Final Report," Jet Propulsion Laboratory, Pasadena, CA 982- R120461, 1 Oct 2005 2005

Total Page:16

File Type:pdf, Size:1020Kb

Final Report, SCIENCE AND ENABLING TECHNOLOGIES FOR THE EXPLORATION OF THE INTERSTELLAR MEDIUM Image Credit: Charles Carter / Keck Institute for Space Studies Study report prepared for the Keck Institute for Space Studies Opening workshop: September 8–11, 2014 Web-link: https://kiss.caltech.edu/workshops/ism/ism.html Closing workshop: January 13–15, 2015 Web-link: https://kiss.caltech.edu/workshops/ism/ism2.html Study Co-leads: Edward Stone (Caltech), Leon Alkalai (JPL), Louis Friedman (The Planetary Society) Study Members: Nitin Arora (JPL), Manan Arya (Caltech), Nathan Barnes (L. Garde Inc.), Travis Brashears (UC Santa Barbara), Mike Brown (Caltech), Paul Wilson Cauley (Wesleyan University), Robert J. Cesarone (JPL), Freeman Dyson (Institute for Advanced Study), Darren Garber (NXTRAC), Paul Goldsmith (JPL), Mae Jemison (100 Year Starship), Les Johnson (NASA-MSFC), Paulett Liewer (JPL), Philip Lubin (UC Santa Barbara), Claudio Maccone (IAA), Jared Males (University of Arizona), Kyle McDonough (UC Santa Barbara), Ralph L. McNutt, Jr. (JHU/APL), Richard Mewaldt (Caltech), Adam Michael (Boston University), Edward Montgomery (Space and Missile Defense Command), Merav Opher (Boston University), Elena Provornikova (Catholic University of America), Jamie Rankin (Caltech), Seth Redfield (Wesleyan University), Michael Shao (JPL), Robert Shotwell (JPL), Nathan Strange (JPL), Thomas Svitek (Stellar Exploration, Inc.), Mark Swain (JPL), Slava Turyshev (JPL), Michael Werner (JPL), Gary Zank (University of Alabama) i Participants in the 2nd KISS Workshop on “The Science and Enabling Technologies for the Exploration of the Interstellar Medium (ISM)” at the KISS facilities, California Institute of Technology, January 13-15, 2015. Workshop participants (some of the named participants below are not in the photo): Nitin Arora (JPL), Manan Arya (Caltech), Nathan Barnes (L. Garde Inc.), Travis Brashears (UC Santa Barbara), Mike Brown (Caltech), Paul Wilson Cauley (Wesleyan University), Robert J. Cesarone (JPL), Freeman Dyson (Institute for Advanced Study), Darren Garber (NXTRAC), Paul Goldsmith (JPL), Mae Jemison (100 Year Starship), Les Johnson (NASA-MSFC), Paulett Liewer (JPL), Philip Lubin (UC Santa Barbara), Claudio Maccone (IAA), Jared Males (University of Arizona), Kyle McDonough (UC Santa Barbara), Ralph L. McNutt, Jr. (JHU/APL), Richard Mewaldt (Caltech), Adam Michael (Boston University), Edward Montgomery (Space and Missile Defense Command), Merav Opher (Boston University), Elena Provornikova (Catholic University of America), Jamie Rankin (Caltech), Seth Redfield (Wesleyan University), Michael Shao (JPL), Robert Shotwell (JPL), Nathan Strange (JPL), Thomas Svitek (Stellar Exploration, Inc.), Mark Swain (JPL), Slava Turyshev (JPL), Michael Werner (JPL), Gary Zank (University of Alabama). ii TABLE OF CONTENTS Part A: Executive Summary ............................................................................ 1 Introduction ...................................................................................................................................... 1 Science Rationale ............................................................................................................................ 2 Part B: Overview of Previous Studies ......................................................... 7 Part C: Interstellar Medium Science and Instrumentation .............. 15 Chapter C.1: Science of the Outer Heliosphere and Nearby ISM ............................. 17 Chapter C.2: Science of the Pristine ISM ............................................................................ 30 Chapter C.3: Science of the Outer Solar System: Zodiacal Background, Dust, and Kuiper Belt Object Science ....................................................................................................... 34 Chapter C.4: Cosmic Background, Solar Wind and Perihelion Science ................ 38 Chapter C.5: Astrophysics Science ....................................................................................... 41 Chapter C.6: Science Instrumentation for Exploration of the ISM ......................... 48 Part D: Reaching the Local Interstellar Medium .................................. 51 Chapter D.1: A Mission to the Local ISM ............................................................................ 51 Chapter D.2: On-Board Probe-Propulsion Trades for a Near Term Missions to the ISM ........................................................................................................................................ 60 Part E: Journey Towards Another Star .................................................... 