Open Innovation Practices in the Development of Wind Energy Supply Chain: an Exploratory Analysis of the Literature

Total Page:16

File Type:pdf, Size:1020Kb

Open Innovation Practices in the Development of Wind Energy Supply Chain: an Exploratory Analysis of the Literature http://dx.doi.org/10.4322/pmd.2013.004 Open innovation practices in the development of wind energy supply chain: an exploratory analysis of the literature Mario Orestes Aguirre González, Marcela Squires Galvão, Samira Yusef Araújo de Falani, Joeberson dos Santos Gonçalves, Lorena Tâmara Sena da Silva Federal University of Rio Grande do Norte e-mails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] Abstract: The open innovation approach and its practice in technological innovation projects have been revealed in the literature and observed in practice companies as an old phenomenon. What differentiates its current use is that today its practice occurs in a systematic and formalized form in companies. This paper carried out a bibliographic‑exploratory research about the wind power supply chain and it analyzes how technological innovations made their development possible. The study focuses specifically on exploring within the technological innovations occurred in the chain wind power, as the innovative approach followed by developers organizations. Results indicate that open innovation practices were essential for the success of economic and technological feasibility for the development of such chain, primarily by what happened partnership between the manufacturers of major components (aero generators, towers, blades) wind energy, research institutes, laboratories, universities and federal governments through incentive policies. Keywords: technological development, wind energy supply chain, open innovation. 1. Introduction The current economic environment requires a market the search for new renewable energy sources, among them response in less time and with greater product innovation. wind and solar energy (DUTRA, 2001). In organizations, the Research and Development department Wind energy presents itself as an excellent alternative has the responsibility for carrying out the research on in generating clean energy. In Brazil, the increase in the new production alternatives of products and services generation of wind energy increased from 145 MW in 2007 at affordable costs, providing competitive advantage to to 2.3 GW in 2012 (AGÊNCIA..., 2012). The Northeast companies. The generation of residues and the emission region in Brazil stands out as a potential region of climate of pollutants that damage the environment grow in direct and weather conditions with winds of high quality, measured proportion to consumption. Thus, the search for sustainable by indicators speed and continuity. However, the expansion and ecologically correct products is generating new of wind energy too occurred due to the economic and market opportunities, since environmental issues present technological feasibility of the main components of a wind themselves as strategic targets in the corporate environment. farm as a result of the development of more efficient and The partnership among an organization and other economical technologies. According to data of the Agência companies or research institutes seeking to exchange market Nacional de Energia Elétrica – ANEEL (AGÊNCIA..., information and technology to innovative ideas that arise 2012), the price of electricity sold, from wind farms, fell or solutions to existing ideas, characterize the practice of from R$ 305/MWh in 2005 to R$ 100.9/MWh in 2011. open innovation. According to Chesbrough (2003, 2011), This paper aims to analyze the application of open the open innovation occurs when the company adds external innovation approach in technological innovation projects of knowledge and, along with internal knowledge, it generates equipment and components supply chain of wind energy. value for the organization. That is, the boundary between For this, was conducted a bibliographic‑exploratory study the firm and its environment is porous assuming exchange on the topics: open innovation, technological innovation and of expertise. chain of wind energy. Further, the study was complemented One of the sectors that have shown a significant amount with technical reports and research on the development of of research in the area of sustainability is the energy sector, technologies of wind energy supply chain. whose consumption increases, progressively, both in The paper is organized into five topics. The first one industry and commerce, and also in residences. This concern describes the introduction and the purpose of the research. consumption along with sustainable development justifies Topics 2, 3 and 4 present a brief bibliographic review on 104 Open innovation practices in the development of wind energy supply chain: an exploratory analysis of the literature González et al. the basis of the topic under study: open innovation, wind The difference between these two approaches is in energy and technological innovation in the of wind energy the way enterprises organize their innovation processes. chain, respectively. Finally, the fifth section deals the final According to Chesbrough (2003), the process of research considerations of the study. and development, which is exclusively internal of companies, discriminates the good ideas, which are not 2. Open innovation presented as good, so that only the best are sold. Though, the The traditional model of innovation – closed innovation open innovation still has the ability to retrieve projects that (see Figure 1) – requires control in innovations, in other seem poor, but may become useful during its development. words, companies must generate their own ideas without Organizational leaders must understand the practice of sharing their clients and partners with the external this approach in order to be adopted in accordance