPE, SOUTH AFRICA. By MARK HARRY VAN NIEKERK Department of the Zoology and Entomology, Rhodes University Submitted in partial fulfilment of the requirements for the Degree of MASTER OF SCIENCE December 2010 Supervisor: Prof. Adrian Craig i TABLE OF CONTENTS List of tables…………………………………………………………………………iv List of figures ………………………………………………………………………...v Abstract………………………………………………………………………………vii I. INTRODUCTION .......................................................................................... 1 Species account......................................................................................... 3 Habits and diet ........................................................................................... 5 Use of agricultural lands by cranes ............................................................ 6 Crop damage by cranes ............................................................................. 7 Evaluating changes in distribution and abundance of Grey Crowned Crane………………………………………………………..9 Objectives of the study………………………………………………………...12 II. STUDY AREA…………………………………………………………………...13 Locality .................................................................................................... 13 Climate ..................................................................................................... 15 Geology and soils ................................................................................... -
Reconstruction of the Evolutionary History of Haemosporida
Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene. -
An Assessment of Threats to Anatidae in Iran
Bird Conservation International (2015) 25 :242 –257 . © BirdLife International, 2014 doi:10.1017/S0959270914000264 An assessment of threats to Anatidae in Iran ELHAM NOURANI , MOHAMMAD KABOLI and BEN COLLEN Summary The network of wetland systems in Iran provides valuable staging and wintering areas for waterbirds in the African-Western Eurasian flyways. The West Siberian/Caspian/Nile popula- tions of Anatidae (ducks, geese and swans) regularly overwinter and stop over in Iran, and are considered an economically and culturally important group of birds in the country. Conservation of such migratory birds requires the identification of key threat factors impacting them throughout the flyway. Since documented data on the status and threats facing Anatidae in Iran are very scarce, in this paper, we attempted to determine the general population trends for the 26 Anatidae species in Iran, using annual waterbird census data, and to identify and score the most important threat factors affecting each species, by consulting the top ornithologists and pro- fessional birdwatchers in the country by means of a survey. Our results indicate that the most prevalent threats affecting all 26 species are dam construction, water management practices, and hunting. Our results provide the necessary material for Red List assessment of these species at the national level, an important tool for conservation priority setting within Iran and in the flyway. Introduction Waterbirds have long been the subject of many international conservation agreements. The Convention on Wetlands (Ramsar, Iran, 1971) and the Agreement on the Conservation of African- Eurasian Migratory Waterbirds (AEWA, 1999), among others, urge countries to work together to save migratory waterbirds through the flyway concept. -
Studies on Blood Parasites of Birds in Coles County, Illinois Edward G
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1968 Studies on Blood Parasites of Birds in Coles County, Illinois Edward G. Fox Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Fox, Edward G., "Studies on Blood Parasites of Birds in Coles County, Illinois" (1968). Masters Theses. 4148. https://thekeep.eiu.edu/theses/4148 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #3 To: Graduate Degree Candidates who have written formal theses. Subject: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements. Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because------------- Date Author STUDIES CB BLOOD PARA.SIDS 0, BlRDS Xlf COLES COUIITY, tI,JJJIOXI (TITLE) BY Bdward G. iox B. s. -
Brolga Grus Rubicunda
