Super King Air 200/B200 Pilot Training Manual

Total Page:16

File Type:pdf, Size:1020Kb

Super King Air 200/B200 Pilot Training Manual FlightSafety international SUPER KING AIR 200/B200 PILOT TRAINING MANUAL FlightSafety International, Inc. Marine Air Terminal, LaGuardia Airport Flushing, New York 11371 (718) 565-4100 www.flightsafety.com Courses for the Super King Air 200 and other King Air products are taught at the following FlightSafety Learning Centers: Raytheon Learning Center Toledo Learning Center FlightSafety International FlightSafety International 9720 East Central Avenue Toledo Express Airport Wichita, KS 67206-2595 11600 West Airport Services Rd. (316) 612-5300 Swanton, OH 43558 (800) 488-3747 (419) 865-0551 (800) 497-4023 Long Beach Learning Center FlightSafety International Houston Learning Center Long Beach Municipal Airport FlightSafety International 4330 Donald Douglas Drive William P. Hobby Airport Long Beach, CA 90808 7525 Fauna at Airport Blvd. (562) 938- 0100 Houston, TX 77061 (800) 487-7670 (713) 393-8100 (800) 927-1521 Atlanta Learning Center FlightSafety International Paris Learning Center 1010 Toffie Terrace FlightSafety International Atlanta, GA 30354 BP 25 (678) 365-2700 Zone d’Aviation d’Affaires (800) 889-7916 Building 404, Aeroport du Bourget Le Bourget, CEDEX Lakeland Learning Center FRANCE FlightSafety International +33 (1) 49-92-1919 Lakeland Airport 2949 Airside Center Dr. Lakeland, FL 33811 (863) 646-5037 (800) 726-5037 Copyright © 2002 by FlightSafety International, Inc. All rights reserved. Printed in the United States of America. CONTENTS SYLLABUS Chapter 1 AIRCRAFT GENERAL Chapter 2 ELECTRICAL POWER SYSTEMS Chapter 3 LIGHTING Chapter 4 MASTER WARNING SYSTEM Chapter 5 FUEL SYSTEM Chapter 6 AUXILIARY POWER UNIT Chapter 7 POWERPLANT Chapter 8 FIRE PROTECTION Chapter 9 PNEUMATICS Chapter 10 ICE AND RAIN PROTECTION Chapter 11 AIR CONDITIONING Chapter 12 PRESSURIZATION Chapter 13 HYDRAULIC POWER SYSTEMS Chapter 14 LANDING GEAR AND BRAKES Chapter 15 FLIGHT CONTROLS Chapter 16 AVIONICS Chapter 17 MISCELLANEOUS SYSTEMS Chapter 18 WEIGHT AND BALANCE/PERFORMANCE GENERAL PILOT INFORMATION APPENDIX WALKAROUND ANNUNCIATOR PANEL INSTRUMENT PANEL POSTER v FOR TRAINING PURPOSES ONLY NOTICE The material contained in this training manual is based on information obtained from the aircraft manufacturer’s pilot manuals and maintenance manuals. It is to be used for familiarization and training purposes only. At the time of printing it contained then-current information. In the event of conflict between data provided herein and that in publications issued by the manufacturer or the FAA, that of the manufacturer or the FAA shall take precedence. We at FlightSafety want you to have the best training possible. We welcome any suggestions you might have for improving this manual or any other aspect of our training program. FOR TRAINING PURPOSES ONLY iii FlightSafety international SUPER KING AIR 200/B200 PILOT TRAINING MANUAL CHAPTER 1 AIRCRAFT GENERAL CONTENTS Page INTRODUCTION ................................................................................................................... 1-1 GENERAL............................................................................................................................... 1-1 AIRPLANE SYSTEMS........................................................................................................... 1-2 Electrical Power System .................................................................................................. 1-2 Lighting............................................................................................................................ 1-4 Master Warning System ................................................................................................... 1-5 Fuel System...................................................................................................................... 1-5 Powerplants...................................................................................................................... 1-6 Fire Protection.................................................................................................................. 1-8 Bleed-Air System............................................................................................................. 1-8 Ice and Rain Protection.................................................................................................... 1-8 Air Conditioning and Heating.......................................................................................... 1-9 Pressurization................................................................................................................. 1-10 Landing Gear and Brakes............................................................................................... 1-11 Flight Controls ............................................................................................................... 1-13 Pitot and Static Systems................................................................................................. 1-13 Oxygen System.............................................................................................................. 1-15 AIRPLANE STRUCTURES................................................................................................. 1-16 General........................................................................................................................... 1-16 Fuselage ......................................................................................................................... 