with environment. The benefits and profits from innovation the company’s business model, because every change has are reinvested in the company to new research. However, an impact on the organization, as sharing common vision the mentality has changed and businesses were opening and mission with partners; changing systems, processes, their research to other companies, organizations and their values, culture of the company as an entire; emergence of customers. Therefore, when adding external knowledge with opportunities and threats. Leaders need to provide even more internal knowledge, it increases the value of the organization, motivation, confidence to performance in the team so that so they started to practice the new innovation model – open everyone is looking for the same common aim. innovation (see Figure 2) (CHESBROUGH, 2003). The open innovation approach shows up differently for small and large businesses. According to Lindegaard (2011a) the main features that link these differences are: • Speed in decision‑making – in small businesses, due to lack of bureaucracy, decisions are made more quickly. Though, the practice of open innovation in small businesses progresses more slowly than in large firms. The latter suffer pressure from the first ome in order to act faster than they are; • Attitude to risk – when a small business is still starting on the market, the whole business is a risk. But, just as in speed, when talking about open innovation, both types of company may, due to their differences, do not relate well; and • Resource Allocation – in small businesses, every feature is relevant to the company, while in large organizations, this narrow view of importance of Figure 1. Model of closed innovation. Source: Chesbrough resources is more malleable. (2003). These differences must be understood by both parties of the the partnership formed for the open innovation practice to be satisfactory. Lindegaard (2011b) presents a research by the Danish Chamber of Commerce which shows that between the years 2007‑2010 only 44% of Danish companies had conducted some innovation activity in their product, service or process. The research also reports the fact that large companies launch new products more often than small firms. For the success of chain of any organization, it becomes necessary to seek information from two types (PILLER; IHL, 2009): detailed and accurate knowledge about the needs related to the product – client domain – and the techniques of how to solve these needs – the company domain. Additionally, businesses can contribute to skills, both their employees as their customers, to identify and Figure 2. Model of open innovation. Source: Chesbrough educate its consumers – a view from the outside – and (2003). organize themselves internally ‑ view from the inside. Vol. 10 nº 2 December 2012 Product: Management & Development 105 According to Huizingh (2011), the concept of open demand and political priority for renewable energy has innovation can be understood through the distinction among transformed India into one of the most dynamic markets the terms content, context and process. The content covers in the world. At the same time, the introduction of a new the different types of openness of the organization, the tax code and uncertainty about the future tax benefits that main activities of inbound and outbound for innovation have driven much of the growth in India to date are of and the factors of its effectiveness. The context involves concern to investors (GLOBAL..., 2011). Still, the country characteristics of the internal and external environment of has the company Suzlon, considered as one of the leading the company. Finally, the process involves the transition manufacturers of wind turbines in the world. to open innovation (before it was a closed innovation, that is,
Recommended publications
  • Optimizing the Visual Impact of Onshore Wind Farms Upon the Landscapes – Comparing Recent Planning Approaches in China and Germany
    Ruhr-Universität Bochum Dissertation Submission to the Ruhr-Universität Bochum, Faculty of Geosciences For the degree of Doctor of natural sciences (Dr. rer. nat) Submitted by: Jinjin Guan. MLA Date of the oral examination: 16.07.2020 Examiners Dr. Thomas Held Prof. Dr. Harald Zepp Prof. Dr. Guotai Yan Prof. Dr. Wolfgang Friederich Prof. Dr. Harro Stolpe Keywords Onshore wind farm planning; landscape; landscape visual impact evaluation; energy transition; landscape visual perception; GIS; Germany; China. I Abstract In this thesis, an interdisciplinary Landscape Visual Impact Evaluation (LVIE) model has been established in order to solve the conflicts between onshore wind energy development and landscape protection. It aims to recognize, analyze, and evaluate the visual impact of onshore wind farms upon landscapes and put forward effective mitigation measures in planning procedures. Based on literature research and expert interviews, wind farm planning regimes, legislation, policies, planning procedures, and permission in Germany and China were compared with each other and evaluated concerning their respective advantages and disadvantages. Relevant theories of landscape evaluation have been researched and integrated into the LVIE model, including the landscape connotation, landscape aesthetics, visual perception, landscape functions, and existing evaluation methods. The evaluation principles, criteria, and quantitative indicators are appropriately organized in this model with a hierarchy structure. The potential factors that may influence the visual impact have been collected and categorized into three dimensions: landscape sensitivity, the visual impact of WTs, and viewer exposure. Detailed sub-indicators are also designed under these three topics for delicate evaluation. Required data are collected from official platforms and databases to ensure the reliability and repeatability of the evaluation process.