Action StatementNo 119 Brolga Grus rubicunda Indexof Action Stetements *xDescription and Distribution * LifeHistorv and Ecoloqv *ConservationStatus *Decline andThreats *ManaqeqentAgtion *xReferences **Compilers Brolga, Grus rubicunda (illustrationby SusannaHaffenden) Descriptionand Distribution The BrolgaGrus rubicunda (Perry) is a large,long-necked 'lr cranestanding to 1.8metres in height.They have long, darklegs and their plumage is predominanflylight grey in colour.The average wing span of an adultis 1.7-2.4 "k-: metres.The adultmale weighs 4.7-8.7 kilograms and the female3.7-7 .3 kilograms(Marchant and Higgins 1993). Adultshave a conspicuousorange-red head which contrastswith the barecrown of greenish-greyskin and the darkerpendulous dewlap. The billis dark,long and straightand relativelylarge compared to the head.The iris ..;;, is yellowto reddish-orange.lmmatures (up to 10 months of age)have a grey,fully feathered head and the irisis darkbrown. Juveniles (11to22 months)gradually lose the headfeathering and attainthe red headcolouring. A fulldescription can be foundin Marchantand Higgins illrtr{but}on In Vlcteria (1ee3) +b€fere 1970 I sincg ,1570 {s+urce: S#as of tf,efonsr $,!#dlds.FlftE lgSSl The Brolgais distributedacross New Guinea, northern andsouth-eastern Australia (Blakers et al. 1g84, Marchantand Higgins1993). The populationsin Victoria andSouth Australia may now be isolatedfrom the northernpopulations as thereappear to be onlyscattered birdsin NewSouth Wales. In Victoria,birds are currentlyfound in the south-west,the NorthernPlains and adjacentparts of the MurrayRiver (Emison et al.1987).The specieswas formerlymore widely distributed and common,being recorded from the Melbournearea, Gippsland and North-easternVictoria (White 1e83). Life historyand ecology The Brolgais omnivorousand utilisesa diverserange of fooditems on a seasonalbasis. -
Wintering Behavior of a Siberian Crane Grus Leucogeranus in Niigata, Japan, with Special Regard to Food, Foraging and Vocal Habits
Ornithol Sci 17: 187 – 194 (2018) ORIGINAL ARTICLE Wintering behavior of a Siberian Crane Grus leucogeranus in Niigata, Japan, with special regard to food, foraging and vocal habits Akira CHIBA#,* 1-13-11 Terao-Higashi, Niigata 950–2054, Japan ORNITHOLOGICAL Abstract An immature Siberian Crane Grus leucogeranus straggled to Niigata, Japan, in late autumn 2016 and remained over winter in an area of rice fields. In this SCIENCE paper the bird’s diet and foraging behavior during winter 2016/2017 are described. © The Ornithological Society During daytime, the crane foraged alone, mostly on post-harvest rice fields where of Japan 2018 it fed almost exclusively on Water Chestnut Eleocharis kuroguwai tubers. Other foods, such as rice grains, earthworms, grasshoppers and fishes, though eaten, were negligible in the bird’s diet. The density of water chestnut tubers in the foraging area was estimated to be 3.1±3.0/m2 and the biomass 2.0±2.1 g/m2. The crane’s foraging behavior generally included removing any superficial covering material, digging into and removing the soil, exploring the food in the beak and then consuming it with or without rinsing it in groundwater. During foraging, the frequency of food intake varied from 4.8±2.0/10 min to 41.3±9.5/10 min. These results indicate the great significance of water chestnuts in the diet of the Siberian Crane in winter, although further study is necessary for generalization. Key words Diet, Foraging, Grus leucogeranus, Rice field, Water chestnuts The Siberian Crane Grus leucogeranus is regarded al. 2017). Such information has contributed to our as a critically endangered species by the International understanding of the current situation of the species Union for Conservation of Nature, with a global pop- in the wild, and has promoted further investigation ulation of 3,500 to 4,000 individuals (Bird Life Inter- and conservation. -
Characteristion of Human Malaria PLASMODIUM FALCIPARUM