1-19 Doors.............................................................................................................................. 1-20 FOR TRAINING PURPOSES ONLY 1-i FlightSafety international SUPER KING AIR 200/B200 PILOT TRAINING MANUAL Cabin Windows.............................................................................................................. 1-22 Control Locks ................................................................................................................ 1-23 1-ii FOR TRAINING PURPOSES ONLY FlightSafety international SUPER KING AIR 200/B200 PILOT TRAINING MANUAL ILLUSTRATIONS Figure Title Page 1-1 Simplified Electrical System.................................................................................... 1-2 1-2 Electrical Panel......................................................................................................... 1-3 1-3 External Power Socket ............................................................................................. 1-3 1-4 Overhead Light Control Panel (BB-1632 and After) ............................................... 1-4 1-5 Cabin Lights Control Switch (BB-1439, 1444 and After) ....................................... 1-4 1-6 Exterior Lights Control Switches............................................................................. 1-5 1-7 Fuel Control Panels .................................................................................................. 1-6 1-8 Engine Control Levers.............................................................................................. 1-7 1-9 Bleed-Air Valve Control........................................................................................... 1-8 1-10 Ice Protection Switches—Pilot’s Subpanel .............................................................. 1-8 1-11 Windshield Wiper Control Switch............................................................................ 1-9 1-12 Cabin Pressurization Controller ............................................................................. 1-11 1-13 Landing Gear Control Panel................................................................................... 1-12 1-14 Manual Extension Controls.................................................................................... 1-12 1-15 Parking Brake Handle ............................................................................................ 1-13 1-16 Flight Control Surfaces .......................................................................................... 1-14 1-17 Trim Tab Controls and Indicators .......................................................................... 1-14 1-18 Flap Control Lever ................................................................................................. 1-14 1-19 Pitot Tubes.............................................................................................................. 1-15 1-20 Static Ports ............................................................................................................. 1-15 1-21 Pilot’s Static Air Source Valve Handle .................................................................. 1-15 1-22 Cockpit Oxygen Handles ....................................................................................... 1-16 1-23 Airplane Dimensions (BB-1439, 1444 and After) ................................................. 1-17 FOR TRAINING PURPOSES ONLY 1-iii FlightSafety international SUPER KING AIR 200/B200 PILOT TRAINING MANUAL 1-24 Airplane Dimensions (Prior to BB-1444, except 1439)......................................... 1-18 1-25 Fuselage Stations and Compartments .................................................................... 1-19 1-26 Cockpit Layout (Typical) ....................................................................................... 1-20 1-27 Cabin Door............................................................................................................. 1-20 1-28 Door Handles ........................................................................................................
Recommended publications
  • MANUAL REVISION TRANSMITTAL Manual 146 (61-00-46) Propeller Owner's Manual and Logbook
    HARTZELL PROPELLER INC. One Propeller Place Piqua, Ohio 45356-2634 U.S.A. Telephone: 937.778.4200 Fax: 937.778.4391 MANUAL REVISION TRANSMITTAL Manual 146 (61-00-46) Propeller Owner's Manual and Logbook REVISION 3 dated June 2012 Attached is a copy of Revision 3 to Hartzell Propeller Inc. Manual 146. Page Control Chart for Revision 3: Remove Insert Page No. Page No. COVER AND INSIDE COVER COVER AND INSIDE COVER REVISION HIGHLIGHTS REVISION HIGHLIGHTS pages 5 and 6 pages 5 and 6 SERVICE DOCUMENTS LIST SERVICE DOCUMENTS LIST pages 11 and 12 pages 11 and 12 LIST OF EFFECTIVE PAGES LIST OF EFFECTIVE PAGES pages 15 and 16 pages 15 and 16 TABLE OF CONTENTS TABLE OF CONTENTS pages 17 thru 24 pages 17 thru 26 INTRODUCTION INTRODUCTION pages 1-1 thru 1-14 pages 1-1 thru 1-16 DESCRIPTION AND DESCRIPTION AND OPERATION OPERATION pages 2-1 thru 2-20 pages 2-1 thru 2-24 INSTALLATION AND INSTALLATION AND REMOVAL REMOVAL pages 3-1 thru 3-22 pages 3-1 thru 3-24 TESTING AND TESTING AND TROUBLESHOOTING TROUBLESHOOTING pages 4-1 thru 4-10 pages 4-1 thru 4-10 continued on next page Page Control Chart for Revision 3 (continued): Remove Insert Page No. Page No. INSPECTION AND INSPECTION AND CHECK CHECK pages 5-1 thru 5-24 pages 5-1 thru 5-26 MAINTENANCE MAINTENANCE PRACTICES PRACTICES pages 6-1 thru 6-36 pages 6-1 thru 6-38 DE-ICE SYSTEMS DE-ICE SYSTEMS pages 7-1 thru 7-6 pages 7-1 thru 7-6 NOTE 1: When the manual revision has been inserted in the manual, record the information required on the Record of Revisions page in this manual.