    [Show full text]
  • Offshore Renewables: Offshore
    OFFSHORE RENEWABLES: OFFSHORE OFFSHORE AN ACTION AGENDA FOR DEPLOYMENT RENEWABLES An action agenda for deployment OFFSHORE RENEWABLES A CONTRIBUTION TO THE G20 PRESIDENCY An action agenda for deployment A CONTRIBUTION TO THE G20 PRESIDENCY www.irena.org 2021 © IRENA 2021 © IRENA 2021 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. Citation: IRENA (2021), Offshore renewables: An action agenda for deployment, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-349-6 About IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements IRENA is grateful for the Italian Ministry of Foreign Affairs and International Cooperation (Directorate-General for Global Affairs, DGMO) contribution that enabled the preparation of this report in the context of the Italian G20 Presidency.
    [Show full text]
  • IEA WIND 2012 Annual Report
    IEA WIND 2012 Annual Report Executive Committee of the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems of the International Energy Agency July 2013 ISBN 0-9786383-7-9 Message from the Chair Welcome to the IEA In 2013, we expect to approve Recommended Wind 2012 Annual Re- Practices on social acceptance of wind energy proj- port of the coopera- ects, on remote wind speed sensing using SODAR tive research, develop- and LIDAR, and on conducting wind integration ment, and deployment studies. The 12 active research tasks of IEA wind will (R,D&D) efforts of our offer members many options to multiply their na- member governments and tional research programs, and a new task on ground- organizations. IEA Wind based testing of wind turbines and components is helps advance wind en- being discussed for approval in 2013. ergy in countries repre- With market challenges and ever-changing re- senting 85% of the world's search issues to address, the IEA Wind co-operation wind generating capacity. works to make wind energy an ever better green In 2012 record ca- option for the world's energy supply. Considering pacity additions (MW) these accomplishments and the plans for the coming were seen in nine member countries, and coop- years, it is with great satisfaction and confidence that erative research produced five final technical re- I hand the Chair position to Jim Ahlgrimm of the ports as well as many journal articles and confer- United States. ence papers. The technical reports include: • IEA
    [Show full text]
  • Introduction to Airborne Wind Energy
    Introduction to Airborne Wind Energy March 2020 Udo Zillmann Kristian Petrick Stefanie Thoms www.airbornewindeurope.org 1 § Introduction to Airborne Wind Energy Agenda § Airborne Wind Energy – principle and concepts § Advantages § Challenges § Airborne Wind Europe § Meeting with DG RTD www.airbornewindeurope.org 2 § AWE principle and concepts Overview § Principles § Ground generation § On-board generation § Different types § Soft wing § Rigid wing § Semi-rigid wing § Other forms www.airbornewindeurope.org 3 § AWE principle Ground generation (“ground gen”) or yo-yo principle Kite flies out in a spiral and creates a tractive pull force to the tether, the winch generates electricity as it is being reeled out. Kite Tether Winch Tether is retracted back as kite flies directly back to the starting point. Return phase consumes a few % of Generator power generated, requires < 10 % of total cycle time. www.airbornewindeurope.org 4 § AWE principle On-board generation (“fly-gen”) Kite flies constantly cross-wind, power is produced in the on-board generators and evacuated through the tether www.airbornewindeurope.org 5 § AWE principle The general idea: Emulating the movement of a blade tip but at higher altitudes Source: Erc Highwind https://www.youtube.com/watch?v=1UmN3MiR65E Makani www.airbornewindeurope.org 6 § AWE principle Fundamental idea of AWE systems • With a conventional wind turbine, the outer 20 % of the blades (the fastest moving part) generates about 60% of the power • AWE is the logical step to use only a fast flying device that emulates the blade tip. www.airbornewindeurope.org 7 § AWE concepts Concepts of our members – soft, semi-rigid and rigid wings www.airbornewindeurope.org 8 § AWE Concept Overview of technological concepts Aerostatic concepts are not in scope of this presentation Source: Ecorys 2018 www.airbornewindeurope.org 9 § AWE Concept Rigid kite with Vertical Take Off and Landing (VTOL) 1.