67 Chapter E.1: Enabling New Technologies ......................................................................... 67 Chapter E.2: Near-Term Technology Demonstration Missions............................... 73 Part F: The Path Forward ............................................................................. 75 References ......................................................................................................... 77 iii iv PART A: EXECUTIVE SUMMARY Introduction ...................................................................................................................................... 1 Science Rationale ............................................................................................................................ 2 A. Heliophysics Measurements: Breakthrough In-situ Science ............................................ 2 B. Astrophysics Measurements ......................................................................................................... 4 1. Zodiacal Dust...................................................................................................................................................... 4 2. Fundamental Physics ..................................................................................................................................... 4 3. Astrometry .......................................................................................................................................................... 5 C. Kuiper Belt Object Science: Visiting a Dwarf Planet ............................................................ 5 D. What Is a Reasonable First Step Towards Another Star? .................................................. 5 INTRODUCTION This report summarizes two very exciting and illuminating KISS workshops held on September 8, 2014 and January 12, 2015 entitled, “Science and Enabling Technologies for the Exploration of the Interstellar Medium (ISM),” led by Edward Stone (Caltech), Leon Alkalai (JPL), and Louis Friedman (The Planetary Society, Co-Founder and Executive Director Emeritus). The timing for these workshops aligned with two recent events related to the exploration of the ISM: in September 2013, Caltech professor and Voyager Project Scientist Edward Stone announced that the Voyager 1 spacecraft had detected the Heliopause a year earlier, in August 2012 [1]. Unrelated to this, the Kepler Space Telescope’s search for exoplanets (planets around other stars) has yielded spectacular results, including the detection of Earth-like planets. Thus, the vast space between our star and those with potentially habitable planets is slowly emerging into focus. This raises the question, “When and how will humanity bridge this divide and reach toward such destinations?” Even more compelling is the question, “What is a reasonable first step in that direction?” knowing full well that reaching another star is far beyond our current technical capability. The workshops brought together over thirty scientists and engineers to address the following key questions: • Is there compelling science to be achieved on the way to, at, and in the ISM? • What is a reasonable first step in the long road ahead? • What are some of the enabling technologies required to reach beyond our solar system? The answers to these questions were formulated in terms of 1) Astrophysics and Planetary science on the way to the ISM at 5–100 AU, which would include the zodiacal background and dust measurements and flyby of one or more Kuiper Belt Objects (KBOs); 2) Heliophysics measurements to obtain a better understanding of the complex environments inside and outside the protective bubble created by our Sun as it travels through the ISM; 3) and Astrophysics from the vantage point of being in the ISM at 100–700 AU, including parallax science, gravitational measurements, and the imaging of exoplanets using gravitational lensing. A major technological breakthrough endorsed by the team was the ability to reach the ISM in a much shorter timeframe than Voyager—approximately 10 years, compared to Voyager’s 36. Equipped with the study results produced by the JPL Blue Sky (Think Tank, December 2013) and Team-X (Mission Design, December 2014), the workshop team was presented with a Design Reference Mission (DRM 1.0) that would: (a) launch on NASA’s Space Launch System (SLS) in the mid-2020s; (b) perform a Jupiter gravity assist; (c) have a perihelion burn at 3–4 solar radii; (d) reach the Local ISM (LISM) within 10 years; and (e) achieve solar system escape velocities of >13 AU/year, reaching deep into the pristine ISM (>200 AU) in 20–30 years. Adding a KBO flyby could be considered in future studies. 1 The team also recognized that the proposed near-term capability to reach the ISM quickly (10–15 years) and leave the Heliopause at high velocities (>13 AU/year) does not scale well for missions to reach other stars. To make this