    [Show full text]
  • DLE-20 Operator’S Manual
    DLE-20 Operator’s Manual Specifications Displacement: 20cc [1.2cu. in.] Performance: 2.5HP / 9,000 rpm Idle Speed: 1,700 rpm Ignition Style: Electronic Ignition Recommended Propellers: 14u10, 15 u8, 16u6, 16u8, 17u6 Spark Plug Type: CM6 (Gap) 0.018in.– 0.020 in. [0.45mm –0.51mm] Diameter × Stroke: 1.26in. [32mm] u0.98in. [25 mm] Compression Ratio: 10.5 :1 Carburetor: DLE MP 148 100424 with Manual Choke Weight: Main Engine − 1.43 lb [650g] Muffler − 1.76 oz [50 g] Electronic Ignition − 4.23oz [120 g] ™ Fuel: 87− 93 Octane Gasoline with a 30:1 gas/2-stroke (2-cycle) oil mixture 1 © 2010 Hobbico®, Inc. DLEG0020 Mnl Parts List (1) DLE-20cc Gas Engine w/DLE MP 148 100424 (1) DLE Spark Plug (NGK CM6 size) with additional spring (1) Muffl er with gasket (2) 4 x 14 mm SHCS (muffl er mounting) (1) Electronic Ignition Module with additional tachometer lead (1) Silicone Pick-up Wire Cover / Ignition Wire Cover (1) Red Three Pin Connector Lead with Pig Tail (ignition switch) (1) Long Throttle Arm Extension with installation screw and nut (2) Three Pin Connector Securing Clips (1) DLE Decal (not pictured) Safety Tips and Warnings ● This engine is not a toy. Please place your safety and the safety of others paramount while operating. DLE will not be held responsible for any safety issues or accidents involving this engine. ● Operate the engine in a properly ventilated area. ● Before starting the engine, please make sure all components including the propeller and the engine mount are secure and tight.
    [Show full text]
  • Cranfield University Xue Longxian Actuation
    CRANFIELD UNIVERSITY XUE LONGXIAN ACTUATION TECHNOLOGY FOR FLIGHT CONTROL SYSTEM ON CIVIL AIRCRAFT SCHOOL OF ENGINEERING MSc by Research THESIS CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING MSc by Research THESIS Academic Year 2008-2009 XUE LONGXIAN Actuation Technology for Flight Control System on Civil Aircraft Supervisor: Dr. C. P. Lawson Prof. J. P. Fielding January 2009 This thesis is submitted in fulfilment of the requirements for the degree of Master of Science © Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ABSTRACT This report addresses the author’s Group Design Project (GDP) and Individual Research Project (IRP). The IRP is discussed primarily herein, presenting the actuation technology for the Flight Control System (FCS) on civil aircraft. Actuation technology is one of the key technologies for next generation More Electric Aircraft (MEA) and All Electric Aircraft (AEA); it is also an important input for the preliminary design of the Flying Crane, the aircraft designed in the author’s GDP. Information regarding actuation technologies is investigated firstly. After initial comparison and engineering consideration, Electrohydrostatic Actuation (EHA) and variable area actuation are selected for further research. The tail unit of the Flying Crane is selected as the case study flight control surfaces and is analysed for the requirements. Based on these requirements, an EHA system and a variable area actuation system powered by localised hydraulic systems are designed and sized in terms of power, mass and Thermal Management System (TMS), and thereafter the reliability of each system is estimated and the safety is analysed.