    [Show full text]
  • IEA Wind Technology Collaboration Programme
    IEA Wind Technology Collaboration Programme 2017 Annual Report A MESSAGE FROM THE CHAIR Wind energy continued its strong forward momentum during the past term, with many countries setting records in cost reduction, deployment, and grid integration. In 2017, new records were set for hourly, daily, and annual wind–generated electricity, as well as share of energy from wind. For example, Portugal covered 110% of national consumption with wind-generated electricity during three hours while China’s wind energy production increased 26% to 305.7 TWh. In Denmark, wind achieved a 43% share of the energy mix—the largest share of any IEA Wind TCP member countries. From 2010-2017, land-based wind energy auction prices dropped an average of 25%, and levelized cost of energy (LCOE) fell by 21%. In fact, the average, globally-weighted LCOE for land-based wind was 60 USD/ MWh in 2017, second only to hydropower among renewable generation sources. As a result, new countries are adopting wind energy. Offshore wind energy costs have also significantly decreased during the last few years. In Germany and the Netherlands, offshore bids were awarded at a zero premium, while a Contract for Differences auction round in the United Kingdom included two offshore wind farms with record strike prices as low as 76 USD/MWh. On top of the previous achievements, repowering and life extension of wind farms are creating new opportunities in mature markets. However, other challenges still need to be addressed. Wind energy continues to suffer from long permitting procedures, which may hinder deployment in many countries. The rate of wind energy deployment is also uncertain after 2020 due to lack of policies; for example, only eight out of the 28 EU member states have wind power policies in place beyond 2020.
    [Show full text]
  • Challenges for the Commercialization of Airborne Wind Energy Systems
    first save date Wednesday, November 14, 2018 - total pages 53 Reaction Paper to the Recent Ecorys Study KI0118188ENN.en.pdf1 Challenges for the commercialization of Airborne Wind Energy Systems Draft V0.2.2 of Massimo Ippolito released the 30/1/2019 Comments to [email protected] Table of contents Table of contents Abstract Executive Summary Differences Between AWES and KiteGen Evidence 1: Tether Drag - a Non-Issue Evidence 2: KiteGen Carousel Carousel Addendum Hypothesis for Explanation: Evidence 3: TPL vs TRL Matrix - KiteGen Stem TPL Glass-Ceiling/Threshold/Barrier and Scalability Issues Evidence 4: Tethered Airfoils and the Power Wing Tethered Airfoil in General KiteGen’s Giant Power Wing Inflatable Kites Flat Rigid Wing Drones and Propellers Evidence 5: Best Concept System Architecture KiteGen Carousel 1 Ecorys AWE report available at: https://publications.europa.eu/en/publication-detail/-/publication/a874f843-c137-11e8-9893-01aa75ed 71a1/language-en/format-PDF/source-76863616 or ​ https://www.researchgate.net/publication/329044800_Study_on_challenges_in_the_commercialisatio n_of_airborne_wind_energy_systems 1 FlyGen and GroundGen KiteGen remarks about the AWEC conference Illogical Accusation in the Report towards the developers. The dilemma: Demonstrate or be Committed to Design and Improve the Specifications Continuous Operation as a Requirement Other Methodological Errors of the Ecorys Report Auto-Breeding Concept Missing EroEI Energy Quality Concept Missing Why KiteGen Claims to be the Last Energy Reservoir Left to Humankind
    [Show full text]
  • Wind Generation Forecasting Methods and Proliferation of Artificial Neural
    sustainability Review Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend Muhammad Shahzad Nazir 1,* , Fahad Alturise 2 , Sami Alshmrany 3, Hafiz. M. J Nazir 4, Muhammad Bilal 5 , Ahmad N. Abdalla 6, P. Sanjeevikumar 7 and Ziad M. Ali 8,9 1 Faculty of Automation, Huaiyin Institute of Technology, Huai’an 223003, China 2 Computer Department, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia; [email protected] 3 Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia; [email protected] 4 Institute of Advance Space Research Technology, School of Networking, Guangzhou University, Guangzhou 510006, China; [email protected] 5 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; [email protected] 6 Faculty of Information and Communication Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; [email protected] 7 Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark; [email protected] 8 College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia; [email protected] 9 Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt * Correspondence: [email protected] or [email protected]; Tel.: +86-1322-271-7968 Received: 8 April 2020; Accepted: 23 April 2020; Published: 6 May 2020 Abstract: To sustain a clean environment by reducing fossil fuels-based energies and increasing the integration of renewable-based energy sources, i.e., wind and solar power, have become the national policy for many countries.