Recommended publications
  • From: "MESSENGER, SCOTT R
    The Starting Materials In: Meteorites and the Early Solar System II S. Messenger Johnson Space Center S. Sandford Ames Research Center D. Brownlee University of Washington Combined information from observations of interstellar clouds and star forming regions and studies of primitive solar system materials give a first order picture of the starting materials for the solar system’s construction. At the earliest stages, the presolar dust cloud was comprised of stardust, refractory organic matter, ices, and simple gas phase molecules. The nature of the starting materials changed dramatically together with the evolving solar system. Increasing temperatures and densities in the disk drove molecular evolution to increasingly complex organic matter. High temperature processes in the inner nebula erased most traces of presolar materials, and some fraction of this material is likely to have been transported to the outermost, quiescent portions of the disk. Interplanetary dust particles thought to be samples of Kuiper Belt objects probably contain the least altered materials, but also contain significant amounts of solar system materials processed at high temperatures. These processed materials may have been transported from the inner, warmer portions of the disk early in the active accretion phase. 1. Introduction A principal constraint on the formation of the Solar System was the population of starting materials available for its construction. Information on what these starting materials may have been is largely derived from two approaches, namely (i) the examination of other nascent stellar systems and the dense cloud environments in which they form, and (ii) the study of minimally altered examples of these starting materials that have survived in ancient Solar System materials.
    [Show full text]
  • Asteroidal Dust 423
    Dermott et al.: Asteroidal Dust 423 Asteroidal Dust Stanley F. Dermott University of Florida Daniel D. Durda Southwest Research Institute Keith Grogan NASA Goddard Space Flight Center Thomas J. J. Kehoe University of Florida There is good evidence that the high-speed, porous, anhydrous chondritic interplanetary dust particles (IDPs) collected in Earth’s stratosphere originated from short-period comets. How- ever, by considering the structure of the solar-system dust bands discovered by IRAS, we are able to show that asteroidal collisions are probably the dominant source of particles in the zodiacal cloud. It follows that a significant and probably the dominant fraction of the IDPs collected in Earth’s stratosphere also originated from asteroids. IDPs are the most primitive particles in the inner solar system and represent a class of material quite different from that in our meteorite collections. The structure, mineralogy, and high C content of IDPs dictate that they cannot have originated from the grinding down of known meteorite types. We argue that the asteroidal IDPs were probably formed as a result of prolonged mechanical mixing in the deep regoliths of asteroidal rubble piles in the outer main belt. 1. INTRODUCTION information on the nature of the particles in the preplanetary solar nebula (Bradley, 1999). Observations of microcraters In our collections on Earth, we have an abundance of on the Long Duration Exposure Facility (LDEF) confirmed meteorite samples from three major sources of extraterres- that each year Earth accretes 3 × 107 kg of dust particles, a trial material: the asteroid belt, the Moon, and Mars. Some mass influx ~100× greater than the influx associated with of the source bodies of these meteorites have experienced the much larger meteorites that have masses between 100 g major physical, chemical, and mineralogical changes since and 1000 kg.
    [Show full text]
  • Urea, Glycolic Acid, and Glycerol in an Organic Residue Produced by Ultraviolet Irradiation of Interstellar=Pre-Cometary Ice Analogs
    ASTROBIOLOGY Volume 10, Number 2, 2010 ª Mary Ann Liebert, Inc. DOI: 10.1089=ast.2009.0358 Urea, Glycolic Acid, and Glycerol in an Organic Residue Produced by Ultraviolet Irradiation of Interstellar=Pre-Cometary Ice Analogs Michel Nuevo,1,2 Jan Hendrik Bredeho¨ft,3 Uwe J. Meierhenrich,4 Louis d’Hendecourt,1 and Wolfram H.-P. Thiemann3 Abstract More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH3OH:NH3 ¼ 1:1 ice mixture was UV irradiated at *80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar=pre-cometary conditions are proposed.