Characteristion of human malaria PLASMODIUM FALCIPARUM All group erythrocytes Sequestration no hypnozoites pre-erythrocytic up to 30 000 erythrocytic schizogony (12-16 merozoites) sporogony (up to 20 000 sporozoites) 1 Knobs on Plasmodium falciparum-infecte erythrocyte 2 Plasmodium falciparum: Thin Blood Smears 3 Appearance of Plasmodium falciparum stages in Giemsa Stained Thin and Thick films 5 PLASMODIUM VIVAX 'benign' tertian malaria( most of the temperate zones) different parasite strains biological Base multinucleatum (China) appears to have a characteristic oocyst), P.v.hibernans(Russia) sporozoites produce only hypnozoites) molecular Base (differences in their genetic) make-up have been identified(P. vivax-like parasite) indistinguishable from the simian parasite(P. simiovale) 6 erythrocyte invasion to reticulocytes ( Duffy blood group) red blood cells infected sometimes as 'larger' than normal Caveolar (reddish cytoplasmic stippling or 'Schiiffner's dots( sporozoites mav transform into hypnozoit 7 Plasmodium vivax: Thin Blood Smears 1: Normal red cell 2-6: Young trophozoites(ring) 7-18: Trophozoites 9-27: Schizonts 28,29: Macrogametocytes 30: Microgametocyte 8 Appearance of Plasmodium vivax stages in Giemsa Stained Thin and Thick films PASMODIUM OVALE a species truly distinct from P.vivax morphological differences oval shape of infected RBC with ragged or fimbriated number of merozoites in schizont(15000) erythrocytic schizonts have 6-12 merozoites Band shapes often seen antigenic and molecular differences -
First Arizona Record of Common Crane
Arizona Birds - Journal of Arizona Field Ornithologists Volume 2020 FIRST ARIZONA RECORD OF COMMON CRANE JOE CROUSE,1125 W. SHULLENBARGER DR., FLAGSTAFF, AZ 86005 The first record of a Common Crane (Grus grus), a Eurasian species, in Arizona was reported in May 2017 at Mormon Lake in Coconino County. It remained at this lake through September 2017. In 2019 a Common Crane was reported 11 May through 31 August at Mormon Lake. The 2017 record has been reviewed and accepted by the Arizona Bird Committee (Rosenberg et al. 2019), and the 2019 bird has been accepted as the same individual. The Common Crane is a widespread crane found in Europe, Asia, the Middle East, and North Africa. Breeding occurs across northern Europe and northern Asia, from Norway on the west to Siberia on the east. Nonbreeding populations are found as far west as Morocco and to southeastern China. A resident population exists in Turkey (NatureServe and IUCN 2017, Figure 1). Preferred habitat for both breeding and nonbreeding birds is small ponds or lakes, wet meadows, and other wetland areas (Cramp and Simmons 1980). Figure 1. Common Crane Distribution Cramp and Simmons (1980) stated that the Common Crane range in western Europe has had a “marked” decrease since the Middle Ages. They attributed this to the draining of nesting areas. Since 1950 improved habitat protections, recolonization in previously inhabited areas, and designation as a protected species have resulted in a dramatic increase in the overall population (Prange 2005). Although its range has decreased, it continues to be extensive enough, along with the increase in its already large population, to give it the status of a species of “Least Concern” (BirdLife International 2016, NatureServe and IUCN 2019). -
AOU Classification Committee – North and Middle America
AOU Classification Committee – North and Middle America Proposal Set 2016-C No. Page Title 01 02 Change the English name of Alauda arvensis to Eurasian Skylark 02 06 Recognize Lilian’s Meadowlark Sturnella lilianae as a separate species from S. magna 03 20 Change the English name of Euplectes franciscanus to Northern Red Bishop 04 25 Transfer Sandhill Crane Grus canadensis to Antigone 05 29 Add Rufous-necked Wood-Rail Aramides axillaris to the U.S. list 06 31 Revise our higher-level linear sequence as follows: (a) Move Strigiformes to precede Trogoniformes; (b) Move Accipitriformes to precede Strigiformes; (c) Move Gaviiformes to precede Procellariiformes; (d) Move Eurypygiformes and Phaethontiformes to precede Gaviiformes; (e) Reverse the linear sequence of Podicipediformes and Phoenicopteriformes; (f) Move Pterocliformes and Columbiformes to follow Podicipediformes; (g) Move Cuculiformes, Caprimulgiformes, and Apodiformes to follow Columbiformes; and (h) Move Charadriiformes and Gruiformes to precede Eurypygiformes 07 45 Transfer Neocrex to Mustelirallus 08 48 (a) Split Ardenna from Puffinus, and (b) Revise the linear sequence of species of Ardenna 09 51 Separate Cathartiformes from Accipitriformes 10 58 Recognize Colibri cyanotus as a separate species from C. thalassinus 11 61 Change the English name “Brush-Finch” to “Brushfinch” 12 62 Change the English name of Ramphastos ambiguus 13 63 Split Plain Wren Cantorchilus modestus into three species 14 71 Recognize the genus Cercomacroides (Thamnophilidae) 15 74 Split Oceanodroma cheimomnestes and O. socorroensis from Leach’s Storm- Petrel O. leucorhoa 2016-C-1 N&MA Classification Committee p. 453 Change the English name of Alauda arvensis to Eurasian Skylark There are a dizzying number of larks (Alaudidae) worldwide and a first-time visitor to Africa or Mongolia might confront 10 or more species across several genera. -