    [Show full text]
  • Financial Statement 2012 of Enel Green Power S.P.A
    Annual Report 2012 Annual Report 2012 Contents Report on operations Consolidated financial statements The Enel Green Power structure | 7 Consolidated Income Statement | 90 Corporate boards | 8 Statement of Consolidated Comprehensive Income | 91 Letter to the shareholders and other stakeholders | 10 Consolidated Balance Sheet | 92 Summary of results | 12 Statement of Changes in Consolidated Shareholders’ Equity | 93 Significant events in 2012 | 17 Consolidated Statement of Cash Flows | 94 The contribution of renewable energy to sustainability | 24 Notes to the financial statements | 95 Reference scenario | 28 > Enel Green Power and the financial markets | 28 Economic and energy conditions in 2012 | 30 Corporate governance > Economic developments | 30 > Developments in the main market indicators | 31 Corporate governance and ownership > International commodity prices | 32 structures report | 162 Electricity markets | 33 Overview of the Group’s performance and financial position | 52 Declaration of the Chief Executive Officer Performance and financial position by segment | 62 and the officer responsible for the preparation > Italy and Europe | 64 of corporate financial reports > Iberia and Latin America | 66 > North America | 68 Declaration of the Chief Executive Officer > Retail | 69 and the officer responsible for the preparation Main risks and uncertainties | 71 of corporate financial reports | 202 Outlook | 73 Innovation | 74 Human resources and organization | 77 Annexes Regulations governing non-EU subsidiaries | 83 Regulations governing
    [Show full text]
  • Airborne Wind Energy
    Airborne Wind Energy Technology Review and Feasibility in Germany Seminar Paper for Sustainable Energy Systems Faculty of Mechanical Engineering Technical University of Munich Supervisors Johne, Philipp Hetterich, Barbara Chair of Energy Systems Authors Drexler, Christoph Hofmann, Alexander Kiss, Balínt Handed in Munich, 05. July 2017 Abstract As a new generation of wind energy systems, AWESs (Airborne Wind Energy Systems) have the potential to grow competitive to their conventional ancestors within the upcoming decade. An overview of the state of the art of AWESs has been presented. For the feasibility ana- lysis of AWESs in Germany, a detailed wind analysis of a three dimensional grid of 80 data points above Germany has been conducted. Long-term NWM (Numerical Weather Model) data over 38 years provided by the NCEP (National Centers for Environmental Prediction) has been analysed to determine the wind probability distributions at elevated altitudes. Besides other data, these distributions and available performance curves have been used to calcu- late the evaluation criteria AEEY (Annual Electrical Energy Yield) and CF (Capacity Factor). Together with the additional criteria LCOE (Levelised Costs of Electricity), MP (Material Per- formance), and REP (Rated Electrical Power) a quantitative cost utility analysis according to Zangemeister has been conducted. This analysis has shown that AWESs look promising and could become an attractive alternative to traditional wind energy systems. 2 Table of Contents 1 Introduction ......................................................................................................
    [Show full text]
  • Enel Green Power: Is China an Attractive Market for Entry?