    [Show full text]
  • Service Instruction No
    652 Oliver Street SERVICE Williamsport, PA. 17701 U.S.A. Telephone +1 (877) 839-7878 (U.S. and Canada) Telephone +1 (570) 327-7222 (International) Fax +1 (570) 327-7101 Email [email protected] INSTRUCTION www.lycoming.com DATE: April 24, 2020 Service Instruction No. 1009BE (Supersedes Service Instruction No. 1009BD) Engineering Aspects are FAA Approved SUBJECT: Time Between Overhaul (TBO) Schedules MODELS AFFECTED: Lycoming Engine Models Defined Herein REASON FOR REVISION: Added a new paragraph at the end of the Operating Hour Time Period TBO section. Added new engine model IO-390-D to Table 1. Revised Table 2 to include separate listings for engine model O-540-F1B5 for the Robinson R44 and R44 Cadet. Revised Note 10 to include reference to Note 6. Revised the paragraph after the CAUTION in the CALENDAR TIME PERIOD TBO section. Revised Note 15,c. NOTICE: Incomplete review of all the information in this document can cause errors. Read the entire Service Instruction to make sure you have a complete understanding of the requirements. This Service Instruction identifies the Calendar Time Period in years and the Operating Hour Time Period in hours of engine operation for the Time Between Overhaul (TBO) for certified Lycoming engine models operated and maintained in compliance with all applicable Lycoming Technical Publications and FAA Airworthiness Directives. The TBOs stated in this Service Instruction do not apply to engines that: a. Do not conform to the original engine model type certificate configuration; b. Have been assembled, repaired, or overhauled with FAA-PMA parts, where the FAA-PMA parts have not been approved for use by Lycoming (contact Lycoming for information regarding FAA-PMA parts approved for use by Lycoming); c.
    [Show full text]
  • Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
    PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they sometimes fail. Some of these failures and malfunctions cannot be duplicated well in the simulator, which can cause recognition difficulties when they happen in actual operation. This text is not meant to replace other instructional texts. However, completion of the material can provide pilots with additional understanding of turbopropeller operation and the handling of malfunctions. GENERAL PROPELLER PRINCIPLES Propeller and engine system designs vary widely. They range from wood propellers on reciprocating engines to fully reversing and feathering constant- speed propellers on turbine engines. Each of these propulsion systems has the similar basic function of producing thrust to propel the airplane, but with different control and operational requirements. Since the full range of combinations is too broad to cover fully in this summary, it will focus on a typical system for transport category airplanes - the constant speed, feathering and reversing propellers on turbine engines. Major propeller components The propeller consists of several blades held in place by a central hub. The propeller hub holds the blades in place and is connected to the engine through a propeller drive shaft and a gearbox. There is also a control system for the propeller, which will be discussed later. Modern propellers on large turboprop airplanes typically have 4 to 6 blades. Other components typically include: The spinner, which creates aerodynamic streamlining over the propeller hub. The bulkhead, which allows the spinner to be attached to the rest of the propeller.
    [Show full text]
  • Service Bulletin P&Wc S.B
    Caravan SERVICE LETTER CAL-72-01 TITLE ENGINE - TRANSMITTAL OF P&WC S.B. NO. 1903R2 EFFECTIVITY MODEL SERIAL NUMBERS 208B 208B5000 and On REASON The purpose of this service letter is to transmit P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency. DESCRIPTION Pratt & Whitney Canada (P&WC) has issued P&WC S.B. No. 1903R2 to provide information on recommended basic operating Time Between Overhaul (TBO) and to specify a recommended initial Hot Section Inspection (HSI) frequency. The TBO and HSI intervals are the two major scheduled inspections, and are defined in S.B. No. 1903R2. Caravan EX operators should notice that P&WC S.B. No. 1903R2 specifies a life limit for the motive flow shut-off valve, P/N 3076615-04, of 100 hours. P&WC has stated that they will cover the warranty costs to replace the motive flow shut-off valve P/N 3076615-04 until such time as a newly designed valve with a new part number is specified for use by P&WC. Warranty claims for parts and labor should be filed through Cessna Service Parts and Programs in accordance with standard procedures. COMPLIANCE INFORMATIONAL. This service letter is for informational purposes only. MATERIAL AVAILABILITY P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency REFERENCES P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency CAL-72-01 March 14, 2013 Page1of1 Cessna Aircraft Company, Cessna Customer Service, P.O.