Host-Parasite Interactions Between Plasmodium Species and New Zealand Birds: Prevalence, Parasite Load and Pathology
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Host-parasite interactions between Plasmodium species and New Zealand birds: prevalence, parasite load and pathology A thesis presented in partial fulfilment of the requirements for the degree of Master of Veterinary Science in Wildlife Health At Massey University, Palmerston North New Zealand © Danielle Charlotte Sijbranda 2015 ABSTRACT Avian malaria, caused by Plasmodium spp., is an emerging disease in New Zealand and has been reported as a cause of morbidity and mortality in New Zealand bird populations. This research was initiated after P. (Haemamoeba) relictum lineage GRW4, a suspected highly pathogenic lineage of Plasmodium spp. was detected in a North Island robin of the Waimarino Forest in 2011. Using nested PCR (nPCR), the prevalence of Plasmodium lineages in the Waimarino Forest was evaluated by testing 222 birds of 14 bird species. Plasmodium sp. lineage LINN1, P. (Huffia) elongatum lineage GRW06 and P. (Novyella) sp. lineage SYATO5 were detected; Plasmodium relictum lineage GRW4 was not found. A real- time PCR (qPCR) protocol to quantify the level of parasitaemia of Plasmodium spp. in different bird species was trialled. The qPCR had a sensitivity and specificity of 96.7% and 98% respectively when compared to nPCR, and proved more sensitive in detecting low parasitaemias compared to the nPCR. The mean parasite load was significantly higher in introduced bird species compared to native and endemic species. -
(Haemosporida: Haemoproteidae), with Report of in Vitro Ookinetes of Haemoproteus Hirundi
Chagas et al. Parasites Vectors (2019) 12:422 https://doi.org/10.1186/s13071-019-3679-1 Parasites & Vectors RESEARCH Open Access Sporogony of four Haemoproteus species (Haemosporida: Haemoproteidae), with report of in vitro ookinetes of Haemoproteus hirundinis: phylogenetic inference indicates patterns of haemosporidian parasite ookinete development Carolina Romeiro Fernandes Chagas* , Dovilė Bukauskaitė, Mikas Ilgūnas, Rasa Bernotienė, Tatjana Iezhova and Gediminas Valkiūnas Abstract Background: Haemoproteus (Parahaemoproteus) species (Haemoproteidae) are widespread blood parasites that can cause disease in birds, but information about their vector species, sporogonic development and transmission remain fragmentary. This study aimed to investigate the complete sporogonic development of four Haemoproteus species in Culicoides nubeculosus and to test if phylogenies based on the cytochrome b gene (cytb) refect patterns of ookinete development in haemosporidian parasites. Additionally, one cytb lineage of Haemoproteus was identifed to the spe- cies level and the in vitro gametogenesis and ookinete development of Haemoproteus hirundinis was characterised. Methods: Laboratory-reared C. nubeculosus were exposed by allowing them to take blood meals on naturally infected birds harbouring single infections of Haemoproteus belopolskyi (cytb lineage hHIICT1), Haemoproteus hirun- dinis (hDELURB2), Haemoproteus nucleocondensus (hGRW01) and Haemoproteus lanii (hRB1). Infected insects were dissected at intervals in order to detect sporogonic stages. In vitro exfagellation, gametogenesis and ookinete development of H. hirundinis were also investigated. Microscopic examination and PCR-based methods were used to confrm species identity. Bayesian phylogenetic inference was applied to study the relationships among Haemopro- teus lineages. Results: All studied parasites completed sporogony in C. nubeculosus. Ookinetes and sporozoites were found and described. Development of H. hirundinis ookinetes was similar both in vivo and in vitro.