    Department of Business and Management Chair of M&A and Investment Banking ENEL GREEN POWER: IS CHINA AN ATTRACTIVE MARKET FOR ENTRY? SUPERVISOR Prof. Luigi De Vecchi CANDIDATE Mario D’Avino matr. 641711 CO – SUPERVISOR Prof. Simone Mori ACADEMIC YEAR 2012/13 “A chi mi ha trasmesso l’umiltà e la curiosità, sorgenti prime per la sete del sapere. A chi mi ha sempre smosso dagli allori, forgiandomi di una continua motivazione, perché il vincente è colui che non si ferma, ma imperterrito, già guarda oltre. A chi mi ha insegnato la costanza e la precisione, onniscienti linee guida nel raggiungimento di ogni traguardo. A chi mi ha mostrato la forza della tenacia, arma imprescindibile per lottare senza tregua e non mollare mai. Ed infine a colui che, onnipresente, accompagna ogni mio passo, senza far rumore.” 1 TABLE OF CONTENTS INTRODUCTION……………………………………………………. 7 CHAPTER 1 - “AN OVERVIEW OF THE RENEWABLE SECTOR” 1.1. RENEWABLE ENERGY…………………………………………… 9 1.1.1. History……………………………………………………………….. 11 1.1.2. Wind Power………………………………………………………….. 12 1.1.3. Hydropower………………………………………………………….. 13 1.1.4. Solar Power…………………………………………………………... 14 1.1.5. Biomass Power………………………………………………………. 16 1.1.6. Geothermal Power…………………………………………………… 17 1.2. GLOBAL MARKET OVERVIEW………………………………….. 18 1.2.1. Power Sector…………………………………………………………. 20 CHAPTER 2 - “ANALYSIS OF THE HISTORICAL AND PLANNED INVESTMENTS IN THE RENEWABLE SECTOR” 2.1. HISTORICAL TREND……………………………………………… 26 2.1.1. Global Overview 2012……………………………………………….. 26 2.1.2. Investment Breakdown by Country………………………………….. 27 2.1.3. Investment Breakdown by Sector……………………………………. 30 2.1.4. Investment Breakdown by Type……………………………………... 32 2.1.5. Bank Finance………………………………………………………… 34 2.2. PLANNED INVESTMENT………………………………………….
    [Show full text]
  • Global Wind Turbine Technology Trends
    Analyst PRESENTATION Global Wind Turbine Technology Trends 26 April 2017 Andy Li [email protected] Introduction A few words about MAKE Summary ▪ MAKE is one of the global wind industry's premier strategic consulting and research firms, serving the world’s leading wind companies from all parts of the value chain from raw material suppliers to IPPs and utilities. ▪ MAKE is based in Aarhus (DK) and has offices in Hamburg (D), Chicago, Boston (U.S.) & Shanghai (China). Andy Li Business Analyst ▪ Publish industry leading wind energy research reports, analysis and databases ▪ Leads the execution of MAKE’s China advisory projects ▪ Consult on wind farm investments, market ▪ Solid background in the Chinese wind industry including assessment, supply chain dynamics, technology, product development at Envision Energy operations & maintenance, M&A advisory, ▪ Extensive knowledge of wind turbine, wind farm business & market modelling and offshore wind solutions, and big data platform development ▪ B.Eng – Mechanical Engineering ▪ Due-diligence partner for European and international PE and industrial investors ▪ M.Eng – Industrial and Financial Engineering Japan offshore wind market overview March 2017 2 Introduction A sample of our industrial clients Japan offshore wind market overview 3 March 2017 Introduction A sample of our financial clients Japan offshore wind market overview 4 March 2017 Contents ▪ Executive summary ▪ Global wind turbine technology trends ▪ Sources of innovation and ‘breakthrough’ technology 5 Delivering renewable Executive summary
    [Show full text]
  • Wind Power Research in Wikipedia
    Scientometrics Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? --Manuscript Draft-- Manuscript Number: SCIM-D-17-00020R2 Full Title: Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? Article Type: Manuscript Keywords: Wikipedia references; Wikipedia; Wind power research; Web of Science records; Research evaluation; Scientometric indicators Corresponding Author: Peter Ingwersen, PhD, D.Ph., h.c. University of Copenhagen Copenhagen S, DENMARK Corresponding Author Secondary Information: Corresponding Author's Institution: University of Copenhagen Corresponding Author's Secondary Institution: First Author: Antonio E. Serrano-Lopez, PhD First Author Secondary Information: Order of Authors: Antonio E. Serrano-Lopez, PhD Peter Ingwersen, PhD, D.Ph., h.c. Elias Sanz-Casado, PhD Order of Authors Secondary Information: Funding Information: This research was funded by the Spanish Professor Elias Sanz-Casado Ministry of Economy and Competitiveness (CSO 2014-51916-C2-1-R) Abstract: Aim: This paper is a result of the WOW project (Wind power On Wikipedia) which forms part of the SAPIENS (Scientometric Analyses of the Productivity and Impact of Eco-economy of Spain) Project (Sanz-Casado et al., 2013). WOW is designed to observe the relationship between scholarly publications and societal impact or visibility through the mentions
    [Show full text]