    [Show full text]
  • Epic Performance for Tнe Entire King Air 200 Family
    BEECHCRAFT KING AIR B200GT EPIC PERFORMANCE FOR THE B200 ENTIRE KING AIR 200 FAMILY... 200 ...utilizing Swept Blade Technology Simply more of what you bought your King Air for! THE ELEMENTS OF RAISBECK’S 200-SERIES EPIC PERFORMANCE PACKAGE (Elements available separately) SWEPT BLADE TURBOFAN PROPELLERS RAM AIR RECOVERY SYSTEM ENHANCED PERFORMANCE LEADING EDGES DUAL AFT BODY STRAKES HIGH FLOTATION GEAR DOORS OPTIONAL CROWN WING LOCKERS Diaphragm Seal Particle Separator with flap Ice Shedder Turning Vane Flap Bypass Door Seal Benefits Benefits Benefits Benefits Benefits Benefits • Stunning ramp presence • Significantly increases climb and cruise • Cruise speeds and range are increased • Passenger ride quality is improved • Climb and cruise performance of standard- • FAA-certified to carry 600 pounds total cargo in • Quiet and virtually vibrationless operation performance in both normal and anti-ice • Stall speeds and characteristics are improved • Pilot control and handling qualities are gear King Airs is restored 17 cubic feet of luggage space from takeoff to touchdown operating modes • Air conditioning and cooling are more efficient enhanced • Cruise speed is increased 8 to 12 knots • Returns your cabin to your passengers • Certified around the world to meet the most • Protects against FOD—deployable for all • Outboard wing fatigue life is inherently • Air Minimum Control Speed is inherently depending on altitude • Handles skis, snowboards, camping and stringent regulations and noise requirements ground, takeoff and landing operations
    [Show full text]
  • Turbofan Engine Malfunction Recognition and Response Final Report
    07/17/09 Turbofan Engine Malfunction Recognition and Response Final Report Foreword This document summarizes the work done to develop generic text and video training material on the recognition and appropriate response to turbofan engine malfunctions, and to develop a simulator upgrade package improving the realism of engine malfunction simulation. This work was undertaken as a follow-on to the AIA/AECMA report on Propulsion System Malfunction Plus Inappropriate Crew Response (PSM+ICR), published in 1998, and implements some of the recommendations made in the PSM+ICR report. The material developed is closely based upon the PSM+ICR recommendations. The work was sponsored and co-chaired by the ATA and FAA. The organizations involved in preparation and review of the material included regulatory authorities, accident investigation authorities, pilot associations, airline associations, airline operators, training companies and airplane and engine manufacturers. The FAA is publishing the text and video material, and will make the simulator upgrade package available to interested parties. Reproduction and adaptation of the text and video material to meet the needs of individual operators is anticipated and encouraged. Copies may be obtained by contacting: FAA Engine & Propeller Directorate ANE-110 12 New England Executive Park Burlington, MA 01803 1 07/17/09 Contributing Organizations and Individuals Note: in order to expedite progress and maximize the participation of US airlines, it was decided to hold all meetings in North America. European regulators, manufacturers and operators were both invited to attend and informed of the progress of the work. Air Canada Capt. E Jokinen ATA Jim Mckie AirTran Capt. Robert Stienke Boeing Commercial Aircraft Van Winters CAE/ Flight Safety Boeing Capt.