    [Show full text]
  • Deuterium – Tritium Pulse Propulsion with Hydrogen As Propellant and the Entire Space-Craft As a Gigavolt Capacitor for Ignition
    Deuterium – Tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition. By F. Winterberg University of Nevada, Reno Abstract A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus. 1. Introduction The idea to use the 80% of the neutron energy released in the DT fusion reaction for nuclear micro-bomb rocket propulsion, by surrounding the micro-explosion with a thick layer of liquid hydrogen heated up to 105 K thereby becoming part of the exhaust, was first proposed by the author in 1971 [1]. Unlike the Orion pusher plate concept, the fire ball of the fully ionized hydrogen plasma can here be reflected by a magnetic mirror. The 80% of the energy released into 14MeV neutrons cannot be reflected by a magnetic mirror for thermonuclear micro-bomb propulsion. This was the reason why for the Project Daedalus interstellar probe study of the British Interplanetary Society [2], the neutron poor deuterium-helium 3 (DHe3) reaction was chosen.
    [Show full text]
  • The Analysis of Interplanetary Dust Particles
    WORKSHOP ON THE ANALYSIS OF INTERPLANETARY DUST PARTICLES LPI Technical Report Number 94-02 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPIITR--94-02 WORKSHOP ON THE ANALYSIS OF INTERPLANETARY DUST PARTICLES Edited by M. Zolensky Held at Lunar and Planetary Institute May 15-17, 1993 Sponsored by Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 94-02 LPIITR--94-02 Compiled in 1994 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the University Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as M. Zolensky, ed. (1994) Workshop on the Analysis ofInterplanetary Dust Particles. LPI Tech. Rpt. 94-02, Lunar and Planetary Institute, Houston. 62 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mail order requestors will be invoiced for the cost of shipping and handling. Cover. Backscattered electron image of a hydrated, chondritic interplanetary dust particle, measuring 17).1m across. LPT Technical Report 94-02 iii Program Saturday, May 15, 1993 7:30-8:30 a.m. Registration and Continental Breakfast 8:30 a.m.-5:00 p.m. INVITED PRESENTATIONS AND DISCUSSION TOPICS An Overview ofthe Origin and Role ofDust in the Early Solar System D.
    [Show full text]
  • Production of Cosmic Dust by Hydrous and Anhydrous Asteroids: Implications for the Production of Interplanetary Dust Particles and Micrometeorites
    40th Lunar and Planetary Science Conference (2009) 1164.pdf PRODUCTION OF COSMIC DUST BY HYDROUS AND ANHYDROUS ASTEROIDS: IMPLICATIONS FOR THE PRODUCTION OF INTERPLANETARY DUST PARTICLES AND MICROMETEORITES. G. J. Flynn 1, D. D. Durda 2, M. A. Minnick 3, and M. Strait 3. 1Dept. of Physics, SUNY-Plattsburgh, 101 Broad St., Platts- burgh, NY 12901 ([email protected]), 2Southwest Research Institute, 1050 Walnut St., Suite 300, Boul- der, CO, 80302. 3Department of Chemistry, Alma College, Alma, MI 48801 Introduction: In our Solar System the asteroid Measurements: We have performed disruption ex- belt is compositionally zoned, with the asteroids simi- periments on four hydrous meteorite targets, Murchi- lar in reflection spectrum to the carbonaceopus meteor- son and three CM2 meteorites recovered from the Ant- ites dominating the outer-half of the main belt. In the arctic. The projectiles in these experiments were 1/8 th outer-half of the main belt about one-half of the carbo- inch diameter aluminum spheres fired at the meteorite naceous asteroids are hydrous, based on their infrared targets at speeds comparable to the collision velocities spectra [1]. The asteroids in the inner-half of the main in the main-belt. belt are predominantly anhydrous. Thus, about one- Each meteorite target was surrounded by “passive quarter of the main belt asteroids are hydrous. detectors” that included three thicknesses of aluminum Because dust particles from the main-belt asteroids foil to monitor the size of the small debris from the generally encounter the Earth with lower relative ve- distrption. The foil hole diameters were measured, and locities than dust from comets [2], asteroidal dust ex- converted to impacting particle diameters using the periences much less severe atmospheric entry heating calibration data of Hörz et al.