    [Show full text]
  • Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System
    Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System Multiple Launch Rocket System (MLRS) APU KEY FEATURES: − 8.5 kW 28 VDC Power Output − 18,500 BTU Net Cooling Capacity ECU Condenser GENERAL PRODUCT DESCRIPTION: The MLS Auxiliary Power Unit brushless, permanent magnet conditions. /Environmental Control Unit generator. The generator system (APU/ECU) has been designed to output and Engine power is The APU gross weight is under provide electrical power and controlled by a variable speed 330 pounds with the ECU cooling to the MLRS tracked governor which, depending on weighing 150 lbs. The System vehicle. Both systems can operate system load, optimizes the engine provides 18,500 Btu/hr cooling independently of one another. The operating speed. The vapor cycle capacity and 8.5 kW at 28-vDC ECU is completely electrically air conditioning system is power output (with voltage ripple driven and can be operated from designed to be in compliance with independent of the engine speed the main engine alternators or the the current environmental or load at less than 100 mV APU. regulations using R-134a RMS). refrigerant and is capable of The power plant is a Hatz 2G-40 operating in severe desert air-cooled diesel engine with a conditions. Its power draw is 150 shaft mounted three-phase amps at 28-vDC at full load APU/ECU FOR MILITARY APPLICATIONS Auxiliary Power Unit / Environmental Control Unit (APU/ECU) for the Multiple Launch Rocket System Condenser Assembly APU Evaporator Assembly Overall APU/ECU Specifications: Exterior Dimensions (L x W x H)........................................…...........
    [Show full text]
  • Prof. Paul Stephen Dempsey
    AIRLINE ALLIANCES by Paul Stephen Dempsey Director, Institute of Air & Space Law McGill University Copyright © 2008 by Paul Stephen Dempsey Before Alliances, there was Pan American World Airways . and Trans World Airlines. Before the mega- Alliances, there was interlining, facilitated by IATA Like dogs marking territory, airlines around the world are sniffing each other's tail fins looking for partners." Daniel Riordan “The hardest thing in working on an alliance is to coordinate the activities of people who have different instincts and a different language, and maybe worship slightly different travel gods, to get them to work together in a culture that allows them to respect each other’s habits and convictions, and yet work productively together in an environment in which you can’t specify everything in advance.” Michael E. Levine “Beware a pact with the devil.” Martin Shugrue Airline Motivations For Alliances • the desire to achieve greater economies of scale, scope, and density; • the desire to reduce costs by consolidating redundant operations; • the need to improve revenue by reducing the level of competition wherever possible as markets are liberalized; and • the desire to skirt around the nationality rules which prohibit multinational ownership and cabotage. Intercarrier Agreements · Ticketing-and-Baggage Agreements · Joint-Fare Agreements · Reciprocal Airport Agreements · Blocked Space Relationships · Computer Reservations Systems Joint Ventures · Joint Sales Offices and Telephone Centers · E-Commerce Joint Ventures · Frequent Flyer Program Alliances · Pooling Traffic & Revenue · Code-Sharing Code Sharing The term "code" refers to the identifier used in flight schedule, generally the 2-character IATA carrier designator code and flight number. Thus, XX123, flight 123 operated by the airline XX, might also be sold by airline YY as YY456 and by ZZ as ZZ9876.
    [Show full text]
  • IAG Results Presentation
    IAG results presentation Full Year 2019 28 February 2020 2019 Highlights Willie Walsh, Chief Executive Officer Continued progress against strategic objectives FY 2019 strategic highlights • Strengthen portfolio of world-class brands and operations − Announced planned acquisition of Air Europa, subject to regulatory approvals − British Airways new Club Suite on 5 aircraft (4 A350s, 1 B777) and in-flight product enhancements (amenities, catering, new World Traveller Plus seat, Wi-Fi rollout. Revamped lounges – Geneva, Johannesburg, Milan, New York JFK, SFO − Iberia Madrid lounge refurbishment and completion of premium economy long-haul rollout − Strong NPS increase by 9.5 points to 25.8, driven by British Airways and Vueling, target of 33 by 2022 − LEVEL expansion at Barcelona and roll-out to Amsterdam • Grow global leadership positions − North America traffic (RPK) growth of 3.6% − New destinations – Charleston (BA), Minneapolis (Aer Lingus), Pittsburgh (BA) − LEVEL – new route Barcelona to New York − Latin America and Caribbean traffic growth of 15.6% − Iberia - higher frequencies on existing routes − LEVEL – new route Barcelona to Santiago − British Airways – increased economy seating ex-LGW on Caribbean routes − Intra-Europe traffic growth of 3.8% - Domestic +10.1% (mainly Spain), Europe +2.2% − Asia traffic growth of 5.0% – British Airways new routes to Islamabad and Osaka, signed joint business agreement with China Southern Airlines • Enhance IAG’s common integrated platforms − Launched ‘Flightpath net zero’ carbon emissions by 2050
    [Show full text]
  • Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
    AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft
    [Show full text]