    [Show full text]
  • Silicon Wafer Integration of Ion Electrospray Thrusters Noah Wittel
    Silicon Wafer Integration of Ion Electrospray Thrusters by Noah Wittel Siegel B.S., United States Military Academy (2018) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author.............................................................. Department of Aeronautics and Astronautics May 19, 2020 Certified by. Paulo C. Lozano M. Alemán-Velasco Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by . Sertac Karaman Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Silicon Wafer Integration of Ion Electrospray Thrusters by Noah Wittel Siegel Submitted to the Department of Aeronautics and Astronautics on May 19, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract Combining efficiency, simplicity, compactness, and high specific impulse, electrospray thrusters provide a unique solution to the problem of active control in the burgeoning field of miniature satellites. With the potential of distributed systems and low cost functionality currently being realized through development of increasingly smaller spacecraft, thruster research must adjust accordingly. The logical limit of this rapidly accelerating trend is a fully integrated silicon wafer satellite. Such a large surface area to volume ratio, however, both necessitates propulsion capability and renders other mechanisms of control unfeasible due to their respective form factors. While development of electrospray thrusters has exploded in the past two decades, current architectures are similarly incompatible with a silicon wafer substrate. This thesis examines the design and testing of a novel hybrid electrospray archi- tecture which combines previous successes of both capillary and externally-wetted ge- ometries.
    [Show full text]
  • The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
    Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery,
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Space Propulsion.Pdf
    Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles.
    [Show full text]
  • A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense Abstract We Argue That It Is Essential Fo
    LA-UR-15-23198 A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense G. A. Wurden1, T. E. Weber1, P. J. Turchi2, P. B. Parks3, T. E. Evans3, S. A. Cohen4, J. T. Cassibry5, E. M. Campbell6 1Los Alamos National Laboratory 2Santa Fe, NM 3General Atomics 4Princeton Plasma Physics Laboratory 5University of Alabama, Huntsville 6Sandia National Laboratory Abstract We argue that it is essential for the fusion energy program to identify an imagination- capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible. The US Department of Energy’s magnetic fusion research program, based in its Office of Science, focuses on plasma and fusion science1 to support the long term goal of environmentally friendly, socially acceptable, and economically viable electricity production from fusion reactors.2 For several decades the US magnetic fusion program has had to deal with a lack of urgency towards and inconsistent funding for this ambitious goal. In many American circles, fusion isn’t even at the table3 when it comes to discussing future energy production. Is there another, more urgent, unique, and even more important application for fusion? Fusion’s unique application As an on-board power source and thruster for fast propulsion in space,4 a fusion reactor would provide unparalleled performance (high specific impulse and high specific power) for a spacecraft.
    [Show full text]
  • Liquid Water on Mars
    Report, Planetary Sciences Unit (AST80015), Swinburne Astronomy Online Preprint typeset using LATEX style emulateapj v. 12/16/11 LIQUID WATER ON MARS M. Usatov1 Report, Planetary Sciences Unit (AST80015), Swinburne Astronomy Online ABSTRACT Geomorphological, mineralogical and other evidence of the conditions favoring the existence of water on Mars in liquid phase is reviewed. This includes signatures of past and, possibly, present aqueous environments, such as the northern ocean, lacustrine environments, sedimentary and thermokarst landforms, glacial activity and water erosion features. Reviewed also are hydrous weathering processes, observed on surface remotely and also via analysis of Martian meteorites. Chemistry of Martian water is discussed: the triple point, salts and brines, as well as undercooled liquid interfacial and solid-state greenhouse effect melted waters that may still be present on Mars. Current understanding of the evolution of Martian hydrosphere over geological timescales is presented from early period to the present time, along with the discussion of alternative interpretations and possibilities of dry and wet Mars extremes. 1. INTRODUCTION morphological and mineralogical evidence of aqueous en- The presence of water on Earth, as seen from space, vironments available in the past and, possibly, present can be implied from the observations of low-albedo fea- time is presented in x3 which will be correlated with the tures, like seas and oceans, fluvial features on its sur- current understanding of the evolution of Martian hy- face, atmospheric phenomena, polar ice caps, and the drosphere at x4. Alternative (dry) interpretations of the snow cover exhibiting seasonal variations, not to mention evidence are discussed in x5. spectroscopy.
    [Show full text]